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Abstract 

Background: Goitre remains a high-signal global health indicator of thyroid dysfunction and population-level iodine 
status. Despite progress in salt iodization, early-stage thyroid enlargement is frequently under-detected in routine 
practice, especially when physical examination is confounded by body habitus and clinician subjectivity. Ultrasound is 
the preferred modality for early assessment, but interpretation is operator-dependent and increasingly burdened by 
rising thyroid nodule prevalence. 

Objective: This review synthesizes evidence on Machine Learning (ML) and Artificial Intelligence (AI) methods for 
predicting thyroid dysfunction and diagnosing early goitre (WHO Grade 1), with a practical emphasis on multi-modal 
“holistic AI” systems that combine tabular laboratory markers with imaging features. 

Methods: We summarize (i) supervised learning pipelines for structured clinical data (e.g., age, sex, TSH, T3, T4, 
T4U/FTI), (ii) deep learning architectures for ultrasound-based detection and segmentation (CNNs, U-Net variants, 
Vision Transformers), and (iii) deployment considerations including explainability, bias control, and reproducible 
benchmarking using open datasets. Following common clinical ML reporting practice, we emphasize confusion-
matrixbased evaluation (precision/recall/F1/MCC) and strong ensemble baselines for tabular prediction. [30,31] 

Results: For tabular prediction tasks, stacked ensembles and gradient-boosted trees repeatedly rank among the best-
performing approaches, particularly when combined with careful feature engineering and imbalance mitigation. For 
imaging, segmentation-first pipelines that estimate thyroid volume (e.g., U-Net family) and classification models 
leveraging multi-channel inputs or self-attention mechanisms (e.g., ViTs) report high diagnostic performance in 
differentiating benign enlargement from suspicious nodular patterns. Emerging smartphone-assisted workflows and 
LLM-based clinical summarization show promise for low-resource settings but require rigorous validation. 

Conclusion: AI can shift goitre management from late-stage detection to proactive screening by improving sensitivity 
for occult Grade 1 enlargement, standardizing ultrasound interpretation, and reducing unnecessary invasive 
procedures. Clinical adoption, however, depends on transparent explainability, external validation across diverse 
cohorts, and governance aligned with high-risk medical AI standards. 
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1. Introduction 

Goitre is defined as abnormal hypertrophy of the thyroid gland and functions as a clinical “surface marker” for deeper 
endocrine, nutritional, and autoimmune processes. In population health, thyroid enlargement is closely tied to iodine 
status and remains a critical surveillance signal for iodine deficiency disorders, particularly in regions with geographic 
iodine leaching and limited access to adequately iodized salt [2,3]. 

Early disease detection is clinically important because the transition from no enlargement to subtle, palpable 
enlargement (WHO Grade 0 to Grade 1) is the stage most likely to be missed in routine care. This under-detection is 
driven by (i) variability in physical examination skill, (ii) reduced sensitivity in individuals with higher body mass index, 
and (iii) subjective interpretation of mild enlargement. Yet Grade 1 is precisely the stage where intervention (iodine 
correction, monitoring, and targeted evaluation) may prevent progression to multinodular goitre, reduce long-term 
morbidity, and improve risk stratification for nodular disease [4,6]. 

Ultrasound is the preferred imaging modality for early assessment, offering non-invasive evaluation of gland size, 
echogenicity, vascularity, and suspicious nodular features. However, ultrasound interpretation remains operator-
dependent and can vary across clinicians and sites. Meanwhile, healthcare systems face increasing diagnostic load due 
to rising thyroid nodule incidence and expanded screening. These pressures motivate the use of ML and AI systems that 
can: (1) predict thyroid dysfunction from tabular clinical data; (2) quantify thyroid volume via segmentation; (3) classify 
enlargement and nodules using learned image features; and (4) provide explainable outputs aligned with established 
clinical workflows [14,26]. 

1.1. Aim and contribution of this review 

This article provides a global epidemiological and computational framework for AI-enabled goitre screening, with 
emphasis on early detection. Specifically, we: 

• Define the clinical “early goitre” detection problem around WHO Grade 1 and the limitsof physical examination, 
• Summarize the strongest ML baselines for tabular thyroid prediction and the role ofimbalance-aware training, 
• Review state-of-the-art ultrasound deep learning architectures for segmentation and diagnosis, 
• Propose an end-to-end “holistic AI” workflow combining clinical and imaging markers, 
• Discuss explainability, bias, validation, and deployment constraints required for realworld adoption. 

2. Methods: Literature Search Strategy 

This review followed a structured literature search and screening approach to identify studies relevant to AI/ML for 
early goitre detection and thyroid ultrasound decision support. 

2.1. Search sources and timeframe 

We searched PubMed/MEDLINE, Scopus, IEEE Xplore, and Google Scholar for studies published between 2010 and 
2026. Preprints were included when accompanied by sufficient methodological detail. 

