

Genetic abnormalities of male infertility

Ahmed LAZRAQ * and Mohammed SEKAL

Histology - Embryology - Cyto - Genetics Laboratory, Faculty of Medicine and Pharmacy, Fez, Morocco.

World Journal of Advanced Research and Reviews, 2026, 29(02), 140-160

Publication history: Received on 17 December 2025; revised on 30 January 2026; accepted on 02 February 2026

Article DOI: <https://doi.org/10.30574/wjarr.2026.29.2.0200>

Abstract

Infertility represents a major public health concern, affecting approximately 15% of couples worldwide, with male factors contributing to more than half of all cases. Optimizing clinical management therefore necessitates a comprehensive understanding of the underlying pathophysiological mechanisms, not only to refine diagnostic stratification but also to advance therapeutic strategies—particularly in the context of medically assisted reproduction. Nevertheless, for a long time, no causal explanation was found in almost half of the cases of male infertility. This mainly concerns the most severe cases, where the available treatments remain ineffective. Scientists believed that in idiopathic infertility there are often underlying genetic causes. But the patients were under-explored and the genetic tests carried out were essentially limited to karyotype and old molecular biology techniques. Recently, the development and cost reduction of next-generation sequencing has enabled the identification of dozens of genes implicated in male infertility.

This summary review of the literature reports the various chromosomal and gene abnormalities strongly correlated with syndromic and non-syndromic male infertility, depending on the level of impairment (central, primary testicular or post-testicular); and according to the nature of the abnormalities found in the spermogram – spermocytogram. Its results help to predict the chances of success of treatments and make it possible to better assess the potential risks to the health of the patient and his possible offspring in order to provide adequate genetic counseling.

Keywords: Male infertility; Spermogram; Genetics; Next generation sequencing; Congenital hypogonadotropic hypogonadism

1. Introduction

Infertility has emerged as a major public health concern, currently affecting approximately one in six couples worldwide, with isolated or combined male factors implicated in at least half of all cases. Notably, average sperm production has declined by nearly 50% over the past five decades, underscoring the growing burden of male reproductive dysfunction. Male infertility is therefore increasingly recognized as a multifactorial condition arising from complex interactions among genetic determinants, infectious or inflammatory processes, and environmental exposures. Despite these advances, nearly half of affected cases remain classified as idiopathic, reflecting substantial gaps in our understanding of the molecular and cellular mechanisms governing male reproductive capacity [1].

Assisted reproductive technology (ART) is primarily palliative, with little effort to understand and specifically treat the dysfunctions responsible for couples' infertility. Despite its successes, nearly half of the couples who seek ART fail to achieve pregnancy. These failures often result from an alteration of spermatogenesis producing spermatozoa incompatible with fertilization and/or embryonic development. Accurate genetic diagnosis is therefore important to better understand spermatogenesis, improve currently available treatment, increase the chances of adopting the best course of action for affected patients, and provide adequate genetic counseling. However, these genetic abnormalities

* Corresponding author: Ahmed LAZRAQ

are inconstant, complex and differ according to the anatomical level and mechanism of impairment. In this regard, a distinction is made between primary testicular insufficiency and pre- or post-testicular infertility.

2. Testicular insufficiencies

They correspond to a primary disorder in the course of spermatogenesis. The alteration can affect the quality and/or the quantity of the spermatozoa. In this category, cases with hypergonadotropic hypogonadism are observed, showing an increased level of FSH and decreased inhibin B [1]. Although male infertility is multifactorial, genetic factors predominate in this category. This is corroborated by the high number of genes ($n \geq 1000$) expressed specifically in the testicles and necessary for spermatogenesis [2].

