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Abstract 

Multimodal large language models (MLLMs) rely heavily on vision encoders to understand diverse image content. While 
recent approaches have explored combining multiple vision experts to address the limitations of single encoders, they 
typically perform image-level expert selection and fusion, ignoring the spatial heterogeneity within images where 
different regions may benefit from different experts. In this paper, we propose ViMoE (Vision Mixture of Experts with 
Multimodal Context Awareness), a novel MLLM that introduces three key innovations: (1) Token-Level Sparse Expert 
Activation (TLSEA) that enables different spatial tokens to utilize different expert combinations, allowing fine-grained, 
content-aware feature extraction; (2) Hierarchical Context Aggregation (HCA) that captures multi-scale visual context 
to guide expert routing at different granularities; and (3) Expert Confidence Calibration (ECC) that learns to estimate 
and calibrate expert contribution confidence to reduce noise from unreliable features. Through these innovations, 
ViMoE achieves more precise expert utilization by recognizing that a single image often contains diverse content 
requiring different visual expertise. Extensive experiments demonstrate that ViMoE achieves significant improvements 
over state-of-the-art methods across challenging multimodal benchmarks including MME, MMBench, and various VQA 
tasks, while maintaining computational efficiency through sparse activation patterns. Code is available at: 
https://arrel.github.io/vimoe/   

Keywords: Vision Mixture of Experts; Token-level routing; Multimodal large language mode; Hierarchical context 
aggregation; Confidence calibration; Sparse expert activation 

1. Introduction

Multimodal large language models (MLLMs) [33, 41, 3, 50] have demonstrated remarkable capabilities in understanding 
and reasoning about visual content. These models typically combine pre-trained vision encoders with large language 
models (LLMs) to enable sophisticated visual understanding. The CLIP vision encoder, trained on billions of image-text 
pairs, has become the de facto choice for most leading MLLMs due to its strong semantic understanding capabilities. 

However, a single vision encoder cannot excel at all visual tasks. CLIP, while powerful for general image understanding, 
often struggles with fine-grained tasks such as document parsing, chart understanding, and precise object localization 
[66, 36]. This observation has motivated recent works to incorporate multiple task-specific vision experts into MLLMs. 
For instance, SPHINX integrates DINOv2 [51] for improved grounding, while vary [66] introduces specialized encoders 
for document understanding. 

MoVA [77] represents a significant advancement by proposing a coarse-to-fine framework that first uses an LLM to 
select relevant vision experts based on the input image and instruction, then fuses selected expert features through a 
mixture-of-vision-expert adapter (MoV-Adapter). While effective, MoVA operates at the image level—all spatial tokens 
in an image utilize the same set of experts with identical weights. This design overlooks a crucial observation: different 
regions within a single image often contain diverse content that would benefit from different expert combinations. 

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjarr.com/
https://doi.org/10.30574/wjarr.2026.29.1.0242
https://arrel.github.io/vimoe/
https://crossmark.crossref.org/dialog/?doi=10.30574/wjarr.2026.29.1.0242&domain=pdf
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Figure 1 Motivation of VIMOE. Unlike prior methods that perform image-level expert selection, VIMOE enables token-
level sparse expert activation. In this example, a document image contains both text regions (better served by 

Pix2Struct) and chart regions (better served by Deplot). VIMOE routes different tokens to appropriate experts based 
on local content, achieving more precise knowledge extraction 

Consider the example in Figure 1: a document page containing both text paragraphs and embedded charts. Image-level 
approaches would select experts based on global image characteristics, potentially choosing either document-focused 
experts (missing chart details) or chart-focused experts (degrading text recognition). The optimal strategy is to route 
text regions to document experts like Pix2Struct while routing chart regions to visualization experts like Deplot. 

In this paper, we propose ViMoE (Vision Mixture of Experts with Multimodal Context Awareness), which introduces 
three novel components to address these limitations: 

1.1. Token-Level Sparse Expert Activation (TLSEA) 

Unlike image-level expert selection, TLSEA enables each spatial token to independently select and weight its expert 
contributions. This allows different image regions to utilize different expert combinations based on their local content, 
achieving fine-grained, content-aware feature extraction while maintaining computational efficiency through sparsity. 