2.2. Search terms 

Search strings combined clinical and computational terms, including: (goitre OR “thyroid enlargement” OR “thyroid 
nodule” OR thyroiditis) AND (ultrasound OR sonography OR imaging) AND (“machine learning” OR “deep learning” OR 
CNN OR “vision transformer” OR segmentation OR XAI OR SHAP). 

2.3. Inclusion and exclusion criteria 

Inclusion criteria were: (i) ML/DL methods applied to thyroid/goitre-related tabular data or ultrasound imaging; (ii) 
studies reporting evaluation metrics; and (iii) clear description of dataset and validation. Exclusion criteria were: non-
thyroid indications, non-ML methods, editorials without methods, and studies lacking reproducible evaluation. 

2.4. Screening and synthesis 

Titles and abstracts were screened for relevance, duplicates removed, and full texts assessed for eligibility. Findings 
were synthesized by modality (tabular vs imaging) and by clinical task (screening, segmentation/volume estimation, 
nodule risk stratification, explainability/deployment). 
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3. Epidemiology and Pathophysiology 

3.1. Global dynamics and iodine deficiency 

Historically, iodine deficiency has been the dominant driver of endemic goitre. Although iodization programs have 
reduced prevalence in many regions, gaps persist due to inconsistent fortification, supply constraints, and dietary 
patterns [2, 3]. Reported prevalence varies substantially by geography and subpopulation; representative prevalence 
clusters from the deep research synthesis are summarized in Table 1 [5,6,8,9]. 

Table 1 Representative goitre prevalence clusters and primary etiological drivers (synthesized from deep research 
sources). 

Demographic / Geographic Cluster Reported Goitre Prevalence Primary Etiological Driver 

Global Average (Iodine Replete) 4.7% – 5.0% Autoimmunity / sporadic disease 

Moderate Iodine Deficiency Areas 20.0% – 30.0% Nutritional insufficiency 

Severe Endemic Regions >30.0% (up to 80.0%) Environmental iodine leaching 

Pregnant Women (Low-Income Countries) up to 83.0% Increased metabolic demand 

Schoolchildren (e.g., Jazan, Saudi Arabia) 11.0% Rural environmental factors 

Adult Population (Thyroid Nodules) 24.83% Age, obesity, and metabolic syndrome 

3.2. Metabolic correlation and non-nutritional risk factors 

Beyond iodine, thyroid enlargement increasingly co-occurs with metabolic syndrome. Obesity and insulin resistance 
are important non-nutritional risk factors, motivating AI models that integrate metabolic markers (BMI, lipid profiles, 
glucose/insulin resistance indicators where available) rather than relying solely on endocrine labs [7,8]. 

3.3. Clinical grading and the “occult” detection gap 

The WHO grading system classifies goitre as Grade 0 (no palpable/visible enlargement), Grade 1 (palpable but not 
visible with neck in normal position), and Grade 2 (visible swelling). Grade 1 represents the “occult” stage most suitable 
for ultrasound quantification and AI assistance [1,4]. 

4. Data Sources and Benchmarking Considerations 

AI-enabled early goitre detection relies on two primary data modalities: (i) structured clinical/laboratory data for risk 
prediction and triage, and (ii) ultrasound imaging for segmentation (volume estimation) and classification. Because 
many studies rely on single-center cohorts, external validation on at least one independent dataset is recommended for 
publication-quality evidence [15,21]. 

4.1. Representative datasets and typical tasks 

Table 2 reproduces the dataset catalog from the deep research synthesis to support reproducible benchmarking 
[11,13,14,25]. 

Table 2 Public datasets commonly referenced in thyroid/goitre AI benchmarking (from deep research synthesis) 

Dataset Name Composition / Size Diagnostic Utility 

UCI Thyroid Disease 
Dataset 

9,172 observations; 31 attributes Tabular classification and feature selection 

TN5000 5,000 B-mode ultrasound images Largest open-access image set for detection 

DDTI: Thyroid 
Ultrasound 

349 annotated images Interpretable malignancy prediction 

TN3K 3,493 images with segmentations Robust benchmark for U-Net segmentation 
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TCGA (Thyroid Cancer) 289 pathology reports Training/validating NLP or LLM-based clinical 
staging extraction 

5. Machine Learning Frameworks for Clinical Data 

5.1. Problem formulation and features 

Prediction of thyroid dysfunction and goitre-related clinical states from structured data is typically formulated as 
supervised classification (e.g., healthy vs. diseased, hypo/hyperthyroid  

states, or risk tiers). Common features include age, sex, thyroid-stimulating hormone (TSH), triiodothyronine (T3), 
thyroxine (T4), and derived indices such as thyroxine utilization rate (T4U) and free thyroxine index (FTI) [11,12]. 