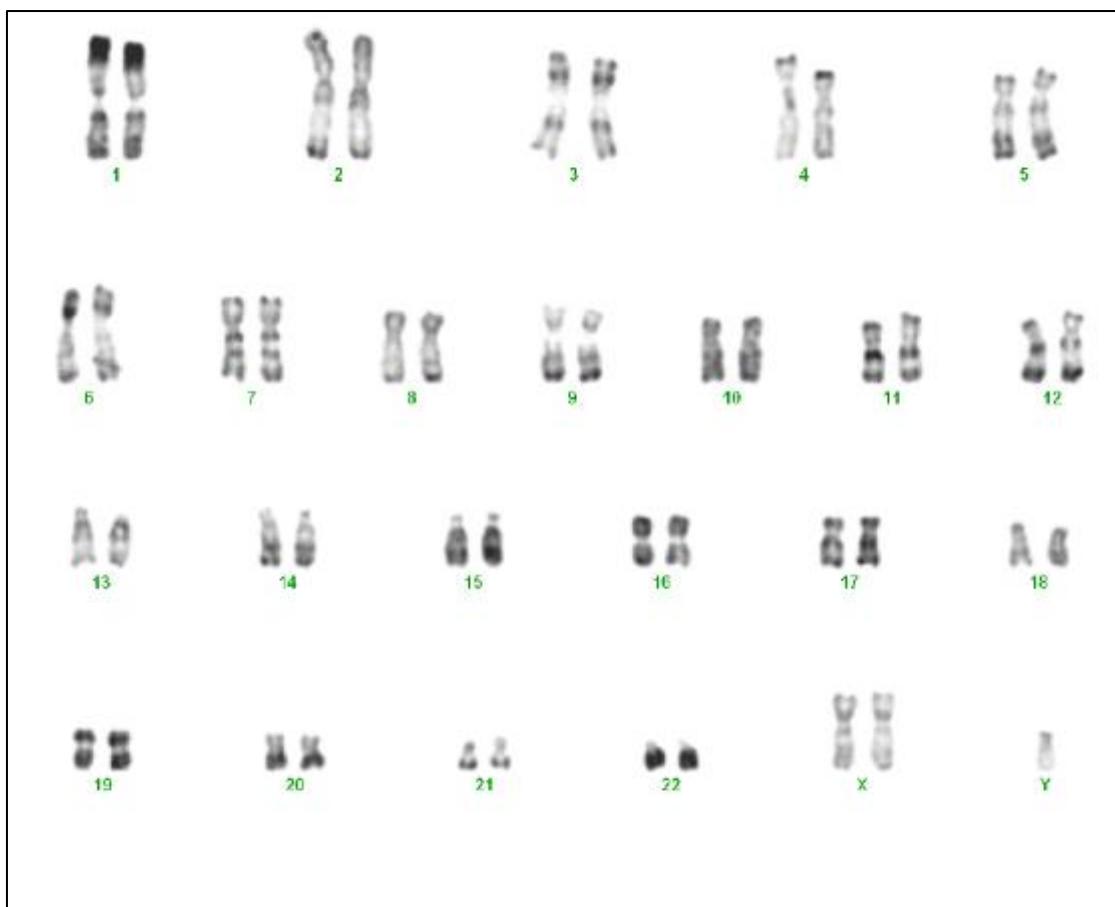
2.1. The severe quantitative reduction in the number of spermatozoa

This accounts for the majority of infertility cases. depending on the intensity of the disorder, manifests as severe oligozoospermia (OS) (spermatozoa concentration ≤ 5 million/ml of sperm) or so-called secretory non-obstructive azoospermia (ANO). The latter represents approximately 60% of azoospermia and affects 0.5% of men in the general population. OS and ANO can be linked to:

2.1.1. Chromosomal abnormalities:

They are present in 7% of infertile men. Their incidence is therefore higher than in the general population. Note that the frequency of karyotype abnormalities is inversely proportional to the number of spermatozoa: 20% in ANO, 5% in oligozoospermia and less than 1% in normospermia [3].

Chromosome number abnormalities


- Klinefelter Syndrome

Klinefelter Syndrome is the most common chromosomal abnormality in males, with incidence of 1 in 500 male births. It is the most common genetic cause of infertility. It is the leading genetic cause of infertility, accounting for more than 70% of chromosomal abnormalities observed in infertile men and about 15% of ANO cases. It is often diagnosed late during an infertility investigations. The 47,XXY karyotype predominates [4] (Figure 1). Mosaic formulas are diagnosed in about 10% of cases, usually corresponding to milder clinical forms, the formula 47,XXY/46,XY is most often encountered [5].

In Klinefelter Syndrome (47,XXY), testicles are normal in size at puberty onset, then undergo developmental arrest followed by bilateral regression of size around the ages 15-16 becoming firm and insensitive by ages 18-20. Final testicular volume is that of an olive (less than 2 cm in length), secondary to peritubular fibrosis and progressive deterioration of Sertoli cells and the germ lines, often resulting in apoptosis of spermatogonia and spermatocytes, leading to azoospermia [6].

In healthy individuals, during prophase 1 of meiosis, the X and Y chromosomes pair at two regions PAR1 and PAR2 forming the XY body. The unpaired chromatin then undergoes transcriptional inactivation, repressing some genes that could have a toxic effect on the course of meiosis and allowing adequate meiotic progression (meiotic silencing). In contrast, in Klinefelter Syndrome, the two homologous X chromosomes pair aren't included in the XY body, and aren't repressed and can therefore produce gene products that are potentially deleterious to the spermatocyte [5].

Although 90% of adult Klinefelter Syndrome males are azoospermic, some exhibit only oligozoospermia and achieve successful pregnancy without ART. The spermatozoa found in these patients likely originate from normal germ lines in mosaic contexts. Fluorescent in situ hybridization (FISH) of spermatozoa shows sex chromosome aneuploidy rates between 1.5% and 7.5%. In homogeneous forms, spermatozoa can sometimes be extracted during early puberty via testicular microdissection (TESE) and cryopreserved. Indeed, spermatogenesis can persist in a heterogeneous way at the level of residual foci. However, sex chromosome aneuploidy rates in these spermatozoa can reach 50% [6].