1.2. Hierarchical Context Aggregation (HCA) 

Expert routing decisions should consider both local details and global semantics. HCA aggregates visual context at 
multiple scales and fuses it with textual context to provide rich, multi-granular information for routing decisions. This 
contrasts with MoVA's single-scale global average pooling approach. 

1.3. Expert Confidence Calibration (ECC) 

Not all expert contributions are equally reliable. ECC learns to estimate the confidence of each expert's features based 
on consistency with the base encoder and feature quality, then calibrates routing weights accordingly. This reduces 
noise from unreliable expert features and improves final representation quality. 

We conduct comprehensive experiments on diverse multimodal benchmarks including MME, MMBench, QBench, and 
various VQA datasets. ViMoE achieves significant improvements over state-of-the-art methods while maintaining 
computational efficiency. Ablation studies demonstrate the contribution of each proposed component. 
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1.3.1. Our contributions are summarized as follows 

• We identify the limitation of image-level expert selection in existing mixture-of-vision-expert approaches and 
propose token-level sparse expert activation to enable fine-grained, spatially-adaptive expert utilization. 

• We introduce hierarchical context aggregation that captures multi-scale visual-textual context to guide expert 
routing at different granularities. 

• We propose expert confidence calibration to estimate and reduce uncertainty in expert contributions, 
improving final representation quality. 

• Extensive experiments demonstrate that ViMoE achieves state-of-the-art performance across challenging 
multimodal benchmarks. 

2. Related Work 

2.1. Multimodal Large Language Models 

Multimodal large language models (MLLMs) extend the capabilities of LLMs [5, 63, 11] to understand visual content by 
integrating vision encoders. Early works like Flamingo and BLIP-2 established the paradigm of projecting visual features 
into the LLM's embedding space through learned connectors. LLaVA [41] simplified this approach using a simple MLP 
projector while demonstrating impressive visual instruction-following capabilities. Subsequent works have explored 
various improvements including higher resolution processing [40], enhanced training data, and more sophisticated 
projection architectures [6, 3]. 

The choice of vision encoder significantly impacts MLLM performance. Most works adopt the CLIP ViT [54] as the 
primary vision encoder due to its strong semantic understanding from contrastive pretraining on web-scale image-text 
pairs. However, CLIP's training objective optimizes for image-text similarity rather than dense visual understanding, 
leading to limitations in fine-grained tasks. 

2.2. Vision Encoder Enhancement for MLLMs 

To address the limitations of single vision encoders, recent works have explored incorporating additional specialized 
encoders. SPHINX [36] combines CLIP with DINOv2 [51] to improve visual grounding capabilities, as DINOv2's self-
supervised pretraining captures complementary local features. Mini-Gemini processes images at multiple resolutions 
using parallel encoders. Vary trains a specialized encoder for document and chart understanding to complement CLIP's 
general capabilities. 

These approaches typically concatenate or fuse expert features using fixed rules, which may introduce irrelevant or 
even harmful information from experts not suited for the current task [77]. This motivates the need for dynamic, 
content-aware expert selection and fusion. 

2.3. Mixture of Experts in Vision Models 

Mixture of Experts (MoE) has been extensively studied in language models [13, 30, 21] for efficient scaling. The core 
idea is to route inputs to a subset of specialized expert networks, enabling larger model capacity without proportional 
computational increase. 

In vision, V-MoE applies MoE to Vision Transformers by routing image patches to different FFN experts. Soft-MoE [53] 
proposes soft token routing to improve training stability. However, these works use MoE for scaling a single encoder 
rather than combining multiple pre-trained specialized encoders. 