5.2. Preprocessing, imbalance, and generalization 

Clinical datasets often exhibit strong class imbalance, which can bias models toward the majority (“healthy”) class. Best 
practice includes resampling strategies (undersampling or SMOTE), stratified cross-validation, and transparent 
reporting of operating thresholds for screening usecases [12,27]. 

5.3. Algorithms and typical baselines 

Ensemble approaches (bagging, boosting, stacking) are widely used for tabular medical classification due to robust 
performance and improved generalization. Practical baselines include logistic regression for interpretability, SVM for 
strong margins, random forests for non-linear interactions, and gradient boosting (e.g., XGBoost/LightGBM) for high 
performance on structured data [12]. 

Representative benchmark results summarized in the deep research are shown in Table 3 [12,20]. 

Table 3 Representative tabular ML benchmark performance reported in prior thyroid prediction studies (from deep 
research synthesis). 

Algorithm Configuration Evaluation Metric Performance Level 

Stacking (Meta-learner: XGBoost) F1-score 0.9944 

Bagging (3 decision trees) F1-score 0.9766 

Support Vector Machine (SVM) Accuracy 99.63% 

Neural Networks (MLP) Accuracy 96.0% 

6. Deep Learning Architectures for Imaging 

6.1. Segmentation-first pipelines for early goitre 

Accurate early goitre assessment often reduces to quantifying thyroid volume and detecting subtle echotexture changes. 
Segmentation models (notably U-Net variants) are commonly used to delineate thyroid boundaries and compute 
volume [16]. 

6.2. CNNs for nodule and texture characterization 

CNN backbones (e.g., ResNet families) can learn discriminative patterns for nodular texture, echogenicity, and margin 
irregularity. Multi-channel or multi-view inputs can improve performance by capturing complementary perspectives 
[17,18]. 

6.3. Vision Transformers and long-range dependencies 

Vision Transformers (ViTs) use self-attention to model long-range relationships within ultrasound images and are 
increasingly reported in thyroid CAD comparisons and reviews [14,19]. 
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7. Holistic AI: A Multi-Modal Framework for Early Goitre 

7.1. Screening 

A clinically practical system for early goitre detection should integrate: 

• Tabular risk stratification: use endocrine labs (TSH/T3/T4 and derived indices), demographics, and metabolic 
markers to estimate risk and prioritize imaging; 

• Ultrasound segmentation and quantification: compute thyroid volume and compare to age/sex norms where 
available; 

• Imaging classification: identify suspicious nodular patterns and gland-level abnormalities; 
• Explainability and reporting: generate human-readable reasons (feature attributions and visual saliency) 

aligned with clinical guidelines; 
• Referral decision support: recommend follow-up intervals, repeat imaging, or fineneedle aspiration (FNA) 

consideration based on risk tiers and explainable signals. 

This “holistic AI” framing keeps the model clinically grounded: it does not attempt to replace clinical judgment, but 
rather standardizes early-stage detection and triage [20]. 

8. Emerging Technologies and Ethics 

8.1. Explainable AI (XAI) for trust and adoption 

Clinical adoption depends on interpretable outputs. For tabular models, SHAP-style feature attributions can 
demonstrate which measurements drive predictions. For imaging, saliency maps and attention visualization can 
highlight regions contributing to classification. Recent work in other domains has demonstrated the importance of 
geometric trust frameworks and explainable anomaly detection in building confidence in AI-driven diagnostic systems 
[26,28,29,32]. 

8.2. Reproducibility and external validation 

Medical AI faces reproducibility challenges when models are trained only on proprietary single-center cohorts. Studies 
should validate on at least one external dataset and report performance consistency across subgroups and sites [15,21]. 

8.3. Bias, safety, and regulatory alignment 

Common failure modes include data pathology (sampling bias), algorithmic bias (spurious correlations), and 
automation complacency. For high-stakes diagnostics, authors should document mitigation strategies and align 
evaluation with relevant governance expectations for high-risk medical AI [22,23]. 

8.4. Low-resource settings and future directions 

For LMIC deployment, accessibility matters. Smartphone-assisted workflows and offline LLMs may support triage and 
documentation, but require careful clinical validation and clear safety boundaries [24,25]. 

9. Conclusion 

AI and ML can materially improve early goitre detection by increasing sensitivity for occult WHO Grade 1 enlargement, 
standardizing ultrasound quantification, and integrating clinical markers to prioritize high-risk patients for imaging and 
specialist review. The strongest practical direction is multi-modal “holistic AI,” where tabular lab-based risk prediction 
complements imaging-based segmentation and classification rather than competing with it. 

For future research and publication-quality evidence, we recommend: 

• Multi-modal evaluation: report gains from combining tabular + imaging features over single-modality 
baselines; 

• External validation: test models on at least one public or external dataset and include subgroup analysis; 
• Explainability by design: integrate XAI outputs in the primary workflow (not as an 
• afterthought); 
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• Deployment realism: include threshold selection for screening and monitoring plans for post-deployment drift. 
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