Figure 1 R-band karyotype result in a patient with infertility and azoospermia revealing Klinefelter syndrome: The chromosomal formula is 47,XXY

- Jacob's syndrome (47,XYY)

Its frequency is about 1 in 1000 births male birth. Although most affected men are fertile, this syndrome is the 2nd cause of gonosomal abnormalities after Klinefelter Syndrome. Its frequency is four times higher in infertile men than in the general population [7]. Infertility may result from altered XY body formation. No increased risk has been shown for offspring of 47,XYY patients. FISH studies reveal that most spermatozoa have balanced karyotypes, suggesting systematic elimination of the extra Y chromosome during meiosis or degeneration of abnormal cells [8].

- Mixed gonadal dysgenesis (mosaic 45X/46XY)

45,X/46,XY mosaicism is rare. Lashkari et al studied 49 infertile men with 45,X/46,XY mosaicism without Y-chromosome structural abnormality. 43% had azoospermia, while 8% showed normal spermogram [9].

Abnormalities of chromosomal structure

- Balanced rearrangements.

They are 10 times more common in infertile men than in men in the general population. They are found in more than 1.5% of patients with azoospermia and are also implicated in recurrent miscarriages. When they do not prevent the pregnancy from being carried to term, they are generally the cause of neurodevelopmental disorders, a dysmorphic and/or malformation syndrome [10]. Unlike aneuploidies, most structural abnormalities are more likely to be passed on from a carrier parent. The transmitted chromosome is either identical to the parental rearrangement or derived from it [11]. Unlike the CGH array test, karyotyping allows visualization of chromosome morphology and thus the demonstration of balanced chromosomal rearrangements. The karyotype is therefore essential for the assessment of ANO or OS, or even repeated spontaneous abortions [11].

- Translocations

Robertsonian translocations are found in 0.9% of infertile men. Subfertility in these carriers is partly linked to a disturbance of the meiotic segregation of the involved acrocentric chromosomes, which form a trivalent that can generate 8 different segregation outcomes: 85% of normal or chromosomal balanced spermatozoa (alternate segregation), 14% of spermatozoa unbalanced by adjacent segregation (4 different forms) and less than one percent of spermatozoa which are either carriers of the 2 acrocentrics with the chromosomal derivative, or completely lacking (segregation 3:0) [12]. This low rate of unbalanced spermatozoa in the ejaculate is explained by their tendency to go into apoptosis [13].

Reciprocal Translocations are present in 0.6% of infertile men. During meiosis 1, the chromosomal derivatives organize themselves between homologs by forming a quadrivalent and separate according to different modes of segregation: alternate, adjacent 1, adjacent 2, 3:1, or much more rarely 4:0 [11]. Unlike Robertsonian translocations, the rate of unbalanced sperm produced by patients with reciprocal translocations is highly variable depending on the size and locus of translocated segments, as well as the number and distribution of chiasma. Therefore, when the 1q21, 6p21, 16q21 and 17q11.2 regions are involved in a reciprocal translocation, infertility risk is very high since they contain genes involved in the processes of spermatogenesis, capacitation, mobility, an acrosomal function [14].

At the breakpoints of the trivalents or quadrivalents of translocated chromosomes, some spermatocytes 1 exhibit asynapsis regions undergoing inclusion in the XY body where meiotic silencing occurs. These unpaired sequences inappropriately undergo inactivation that can lead to a considerable reduction or even abolition of the level of transcription of genes necessary for basic cellular functions or meiotic progression, leading to meiotic arrest [15].

Furthermore, asynapsis or heterosynapsis within trivalent and quadrivalent meiotic configurations can interfere with normal chiasma formation in chromosomes not directly involved in the rearrangement. This disruption compromises proper bivalent alignment on the metaphase I plate and impairs accurate chromosome segregation at anaphase I. Such an "interchromosomal effect" promotes secondary meiotic errors, leading to an increased burden of sperm aneuploidy and further exacerbating gametic imbalance [16].

- - Inversions

In patients with a chromosomal inversion, meiotic segregation usually produces normal spermatozoa or carriers of the initial balanced inversion. However, crossing-over can occur within the pairing loop, especially when the inverted segment is large. In this case, if it is a pericentric inversion, this leads to chromosomes with duplicated or deleted segments on each arm [17]. And if it is a paracentric inversion, we note an acentric fragment formation which will be lost; and an unstable dicentric chromosome that can break randomly, or even block spermatocyte 1 at anaphase [18].

- Unbalanced structural anomalies

Small supernumerary chromosomal markers

These are much more common in infertile men with ANO or OS (0.12%) than in the general population. In relation to infertility, 21 of the 24 human chromosomes have been implicated in the formation of these markers. About 72% of them originate from acrocentric chromosomes, particularly from chromosome 15. The unpaired chromatin of the chromosomal marker associates with the XY body leading to meiotic arrest and severe spermatogenesis defects, thus explains oligozoospermia and significantly increased frequency of aneuploidy in spermatozoa [19].