MoVA represents the most relevant work, proposing mixture-of-vision-experts for MLLMs. It employs coarse-grained 
LLM-based expert routing followed by fine-grained fusion through a MoV-Adapter. While effective, MoVA performs 
expert selection at the image level, treating all spatial regions uniformly. Our work extends this direction by introducing 
token-level sparse activation, hierarchical context aggregation, and confidence calibration for more precise expert 
utilization. 

2.4. Token-Level Processing in Vision-Language Models 

The importance of token-level processing has been recognized in recent vision-language research. Token Learner 
dynamically selects informative tokens to reduce computation. LLaVA-PruMerge prunes redundant visual tokens before 
LLM processing. These works focus on token selection for efficiency rather than expert routing. 
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In the context of dense prediction, Semantic-SAM demonstrates that different regions within an image require different 
processing granularities. This observation aligns with our motivation that different spatial regions should utilize 
different vision experts based on their content. 

 

Figure 2 The overall framework of VIMOE. Our method introduces three novel components: (1) Hierarchical Context 
Aggregation (HCA) that captures multi-scale visual-textual context; (2) Token-Level Sparse Expert Activation (TLSEA) 

that enables fine-grained, spatially-adaptive expert routing; and (3) Expert Confidence Calibration (ECC) that 
estimates and reduces uncertainty in expert contributions. These components work together to achieve precise, 

content-aware expert utilization 

3. ViMoE Methodology 

3.1. Overview 

ViMoE extends the mixture-of-vision-experts paradigm with finer-grained, more robust expert utilization. As illustrated 
in Figure 2, our framework comprises: (i) a base vision encoder (CLIP ViT-L) that provides foundational visual features; 
(ii) task-specific vision expert encoders (Pix2Struct [29], Deplot [38], SAM [26], etc); (iii) a ViMoE-Adapter that 
integrates our three novel modules for expert fusion; and (iv) a large language model that generates responses. 

Given an input image I and user instruction Q, ViMoE first extracts features from the base encoder 𝑋 ∈ 𝑅^{𝐿 × 𝐶} and 
expert encoders {𝐹_𝑗 ∈ 𝑅^{𝐿 × 𝐶_𝑗}} _ {𝑗 =  1} ^𝑁 , where L is the number of spatial tokens, C is the base feature 
dimension, and N is the number of experts. Unlike MoVA which selects experts at the image level, ViMoE enables token-
level routing through our proposed modules, achieving spatially-adaptive expert utilization. 

3.2. Hierarchical Context Aggregation (HCA) 

Effective expert routing requires understanding both local visual details and global semantics. MoVA uses a single global 
average pooling to obtain context for gating, which loses spatial information. We propose Hierarchical Context 
Aggregation to capture multi-scale context for more informed routing decisions. 

3.3. Multi-Scale Visual Context 

Given the base visual features 𝑋 ∈ 𝑅^{𝐿 × 𝐶}, we first reshape them to spatial format 𝑋_2𝐷 ∈ 𝑅^{𝐻 ×𝑊 × 𝐶} where L 
= H×W. We then apply adaptive average pooling at multiple scales {s_1, s_2, s_3} = {1,2,4} to obtain multi-scale context: 

𝐶_𝑘 =  𝑃𝑜𝑜𝑙_{𝑠_𝑘}(𝑋_2𝐷), 𝐶_𝑘 ∈ 𝑅^{𝑠_𝑘^2 × 𝐶}  

Each scale captures context at different granularities: 𝑠_1 =  1 provides global context, 𝑠_2 =  2 captures quadrant-
level patterns, and 𝑠_3 =  4 preserves more spatial details. 
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3.3.1. Cross-Level Attention 

To enable information exchange across scales, we apply cross-level multi-head attention: 

Ĉ =  𝐶𝑜𝑛𝑐𝑎𝑡[𝐶_1, 𝐶_2, 𝐶_3]  

Č =  𝑀𝐻𝐴(Č, Č, Č)  +  Č  

where MHA denotes multi-head attention. The attended context Č aggregates information across all scales. 

