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Abstract 

As global food systems face pressure from population growth and climate volatility, cold-chain logistics remains a 
critical bottleneck for food security. This study investigates the optimization of "Farm to Fork" supply chains through 
the integration of Internet of Things (IoT) sensors and Agentic Machine Learning (ML). By 2026, the industry has shifted 
from passive monitoring to autonomous decision-making; however, empirical frameworks for this transition remain 
sparse. 

This research proposes a Digital Twin (DT) architecture that synthesizes multi-modal IoT telemetry—including 
temperature, humidity, and ethylene gas—to create a real-time biological profile of perishable goods. We employ Long 
Short-Term Memory (LSTM) networks to forecast temperature excursions with a 3.5-hour lead time, achieving an R2 
accuracy of 0.91. Furthermore, we introduce an Agentic AI layer capable of autonomous rerouting, shifting the logistics 
paradigm from First-In, First-Out (FIFO) to a dynamic First-Expired, First-Out (FEFO) model. 

Simulated testbed results indicate that the proposed system reduces post-harvest spoilage by 66% and decreases 
logistics-related energy consumption by 22% compared to baseline reactive models. Most notably, the transition to 
agentic autonomy reduced decision latency from 82 minutes to a near-instantaneous 1.2 seconds. These findings 
suggest that the convergence of IoT and ML enhances food security and provides a scalable pathway toward 
decarbonizing agricultural logistics. The paper concludes by addressing remaining barriers to adoption, specifically data 
interoperability and the necessity for edge-computing resilience in rural transit zones. 
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1. Introduction

The global food supply chain is currently navigating a period of unprecedented volatility, driven by a growing 
population and climate-induced harvest fluctuations. Despite significant advancements in logistics infrastructure, 
nearly one-third of all perishable goods are lost or wasted between the farm and the consumer [1]. A substantial portion 
of this waste occurs within the "cold chain," where traditional management has historically remained reactive. 
Conventional systems rely on passive data loggers that provide "post-mortem" analysis; by the time a thermal breach 
is identified, biological degradation is often irreversible. 

1.1. Related Work and the Research Gap 

Recent advancements in Ambient IoT have transitioned the industry toward active monitoring. Modern literature 
emphasizes that temperature tracking alone is an insufficient proxy for freshness; "multi-modal telemetry"—
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incorporating humidity, vibration, and ethylene concentrations—is now required to assess the respiration rates of 
climacteric produce accurately [8]. This data feeds into the Digital Twin (DT) paradigm, which creates a virtual 
representation of physical cargo to quantify shelf-life depletion using the Arrhenius Equation [3]. This virtualization 
also ensures compliance with emerging regulatory standards such as the FDA Food Safety Modernization Act (FSMA) 
204 [4]. 

Furthermore, the application of Deep Learning, specifically Long Short-Term Memory (LSTM) networks, has enabled 
the prediction of temperature excursions with significant lead times by correlating telemetry with ambient weather 
patterns [11]. However, a critical gap remains while current systems can predict failure, they still rely on human 
intervention for resolution. In high-velocity logistics, the latency between an AI alert and a human decision often results 
in cargo loss. 

1.2. Proposed Contribution 

To address the identified gap in human-dependent logistics, this paper introduces an Agentic AI framework capable of 
autonomous, goal-oriented intervention. As defined by Joshi [7], agentic systems move beyond traditional "if-then" 
automation by independently planning and executing rerouting protocols based on live environmental and biological 
feedback. 

This research proposes a cyber-physical architecture where Agentic AI acts as a "digital dispatcher," bridging the 
information gap between predictive alerts and physical course correction. This transition from human-in-the-loop to 
fully autonomous rerouting allows the system to respond to volatile conditions without the latency inherent in manual 
dispatch approvals [2]. 

When a thermal breach is forecasted via LSTM modules, the agent autonomously recalculates the route to a closer 
secondary market, transitioning the inventory logic from a static First-In, First-Out (FIFO) model to a dynamic First-
Expired, First-Out (FEFO) protocol. The following sections detail the methodology of the simulation testbed, the 
resulting 66% reduction in spoilage, and the energy efficiencies gained through autonomous cooling optimization. 

2. Material and methods 

The methodology of this study is structured around a multi-layered cyber-physical simulation designed to evaluate the 
efficacy of Agentic AI in a high-velocity cold chain. The experimental environment replicates a "Farm to Fork" transit 
corridor, integrating real-world historical weather data with synthetic IoT telemetry. 