The 46.XX testicular Disorder of Sexual Differentiation (chapel syndrome)

This is rare cause of male infertility has an incidence of approximately 1 in 25,000 newborns. Sterility results from absence of the AZF regions. Although these cases are often sporadic, familial cases have also been reported. Patients can be classified into two groups:

- 46.XX "SRY positive" formula (80 %): caused by translocation of the Y chromosome region containing the SRY locus onto the X chromosome or on an autosome during paternal meiotic recombination. This can be easily demonstrated by FISH or PCR. External genitalia and masculinization are usually normal [20].
- 46.XX "SRY negative" formula (20 %): diagnosed at birth due to possible insufficient virilization of the external genitalia, manifested by hypospadias, micropenis or cryptorchidism. These disorders can be explained either by the presence of a discrete mosaic of the Y chromosome restricted to gonads or by bi-allelic inactivating mutations in gene suppressing the male pathway in the XX gonads, such as the RSPO1 gene located in 1p34.3

whose mutation is associated with palmoplantar hyperkeratosis with an increased risk of squamous cell carcinoma of skin [21].

Other causes include heterozygous duplication at 17q24.3 locus at the activating region upstream of the *SOX9* gene, which leads to the expression of a transcription factor leading to testicular differentiation even in the absence from SRY. Similarly, duplication or gain-of-function mutations of *SOX3* (Xq27.1), an activator of *SOX9*, can cause sex reversal in 46,XX individuals [22].

- Other structural abnormalities of the Y chromosome

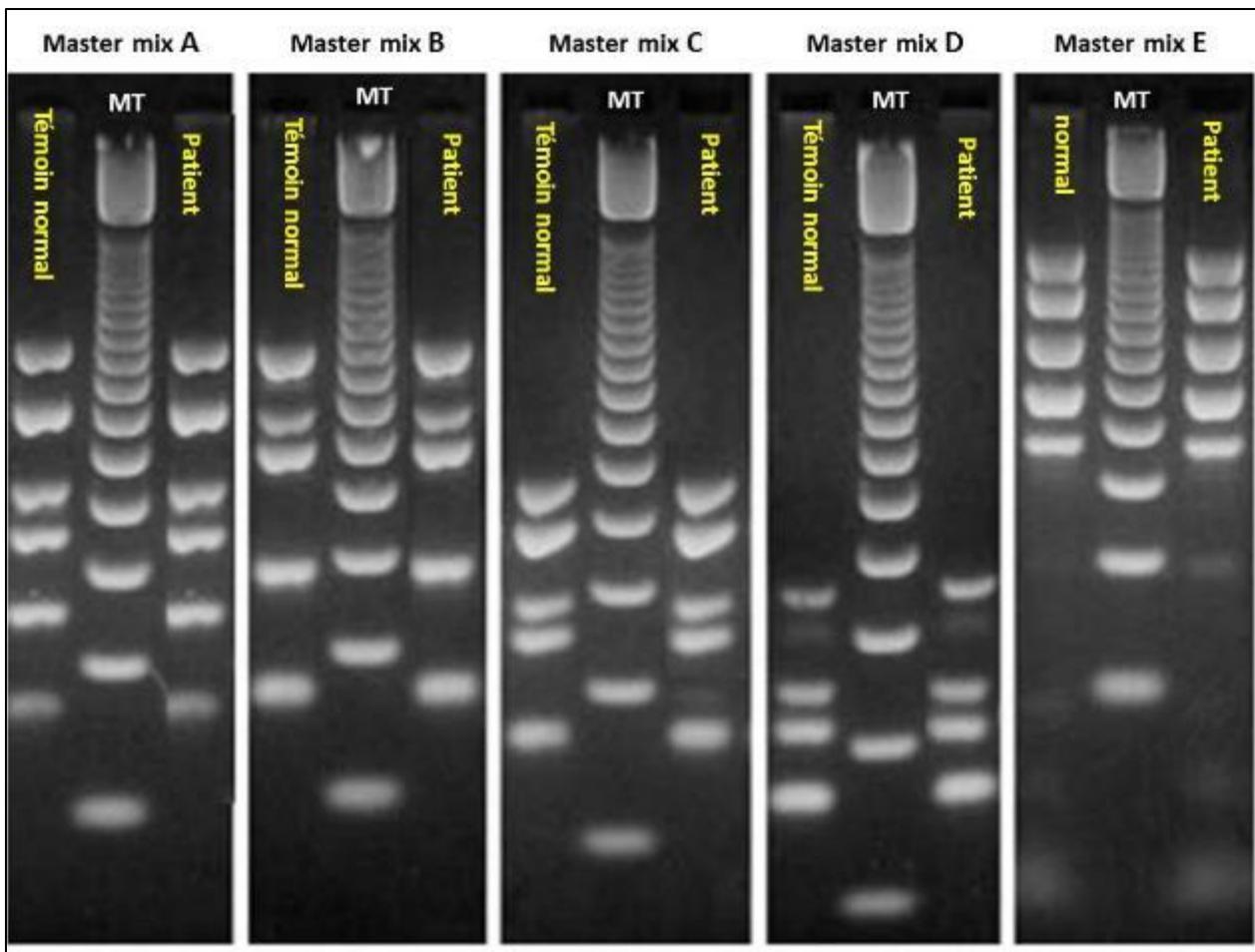
The euchromatic region proximal to the long arm of the Y chromosome (Yq11) comprises three sub-regions called “azoospermia factors”: AZFa, AZFb and AZFc. They contain genes essential for spermatogenesis. Infertility is explained by recurrent, partial or complete large multi-gene interstitial micro deletions in the AZF regions. Such deletions are found in 3 to 9% of infertile men and more than 10% of men with ANO. Therefore, its research is indicated when the concentration of spermatozoa is less than 5 million/ml [23] (Figure 2).