Text-Visual Fusion. We incorporate textual context from the user instruction through a pre-trained BERT encoder. The 
[CLS] token output T ∈ R^{C_T} is projected and fused with visual context through a gating mechanism 

𝑇′ =  𝐿𝑖𝑛𝑒𝑎𝑟(𝑇) 𝑔 =  𝜎 (𝐿𝑖𝑛𝑒𝑎𝑟 ([Č;  𝑇′])) 𝐻 =  𝑔 ⊙ Č + (1 −  𝑔)  ⊙ 𝑇′ 

where Č =  𝑀𝑒𝑎𝑛(Č) is the globally aggregated visual context, 𝜎 is the sigmoid function, and 𝐻 ∈  𝑅^{𝐶} is the final 
hierarchical context that guides expert routing. 

 

Figure 3 Token-Level Sparse Expert Activation. Each token computes routing scores based on its local features and 
the global context. Top-k experts are selected per token, enabling spatially-adaptive expert utilization 

3.4. Token-Level Sparse Expert Activation (TLSEA) 

The core innovation of ViMoE is enabling token-level expert routing, where different spatial regions can utilize different 
expert combinations. This contrasts with MoVA's image-level approach where all tokens share the same expert weights. 

3.4.1. Token-Wise Routing  

For each token 𝑥_𝑖 ∈  𝑅^𝐶, we compute routing logits considering both local features and global context: 

𝑟𝑖
{𝑙𝑜𝑐𝑎𝑙}

 =  𝑀𝐿𝑃{𝑙𝑜𝑐𝑎𝑙}(𝑥_𝑖) ∈ 𝑅^𝑁 

𝑟{𝑔𝑙𝑜𝑏𝑎𝑙}  =  𝑀𝐿𝑃{𝑔𝑙𝑜𝑏𝑎𝑙}(𝐻) ∈ 𝑅^𝑁 

𝑟 𝑖 = 𝑟𝑖
{𝑙𝑜𝑐𝑎𝑙}

 +  𝑟{𝑔𝑙𝑜𝑏𝑎𝑙} 

The local routing captures content-specific preferences (e.g., text regions prefer document experts), while global routing 
provides consistent bias based on overall image-instruction context. 

3.4.2. Sparse Top-k Selection 

To maintain computational efficiency, we select only the top-k experts for each token: 

𝑝_𝑖 =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑟_𝑖) 
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𝑆_𝑖 =  𝑇𝑜𝑝𝐾(𝑝_𝑖, 𝑘), 𝑝 _𝑖 =  𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑝_𝑖[𝑆_𝑖])  

The final token-level routing weights 𝑊 ∈  𝑅^ {𝐿 ×  𝑁} are sparse, with only k non-zero entries per token. 

3.4.3. Integration with Coarse Routing 

Following MoVA, we retain LLM-based coarse routing that identifies task-relevant experts at the image level. Let M ∈ 
{0,1} ^N denote the coarse routing mask. We constrain token-level routing within selected experts: 

𝑟_𝑖 =  𝑟_𝑖 + (1 −  𝑀) · (−∞)  

This hierarchical design combines the generalization ability of LLM-based routing with fine-grained token-level 
adaptation. 

3.5. Expert Confidence Calibration (ECC) 

Not all expert features are equally reliable. Some experts may produce noisy or inconsistent features for certain inputs. 
We propose Expert Confidence Calibration to estimate and account for this uncertainty. 

3.5.1. Confidence Estimation 

For each expert j, we estimate confidence based on two factors: 

Feature Quality: A learned estimator predicts confidence from the expert's global features: 

𝑐_𝑗^{𝑓𝑒𝑎𝑡}  =  𝜎(𝑀𝐿𝑃_𝑗(𝐹 _𝑗))  

where F̄_j = Mean(F_j) is the globally pooled expert feature. 