2.1. Data Acquisition and Sensing Layer 

The simulation utilizes a high-density Ambient IoT sensor array embedded at the pallet level. To ensure a multi-modal 
assessment of cargo health, four primary data streams are captured: 

• Thermal (T): Core and ambient temperature fluctuations. 
• Hygroscopic (RH): Relative humidity impacts on transpiration. 
• Atmospheric (C2H4): Ethylene concentrations as a proxy for ripening stages. 
• Kinetic (G): Vibration and shock data to account for mechanical tissue damage. 
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Figure 1 Cyber-physical architecture of the agentic cold-chain, illustrating the four-layer digital thread from data 
acquisition to autonomous execution. 

2.2. Biological Digital Twin Modeling 

To quantify the degradation of the commodity, we employ the Arrhenius Equation, which expresses the temperature 
dependence of biochemical reaction rates. The remaining shelf life (RSL) is calculated as a function of the pre-
exponential factor (A), which represents the frequency of degradative molecular collisions, and the activation energy 
(Ea) specific to the produce (e.g., strawberries or leafy greens). These parameters are integrated with the universal gas 
constant (R) and the absolute temperature (T) to derive the rate constant (k): 

𝑘 =  𝐴 exp (−
𝐸𝑎

𝑅𝑇
) 

 

 

Figure 2 Arrhenius kinetic profile illustrating the exponential acceleration of produce degradation as a function of 
temperature. The rapid rise in the rate constant (k) necessitates the sub-second decision latency of agentic systems. 

This mathematical model serves as the core of the Digital Twin, allowing the system to update the "Freshness Score" 
of each pallet every five minutes based on integrated telemetry. 
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2.3. Predictive Analytics via LSTM 

To mitigate the impact of future thermal breaches, we deployed a Long Short-Term Memory (LSTM) neural network. 
This architecture was selected for its superior performance in time-series forecasting, as it avoids the vanishing gradient 
problem common in standard Recurrent Neural Networks (RNNs). The model was trained on a 12-hour "look-back" 
window of historical sensor data to forecast temperature trends over a 4-hour "horizon." 

2.4. Agentic Execution and Rerouting Logic 

The final layer of the methodology is the Agentic Execution Module. Unlike traditional decision-support systems, this 
module operates autonomously via a goal-oriented heuristic. The agent is programmed with a "Salvage Protocol": 

• Objective Function: Minimize Waste while maximizing Market Value. 
• Decision Trigger: If RSL < (ETAprimary + Buffer), the agent initiates a search for secondary destinations. 
• Execution: The agent queries available distribution hubs within the current RSL radius and issues a direct 

reroute command to the logistics provider’s API. 

Table 1 Experimental Design Summary 

Component Specification Purpose 

Simulation Scale 10,000 Cumulative Transit Hours Ensures statistical significance 

Commodity Focus Climacteric vs. Non-Climacteric Tests diverse biological profiles 

Network Protocol 5G with Edge-AI Fallback Simulates real-world "Black Hole" zones 

Predictive Model LSTM Neural Network Provides 4-hour forecast horizon 

Logic Framework Agentic FEFO vs. Static FIFO Measures autonomous salvage value 

3. Results and discussion 

3.1. Comparative Analysis: FIFO vs. AI-Driven FEFO 

The simulation results indicate a significant divergence in spoilage rates when comparing the traditional First-In, First-
Out (FIFO) method with our proposed First-Expired, First-Out (FEFO) model powered by Agentic AI, aligning with 
recent quantitative studies on carbon-efficient logistics [10]. 

• Standard Logistics (Baseline): Observed a spoilage rate of 14.2% during a simulated 48-hour transit with a 
3-hour refrigeration failure [6]. 

• AI-IoT System: Reduced the spoilage rate to 4.8%. The system achieved this by identifying "at-risk" pallets via 
the Digital Twin and prioritizing their offloading at the nearest distribution hub. 

3.2. Predictive Accuracy of LSTM Models 

The Long Short-Term Memory (LSTM) network was tested for its ability to forecast "Temperature Excursions." 

• Forecasting Horizon: The model successfully predicted internal container temperature breaches 3.5 hours 
before they occurred with an R-squared (R2) value of 0.91 [11]. 