Complete deletions of AZFa eliminate two genes, *USP9Y* and *DDX3Y*, and are associated with ANO in the setting of “Sertoli cells alone” syndrome. This is the most severe testicular phenotype characterized by the complete absence of all germ cells in the seminiferous tubules [24].

Complete deletions of AZFb remove all copies of the *HSFY*, *EIF1AY*, *KDM5D*, *RPS4Y2*, *PRY* and *RBMY1* genes. They are associated with azoospermia following an arrest of meiotic maturation of germ cells [25].

The AZFc region contains the *CDY1* and *BPY2* genes as well as palindromic duplications of the DAZ (deleted in azoospermia) gene organized into two clusters comprising four genes: *DAZ1*, *DAZ2*, *DAZ3* and *DAZ4*. These four copies of the DAZ gene are expressed in spermatogonia where they encode an RNA-binding protein important for spermatogenesis. Recurrent AZFc deletion accounts for approximately 6% of severe spermatogenesis defects. Large deletions of the AZFc interval, although partial since they do not remove all the copies of the multi-copy encoding genes, have only a modest negative effect on male fertility, explaining the occurrence of infertile men whose the fathers carried the same deletion [26].

The AZFc region is more vulnerable to deletions because it is composed of repeat sequences and palindromes. AZF micro deletions constitutes 70% of AZF microdeletions, followed by AZFb (14%), AZFa (6%), and AZFb+c and AZFa +b+c (10%) [23].


Another relatively frequent structural anomaly of the Y chromosome is the isodicentric Y [idic(Y)], which is the result of a break in the juxtacentromeric region followed by a duplication of the fragment containing the centromere. This rearrangement may be missed on conventional karyotyping. Ring Y chromosomes are also observed.

Rearranged Y chromosome is unstable and is often lost during successive mitoses resulting in a 45,X cell line, the extent of mosaicism varies across tissues and individuals. The frequency of the 45,X/46,X,r(Y) mosaic is estimated at 1.5 per 10,000 births [27].

- Other copy number variations (CNV)

These CNVs are rare and represent a minor risk factor for azoospermia or oligospermia. Examples include:

- The deletion of the short arm of chromosome 9, encompassing *DMRT1* gene involved in testicular development, observed in 0.38% of infertile patients [28].
- The deletion in Xp11.23 of a 100 kb segment containing the *SPACA5* gene coding for an acrosome-associated protein.

Figure 2 Result of the search for the micro deletion of the AZF regions in an infertile patient presenting azoospermia with a normal karyotype: All 20 loci are amplified at the level of the 5 multiplex PCR reactions, indicating the absence of micro deletion in this patient

2.1.2. Monogenic abnormalities

Causes linked to the X chromosome

Partial Androgen Insensitivity Syndrome: Typical presentation includes severe hypospadias, micropenis, and bifid scrotum with or without testes. It is linked to missense mutations of the AR gene in Xq11.12 coding for androgen receptors.

The *TEX11* gene (Xp11) is involved in chromosome pairing and recombination during meiosis. "Loss of function" type mutations such as c.1838-1G>A; c.792+1G>A; c.1837+1G>C and p.Asp435Leufs*10 leading to meiotic arrest are found in 1% of azoospermic men, which is relatively high. The p.Thr218_Lys296del mutation causes maturation arrest. However, it may permit progression to post-meiotic stages in some seminiferous tubules, producing oligozoospermia and enabling transmission. [29].

The *USP26* gene (Xq26.2) encodes ubiquitin-specific protease 26, which is important for spermatogenesis. The c.1737G>A mutation and its cluster mutations including 370-371insACA, 494T>C, and 1423C>T are risk factors for oligoasthenoteratozoospermia (OATS) and male infertility [30].

Autosomal recessive causes

These are rare homozygous or compound heterozygous bi-allelic "loss of function" type mutations in genes expressed in the testicles:

The *FSHR* (2p16.3) encodes the FSH hormone receptor. The polymorphisms c.919A>G (rs6165G allele) and c.2039A>G (genotype rs6166 GG) impair Sertoli cells stimulation by FSH and lead to a pre-meiotic blockage of spermatogonia [31].

The *SRD5A2* gene (2p23.1) encodes type 2 5 α-reductase which converts testosterone into its active form, dihydrotestosterone. The rs13395648TC genotype and the combination of the TC and CC genotypes of the gene are associated with lower semen volume compared to the TT genotype. Regarding the rs632148 variant, subjects with the GC genotype or the combination of GC and CC genotypes have lower sperm motility compared to those with the GG genotype. The c.591G>T mutation leads to an enzymatic deficiency causing infertility which can be associated with sexual ambiguity [32].