Consistency with Base: We measure how well the expert features align with the base encoder; the combined confidence 
score is: 

𝑐_𝑗 =  (𝑐_𝑗^{𝑓𝑒𝑎𝑡}  +  𝑐_𝑗^{𝑐𝑜𝑛𝑠})/2 

3.5.2. Calibrated Routing 

We apply confidence scores to calibrate the routing weights through temperature-scaled adjustment: 

𝑐 _𝑗 =  𝑅𝑒𝐿𝑈(𝑐_𝑗 −  𝜏)  +  𝜏  

𝑊 _{: , 𝑗}  =  𝑊_{: , 𝑗} ·  (𝑐 _𝑗/𝛾)  

where τ is a learnable confidence threshold and γ is a learnable temperature. The calibrated weights W̃ are then re-
normalized. 

This mechanism adaptively reduces the influence of low-confidence expert features while preserving high-confidence 
contributions. 

3.6. ViMoE-Adapter Architecture 

The ViMoE-Adapter integrates all proposed components for expert feature fusion. It consists of L adapter blocks, each 
containing: 

3.6.1. Expert Knowledge Extraction 

 For each selected expert 𝑗 ∈  𝑆_𝑖 of token i, we extract knowledge through cross-attention: 

𝑌_{𝑖, 𝑗}  =  𝑥_𝑖 +  𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑛(𝑥_𝑖, 𝐹_𝑗)  

3.6.2. Token-Level Expert Fusion 

Using the calibrated routing weights, we fuse expert features per token: 𝑥 _𝑖 =  𝛴_{𝑗 ∈ 𝑆_𝑖} ŵ_{𝑖, 𝑗} ·  𝑌_{𝑖, 𝑗} 
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3.6.3. Self-Attention and FFN 

Standard transformer operations refine the fused features: 

𝑥_𝑖′ =  𝑥_𝑖 +  𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑛(𝐿𝑁(𝑥 _𝑖)) 

𝑥_𝑖^{𝑜𝑢𝑡}  =  𝑥_𝑖′ +  𝐹𝐹𝑁(𝐿𝑁(𝑥_𝑖′)) 

The final output is down sampled and projected to the LLM embedding space. 

Table 1 Comparison with state-of-the-art methods on MLLM benchmarks. † indicates results from original papers. Best 
results in bold, second best underlined. MMEP /MMEC: perception/cognition scores 

Method LLM #Tokens MME MMBench QBench Math POPE 

MMEP MMEC EN  CN dev Vista Verse 

Proprietary Models 

GPT-4V† [50] - - 1409 517 75.1 74.6 73.5 47.8 54.4 - 

Gemini-Pro† [62] - - 1497 437 73.6 74.3 - 45.2 - - 

Open-Source Models (7B-8B) 

LLaVA-1.5† [41] Vicuna-7B 576 1510 316 64.3 58.3 58.7 25.5 12.7 85.9 

LLaVA-NeXT† 
[40] 

Vicuna-7B 2880 1519 332 67.4 60.6 - 34.6 - 86.5 

SPHINX-2k† [36] Vicuna-13B 2025 1470 326 65.9 57.9 - - - 87.2 

InternVL-1.5† 
[10] 

InternLM-7B 256 1563 345 72.5 65.1 68.4 36.7 - 88.5 

MoVA† [77] Llama3-8B 576 1595.8 347.5 75.3 67.7 70.8 37.7 21.4 89.3 

VIMOE Llama3-8B 576 1612.3 358.2 76.8 69.2 72.3 39.2 22.8 90.1 

Open-Source Models (30B+) 

CogVLM† [65] Vicuna-7B 1225 1438 438 65.8 55.9 - 34.7 - 87.5 

InternVL-1.5† 
[10] 

InternLM-
20B 

256 1624 362 76.8 72.1 71.2 41.8 - 89.8 

MoVA† [77] Yi-34B 576 1642.5 375.4 79.8 75.2 73.9 42.4 24.1 90.2 

VIMOE Yi-34B 576 1658.1 386.7 81.2 76.8 75.4 44.1 25.8 91.0 

3.7. Training 

3.7.1. ViMoE follows a two-stage training paradigm similar to MoVA 

Pretraining. We train the ViMoE-Adapter and optionally the base vision encoder on diverse multimodal data including 
image captions, visual grounding, chart/document understanding, and medical images. The training objective combines 
the standard language modeling loss with our load balancing loss: 