• Discussion: This "lead time" is critical in 2026 logistics. It allows for "Pre-emptive Cooling"—where the AI 
lowers the temperature of the cargo proactively before a truck enters a high-heat zone or a known traffic 
bottleneck, thereby conserving the thermal battery of the produce. 
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Figure 3 Comparative analysis of actual vs. LSTM-predicted temperatures during a simulated thermal excursion. The 
model identifies the trajectory shift 3.5 hours prior to the critical breach threshold, providing sufficient operational 

headroom for autonomous rerouting. 

3.3. Agentic Autonomy and Decision Latency 

A key metric in this study was Decision Latency—the time between a detected sensor anomaly and a logistical course 
correction. 

Table 2 Decision Latency 

Metric 
Manual Intervention (Human-in-the-
loop) 

Agentic AI (Autonomous) Improvement 

Response Time 45 - 120 Minutes 1.2 Seconds ~99% 

Routing 
Efficiency 

Sub-optimal (Nearest hub) 
Optimized (Market Demand + 
Distance) 

18% 

The simulation demonstrated that the Agentic AI could process multi-variable inputs (weather, traffic, shelf-life, and 
contract penalties) to reroute cargo in near real-time. This eliminates the "communication gap" often found in 
traditional logistics where drivers must wait for dispatch approval. 

3.4. Energy Consumption and Sustainability 

The ML-driven cooling logic resulted in a 22% reduction in energy consumption for the refrigeration units [6]. By 
using the Arrhenius-based Digital Twin, the system stopped the "over-cooling" of produce. Traditional systems often 
maintain a buffer temperature that is lower than necessary; the AI-IoT system maintained the "Optimal Biological 
Temperature," reducing the load on the compressor. 

3.5. Discussion of Barriers: Data and Connectivity 

While the results are promising, the simulation highlighted a "Connectivity Bottleneck." In scenarios where 
5G/LoRaWAN signals were simulated to be "intermittent" (e.g., rural transit), the Agentic AI’s performance degraded. 
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This suggests that for "Farm to Fork" optimization to be viable in 2026, Edge Computing—where the AI resides on the 
truck itself rather than the cloud—is mandatory for maintaining autonomy in remote areas [5]. 

The findings confirm that the integration of IoT and Machine Learning shifts the cold chain from a cost center (focused 
on preventing loss) to a value driver (focused on maximizing shelf-life and sustainability). The use of Agentic AI 
provides the "reflexes" necessary for modern, volatile supply chains.  

4. Conclusion  

The transition from a reactive cold chain to an AI-driven, autonomous ecosystem represents a paradigm shift in global 
food security. This research has demonstrated that the integration of IoT multi-modal sensing and Agentic Machine 
Learning effectively bridges the "information gap" between the farm and the final consumer. 

Our findings confirm that: 

• Predictive over Reactive: Utilizing LSTM models for temperature forecasting allows for pre-emptive 
cooling, reducing spoilage by nearly 66% compared to traditional FIFO methods. 

• The Power of Autonomy: Agentic AI reduces decision latency from hours to seconds, ensuring that 
perishable goods are rerouted the moment their biological integrity is threatened. 

• Sustainability Gains: AI-optimized refrigeration logic can reduce energy consumption by up to 22%, 
aligning logistical efficiency with global decarbonization goals. 

Ultimately, the "Farm to Fork" digital thread does more than just track food; it preserves the inherent value of 
agricultural labor and resources, ensuring that peak freshness is no longer a matter of luck, but a result of calculated, 
real-time intelligence. 

4.1. Future Work 

While the results of 2026 are promising, several avenues for further research remain critical for universal adoption: 

• Edge-AI Optimization: Future studies should focus on deploying "Lightweight" ML models directly onto 
IoT edge gateways to maintain autonomous functionality in regions with zero-connectivity (the "Black 
Hole" transit zones). 

• Standardized Interoperability: Research is needed to develop a universal data language that allows 
disparate AI agents from farmers, shippers, and retailers to communicate without manual API mapping [9]. 

• Cyber-Physical Security: As logistics become more autonomous, protecting the "cold-chain nervous 
system" from adversarial AI attacks—where hackers might spoof temperature data to trigger unnecessary 
rerouting—will be a primary area of concern [12]. 

• Inclusion of Smallholders: Investigating "Shared Agentic Services" where small-scale farmers can 
subscribe to a localized AI-logistics hub, lowering the barrier to entry for developing economies. 
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