The *LHCGR* gene (2p16.3) encodes the LH and HCG hormone receptor. Several mutations of this gene lead to variable degrees of resistance to the LH hormone. In partial forms, patients have slightly reduced testicular volume but mature Leydig cells are absent or rare. Sometimes infertility is associated with micropenis and/or hypospadias.

The *TEX15* (8p12) is involved in chromosome pairing and recombination during meiosis as well as DNA repair. Bi-allelic nonsense mutation (c.2130T>G, p.Y710*) causes meiotic arrest, and consequently azoospermia/oligozoospermia [33].

The *MEI1* (22q13.2) encodes meiotic double-strand break formation protein 1, essential for the formation of chromosomal synapses. Its mutation c.C3307T (p.R1103W) leads to meiotic arrest and azoospermia [34].

The *FANCM* gene (14q21.2) encodes a component of the central Fanconi anemia complex that is expressed in germ cells and Sertoli cells. It then ensures chromosomal stability during mitosis and meiosis. Mutations have been described: c.1946_1958del; c.4387_10A>G; 1778delG; 1663G>T and c. 1972C>T. They cause a "Sertoli cells alone" syndrome resulting in azoospermia. They have also been associated with an increased risk of familial breast and ovarian cancer [35].

The *M1AP* gene (2p13.1) encodes the protein associated with meiosis 1. Its mutations lead to meiotic arrest and oligo-azoospermia. These include the nonsense mutation c.676dup (p.Trp226LeufsTer4); and the homozygous missense mutation c.1166C>T (p.Pro389Leu) [36].

The *STAG3* gene (7q22.1) encodes a meiosis-specific subunit of the cohesin complex. This complex is a large protein ring with DNA scavenging ability that ensures sister chromatid cohesion and allows proper synapse and segregation of homologous chromosomes during meiosis. Some mutations cause premature ovarian failure in women. c.1262T>G (p.Leu421Arg) and c.1312C>T (p.Arg438Ter) mutations cause infertility due to meiotic arrest. Indeed, spermatocytes I are blocked at the zygotene stage and show significant chromosomal aberrations [37].

The *TEX14* gene (17q22) encodes a protein exclusively expressed in the testicles which is necessary for intercellular bridge formation in germ cells and for spermatid survival. The exon-16 deletion c.2668_2678del produces a frameshift and a premature stop codon yielding a truncated protein and meiotic arrest [38].

The *XRCC2* (7q36.1) is one of the 5 paralogs of the *RAD51* gene necessary for homologous recombination during meiosis. Its homozygous mutation c.41T>C (p.Leu14Pro) leads to meiotic arrest and azoospermia in men and premature ovarian failure in females [39].

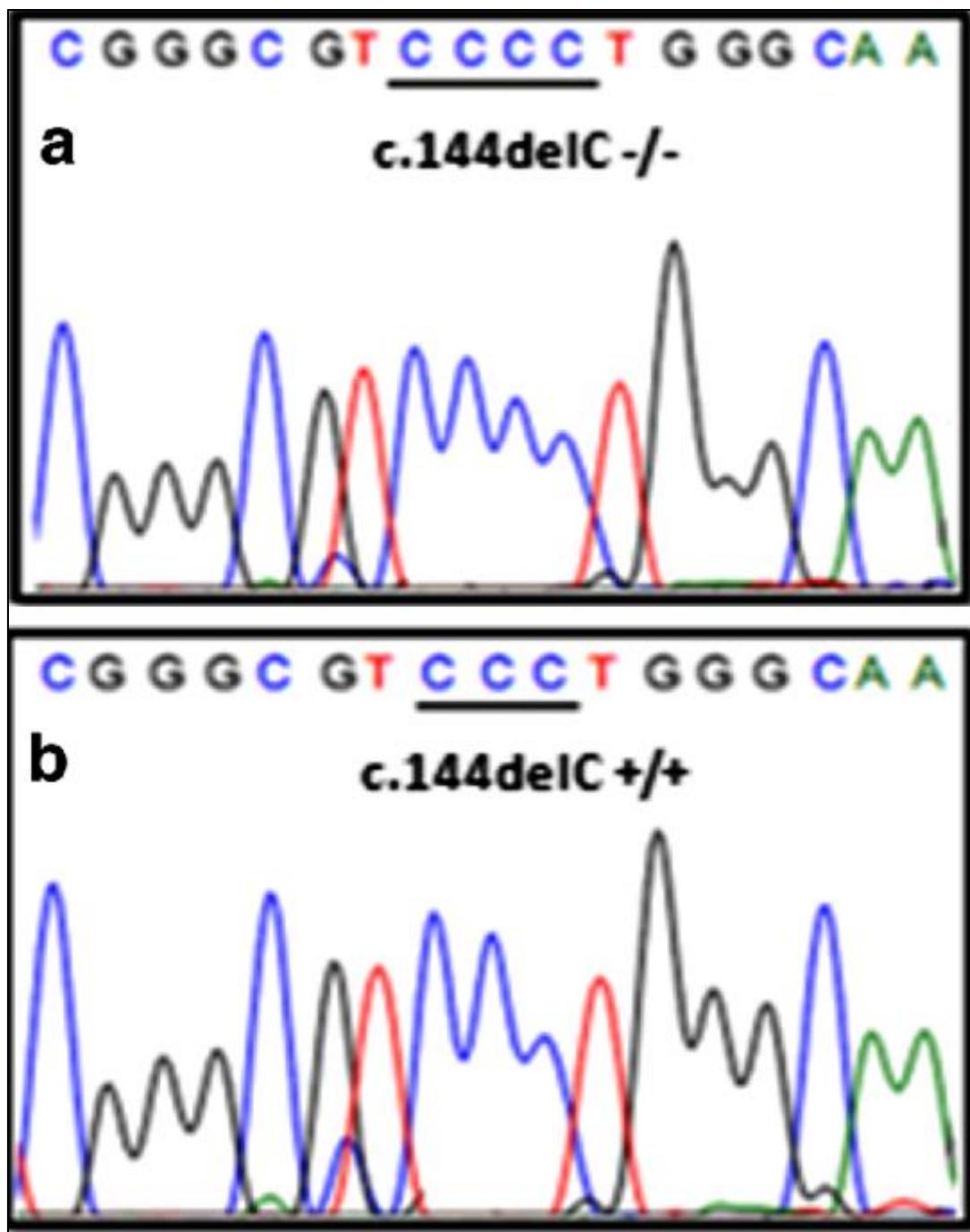
About 10% of cases of Fanconi anemia are said to be "occult" because diagnosis is delayed until adulthood, often when solid cancer appears. Bi-allelic mutations in *FANCA* gene have been identified in azoospermic patients with "Sertoli cells only" syndrome but without overt anemia. This gene located at 16q24.3 codes for proteins involved in the correction of double-stranded DNA lesions [40].