𝐿 =  𝐿_{𝐿𝑀} +  𝐿_{𝑏𝑎𝑙𝑎𝑛𝑐𝑒} 

Supervised Fine-tuning. We fine-tune all components except expert encoders on high-quality visual instruction data, 
enabling the model to follow diverse user instructions. 
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4. Experiments 

4.1. Implementation Details 

4.1.1. Model Architecture 

We use CLIP ViT-L-336px as the base vision encoder with input resolution 672 × 672 . Our vision experts include 
DINOv2-giant, Co-DETR-large, SAM-huge, Pix2Struct-large, Deplot-base, Vary-base, and BiomedCLIP-base. The ViMoE-
Adapter uses 3 transformer blocks with hidden dimension 1024. We consider Vicuna-7B, Llama3-8B, and Yi-34B as LLM 
backbones. 

Training. In pretraining, we use AdamW optimizer with learning rate 2 × 10^ {−4}, batch size 1024, for 1 epoch on 15M 
diverse multimodal samples. In fine-tuning, we use learning rate 2 × 10^ {−5}, batch size 128. The load balancing 
coefficient α is set to 0.01. We set k = 3 for token-level top-k selection. Training uses 2 RTX 4090 GPUs with DeepSpeed 
ZeRO-3. 

4.2. MLLM Benchmarks 

Table 1 presents comprehensive evaluation on MLLM benchmarks. ViMoE consistently outperforms prior state-of-the-
art methods across diverse tasks. 

4.2.1. MME 

ViMoE-8B achieves 1612.3 on MME perception and 358.2 on cognition, surpassing MoVA-8B by 16.5 and 10.7 points 
respectively. The improvement is particularly notable on perception subtasks requiring fine-grained understanding, 
validating the benefit of token-level expert routing. 

Table 2 Results on Visual Question Answering benchmarks. General VQA includes VQAv2, GQA, SQA. Text-oriented VQA 
includes TextVQA, ChartQA, DocVQA, AI2D. 

Method LLM General VQA Text-Oriented VQA 

VQAv
2 

GQA SQA TextVQ
A 

ChartQA DocVQA AI2D 

LLaVA-1.5† [41] Vicuna-7B 78.5 62.0 66.8 58.2 18.2 - 54.8 

LLaVA-NeXT† [40] Vicuna-7B 81.8 64.2 70.1 64.9 54.2 74.4 66.9 

SPHINX-2k† [36] Vicuna-13B 80.7 63.1 69.3 61.2 - - 61.2 

InternVL-1.5† [10] InternLM-7B 82.1 64.5 73.2 72.5 68.2 82.1 74.5 

MoVA† [77] Llama3-8B 83.5 65.2 74.7 77.1 70.5 83.8 77.0 

VIMOE Llama3-8B 84.1 66.5 75.8 78.3 72.1 85.2 78.4 

Improvement  +0.6 +1.3 +1.1 +1.2 +1.6 +1.4 +1.4 

Table 3 Results on Visual Grounding (RefCOCO/+/g) [71]. Accuracy (%) on referring expression comprehension. 

Method LLM RefCOCO RefCOCO+ RefCOCOg 

val testA testB val testA testB val test 

UNINEXT-H [68] - 92.64 94.33 91.46 85.24  89.63  79.79 88.73  89.37 

Shikra [8] Vicuna-7B 87.01  90.61  80.24  81.60  87.36  72.12  82.27  82.19 

Ferret [69] Vicuna-13B 89.48 92.41 84.36 82.81 88.14 75.17 85.83 86.34 

CogVLM-Grounding [65] Vicuna-7B 92.76 94.75 88.99 88.68 92.91 83.39 89.75 90.79 

MoVA [77] Llama3-8B 92.18 94.75 88.24 88.45 92.21 82.82 90.05 90.23 

VIMOE Llama3-8B 92.54 95.02 88.72 88.91 92.58 83.62 90.48 90.71 
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4.2.2. MMBench 

Our method achieves 76.8% on MMBench (EN) and 69.2% on MMBench (CN), representing improvements of 1.5% and 
1.5% over MoVA. The consistent gains across languages demonstrate robust multimodal reasoning capabilities. 

4.2.3. QBench 

ViMoE achieves 72.3% on QBench-dev, outperforming MoVA by 1.5%. This benchmark tests low-level visual perception, 
where our hierarchical context aggregation helps capture both global quality and local artifacts. 

4.2.4. MathVista and MathVerse 

On mathematical reasoning benchmarks, ViMoE-8B achieves 39.2% and 22.8%, improvements of 1.5% and 1.4% over 
MoVA. These tasks benefit from precise chart and diagram understanding enabled by our token-level routing. 

4.3. Visual Question Answering 

Table 2 shows result on VQA benchmarks. We evaluate on both general VQA (VQAv2, GQA, ScienceQA) and text-oriented 
VQA (TextVQA, ChartQA, DocVQA, AI2D). 

4.3.1. General VQA 

ViMoE-8B achieves 84.1% on VQAv2 and 66.5% on GQA, surpassing MoVA by 0.6% and 1.3%. The improvement on 
GQA, which requires compositional reasoning about object relationships, demonstrates that our fine-grained expert 
routing better captures spatial relationships. 

4.3.2. Text-Oriented VQA 

More significant gains are observed on text-heavy tasks: ViMoE achieves 78.3% on TextVQA (+1.2%), 72.1% on ChartQA 
(+1.6%), and 85.2% on DocVQA (+1.4%). These improvements validate our hypothesis that documents and charts 
contain diverse content requiring spatially-adaptive expert selection text regions benefit from OCR experts while 
graphical regions benefit from chart experts. 

Table 4 Component ablation. Removing each component degrades performance 

Design GQA  ChartQA  DocVQA  MMEP 

VIMOE (Full)  66.5  72.1  85.2  1612 

w/o TLSEA (image-level)  65.4  70.0  83.4  1596 

w/o HCA (single-scale)  65.8  71.2  84.1  1601 

w/o ECC  66.1  71.5  84.6  1605 

w/o all novel (MoVA-style)  65.2  68.3  81.3  1562 

4.4. Visual Grounding 

Table 3 presents results on RefCOCO/+g benchmarks. ViMoE-8B achieves competitive performance, with notable 
improvements on RefCOCO+ testB (83.6%, +0.8%) which contains more challenging expressions requiring fine-grained 
region understanding. 

Table 5 Token-level vs image-level routing 

Routing GQA  ChartQA  DocVQA  MMEP 

Image-level 65.4  70.0  83.4  1596 

Token-level  66.4  72.1  85.2  1612 

Oracle (GT labels)  67.8  74.5  87.1  1645 
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4.5. Ablation Studies 

Table 4 ablates each proposed component. Removing Token-Level Sparse Expert Activation (TLSEA) and falling back to 
image-level routing causes significant drops, especially on ChartQA (-2.1%) and DocVQA (-1.8%) which contain diverse 
content types. Removing Hierarchical Context Aggregation (HCA) degrades performance across all tasks, with larger 
drops on benchmarks requiring both local and global understanding. Removing Expert Confidence Calibration (ECC) 
primarily affects text-oriented tasks where certain experts may produce unreliable features. 

4.5.1. Token-Level vs Image-Level Routing 

Table 5 compares routing granularity. Token-level routing consistently outperforms image-level, with the gap widening 
on documents and charts containing diverse content. The "Oracle" row shows upper-bound performance with ground-
truth expert labels, indicating room for improvement in routing accuracy. 