Mulibrey dwarfism is a very rare pre and post-natal growth retardation characterized by craniofacial dysmorphism, a small rib cage likely to cause respiratory problems, frequent type 2 diabetes and a risk of developing Wilms tumor. Constrictive pericarditis is the most serious anomaly. This disease is more common in Finland. It is due to mutations in the *TRIM37* gene located at 17q22, coding for a peroxisomal protein. From mid-puberty, affected individuals develop hypergonadotropic hypogonadism with small testes and severe oligoasthenozoospermia or azoospermia [41].

Causes with dominant transmission

These are rare heterozygous variants located in certain genes that are weakly associated with infertility. Their negative effect on fertility is minimal and typically requires interaction with other variants in different genes to manifest. This

seems logical, as variants with a strong negative impact on male fertility would be rapidly eliminated from the population. The following genes have been identified:


- The *NR5A1* gene (located at 9q33.3) encodes the transcription regulator *SF1* necessary for gonadal development. Missense mutations of this gene are found in 0.6 to 4% of men with ANO or OS related to premeiotic arrest [42].
- The *GATA4* gene (located at 8p23.1) codes for a transcription factor that interacts with the *NR5A1* or *WT1* genes to regulate the transcription of genes necessary for the determination and the testicular development; and the functioning of Sertoli and Leydig cells. Usually, *GATA4* mutations cause disorders of sex development with ambiguity. Nevertheless, some of these mutations have been found in infertile men with ANO [43].
- The *KLHL10* gene (located at 17q21.2) is expressed in the cytoplasm of elongated spermatids. Several heterozygous mutations have been described such as the missense mutations p.A313T and p.Q216P which lead to impaired homodimerization with the wild-type protein causing asynchronous maturation and a partial degeneration of late spermatids. The consequence is OS and infertility [44].
- The *SYCP2* gene (located at 20q13.33) and the *SYCP3* gene (located at 12q23.2) code for proteins of the central axis of the synaptonemal complex. Mutations c.3067_3071del (p.Lys1023LeufsTer2); c.2022_2025del (p.Lys674AsnfsTer8); c.2793_2797del (p.Lys932SerfsTer3) of *SYCP2* disrupt synapsis and increase apoptosis, leading to azoospermia/cryptozoospermia. The *SYCP3* c.643delA mutation introduces a premature stop codon, truncating its C-terminal coiled region, which disrupts co-expression with its wild-type homologous for *SYCP3* fibers formation. This leads to a failure of the chromosomal synapse, an arrest at the zygotene stage and an increase in apoptosis which results in azoospermia and small testes. Additional mutations (e.g., c.548T>C, c.553-16_19del, c.657T>C) have been identified in recurrent miscarriage cases due to abnormal splicing and truncated protein products [45].
- The *APOA1* gene (located at 11q23.3) encodes Apolipoprotein A1 mainly produced by the intestines and liver, and incorporated into HDL (60%) and chylomicrons (12%). Heterozygous mutation causes a rare hereditary amyloidosis affecting the kidneys, liver and testicles in young patients. Testicular involvement occurs in 68.2% of patients. Infertility is characterized by ANO, frequently associated with macro-orchidism and hypergonadotropic hypogonadism [46].
- Muckle-Wells syndrome is a rare autoinflammatory condition characterized by recurrent episodes of systemic inflammation (fever, rashes, arthralgia). Its main complications are sensorineural deafness and amyloidosis. It is caused by the heterozygous p.R258W mutation in *NLRP3* (1q44), which causes excessive caspase-1 activation and of interleukin-1b secretion. Most affected individuals present with oligozoospermia and even azoospermia; however, IL-1-targeted therapies do not improve fertility [47].
- The *INSL3* gene (located at 19p13.11) encodes an insulin-like hormone secreted by Leydig cells. The *LGR8/GREAT* gene encodes the *INSL3* receptor. This signaling pathway mediates development and shortening of the gubernaculum testis independently of androgen action. Mutations in either gene account for approximately 7% of bilateral cryptorchidism cases and may result in failed spermatogenesis, including azoospermia [48].