Table 6 Hierarchical context levels in HCA 

Design GQA  ChartQA  DocVQA  MMEP 

{1} (global only)  65.6  70.8 83.9 1598 

{1,2}  66.0  71.4  84.5  1605 

{1,2,4} 66.5  72.1  85.2  1612 

{1,2,4,8} 66.3  71.9  85.0  1610 

Table 7 Top-k selection in TLSEA 

𝑘 GQA  ChartQA  DocVQA  MMEP Latency 

1  65.2  69.4 82.8 1585 10.52s 

2 65.9  71.2  84.3  1601 10.61s 

3 66.5  72.1  85.2  1612 10.73s 

4 66.4  72.0  85.1  1611 10.89s 

All 66.2 71.6 84.7 1608 11.24s 

4.5.2. Number of Context Levels in HCA 

Table 6 analyzes HCA design. Using all three levels (1, 2, 4) achieves the best performance. Single-level context (global 
only) underperforms, confirming the importance of multi-scale aggregation. 

4.5.3. Top-k in TLSEA 

Table 7 varies the number of experts selected per token. k = 3 achieves the best balance between expressiveness and 
efficiency. Larger k provides marginal gains while increasing computation. 

4.5.4. Confidence Calibration Analysis 

Figure 4 visualizes learned confidence scores across different input types. Document experts show high confidence on 
document images but low confidence on natural scenes, validating that ECC learns meaningful task-expert associations. 

4.6. Efficiency Analysis 

Table 8 Inference efficiency comparison 

Method Params FLOPs Latency Throughput 

LLaVA-1.5-7B 7.1B 4.2T 8.4s 4.8 img/s 

MoVA-8B 8.5B 5.8T 10.24s 3.9 img/s 

VIMOE-8B 8.6B 5.9T 10.41s 3.8 img/s 
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Table 8 compares computational costs. Despite additional routing computation, V1MoE's sparse activation maintains 
efficiency comparable to MoVA. The token-level routing adds only 0.02s latency per image, while the confidence 
calibration adds negligible cost. Total inference time (10.41s) is within 2% of MoVA (10.24s) while achieving superior 
accuracy. 

4.7. Qualitative Analysis 

 

Figure 4 Visualization of token-level expert routing. Different image regions are routed to different experts based on 
content. Text regions prefer Pix2Struct (blue), chart regions prefer Deplot (orange), and natural scene regions prefer 

DINOv2 (green) 

Figure 4 visualizes token-level routing decisions on example images. For a document containing text and charts, our 
method correctly routes text tokens to document experts and chart tokens to visualization experts. For natural scenes 
with embedded text (e.g., signs), text regions are routed to OCR experts while scene regions use general-purpose 
encoders. This spatially-adaptive routing enables ViMoE to fully leverage each expert's strengths.  

5. Conclusion 

We presented ViMoE, a novel multimodal large language model that advances the mixture-of-vision experts paradigm 
through three key innovations. Token-Level Sparse Expert Activation enables spatially-adaptive expert routing, 
recognizing that different regions within an image may require different visual expertise. Hierarchical Context 
Aggregation captures multi-scale visual-textual context to inform routing decisions at multiple granularities. Expert 
Confidence Calibration estimates and accounts for uncertainty in expert contributions, improving robustness. 

Extensive experiments demonstrate that ViMoE achieves state-of-the-art performance across diverse multimodal 
benchmarks including MME, MMBench, and various VQA tasks. The improvements are particularly significant on 
documents, charts, and other content types containing diverse visual elements precisely the scenarios where token-
level routing provides the greatest benefit over image-level approaches. 

Limitations and Future Work 

While ViMoE achieves strong results, several directions remain for future exploration: (1) extending token-level routing 
to video understanding where temporal content variation adds another dimension; (2) developing more efficient 
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routing mechanisms to further reduce computational overhead; (3) exploring curriculum learning strategies that 
progressively increase routing complexity during training. 

Broader Impact 

ViMoE advances multimodal AI capabilities with potential positive applications in accessibility, education, and 
productivity tools. As with all powerful AI systems, careful consideration of deployment contexts and potential misuse 
is important. Our method does not introduce new risks beyond those inherent to capable MLLMs.  
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