2.2. Abnormalities of sperm morphology or function

Individuals with specific monomorphic teratozoospermia are more likely to have a common genetic origin.

Large-headed multi-flagellar spermatozoa (Macrozoospermia)

Macrozoospermia is globally rare but relatively common in North Africa. It is characterized by the presence of large-headed spermatozoa (greater than 70% in the so-called complete forms) and multiflagelled ones. Approximately 85% of patients carry bi-allelic mutation of *AURKC* (located at 19q13.43) which encodes a protein involved in the control of meiotic spindle assembly and corrects inappropriate kinetochore-microtubule attachments [49]. The c.144delC exon-3 mutation represents ~87.7% of detected mutation it results in an unstable truncated transcript (Figure 3). The nonsense mutation c.744C>G (p.Y248*) accounts for approximately 10.5%. Other rare mutations have been reported, such as a missense mutation in exon 6 (p.C229Y), and an intronic mutation c.436-2A>G in the consensus splice site of acceptor of exon 5. These mutations lead to the production of spermatozoa with chromosomal imbalance (aneuploidy and polyploidy) preventing embryonic development, making ART contraindicated. Although chromosome separation fails during meiosis, spermiogenesis proceeds, frequently producing tetraploid spermatocytes [50].

a: fertile control. b: patient with macrozoospermia showing a homozygous c.144delC mutation.

Figure 3 Sanger sequencing of exon 3 of the AURKC gene

2.2.1. Globozoospermia

Complete globozoospermia features nearly 100% round-headed spermatozoa lacking an acrosome and unable to bind or penetrate the zona pellucida. It is associated with impaired histone-to-protamine transition, high DNA fragmentation, and reduced or absent PLC ζ , resulting in poor ART outcomes [51]. 70% of cases are due to biallelic alterations in *DPY19L2* (located at 12q14.2) and expressed mainly in spermatids; it encodes a protein located in the inner nuclear membrane opposite the acrosomal vesicle, essential for acrosome anchoring during spermiogenesis. A recurrent 200 kb deletion affecting the entire gene accounts for ~80% of pathogenic alleles. Less frequently, punctual mutations have been found, especially in a critical region between exons 8 to 11 such as p.R290H and p.R298C [52].

Around 3% of cases are linked to biallelic *SPATA16* mutations (c.848G>A (p.R283Q), and less frequently a deletion including its exon 2); *SPATA16* is located on chromosome 3 and codes for a protein located in the Golgi apparatus involved in acrosome biogenesis, and its mutations may result in multi-headed or multiflagellated sperm [53].

2.2.2. Acephalic spermatozoa

Affected men typically show predominantly isolated flagella with few detached heads. Bi-allelic mutations in *SUN5* gene (located 20q11.21) such as: c.381delA (p.V128Sfs7*); c.675C>A (p.Y225X) and c.88 C>T (p.R30X) are responsible for about 50% of cases. *SUN5* encodes a protein located in the inner nuclear membrane of elongated spermatids and spermatozoa in head-flagellum junction. It is involved in the formation of LINC complexes linking the nucleus to the cytoskeleton [54].

The *PMFBP1* gene (located at 16q22.2) encodes a protein located in spermatozoa at the head-neck connection that connects the implantation fossa and the basal body. It would regulate the expression of the outer dense fiber proteins ODF1 and ODF2. Bi-allelic nonsense mutations of *PMFBP1*: c.1462C>T (p.Gln488*); c.2404C>T (p.Gln802*); c.2725C>T (p.Arg909*); vs. 2092delG (p.Ala698Profs*7); c.361C>T (p.Gln121Ter) and c.414+1G>T splice mutation have been reported. They would disrupt the cooperation of *PMFBP1* with *SUN5* and *SPATA6*, resulting in a headless spermatozoa syndrome [55].

The *TSGA10* gene (located at 2q11.2) encodes a fibrous sheath protein of spermatozoa. Its c.211delG (p.A71Hfs*12) and c.545dupT (p.Ala183Serfs*10) mutations result in the production of a truncated protein causing misdisposition of the mitochondrial sheath [56].

2.2.3. Multiple Morphological Abnormalities of the Flagellum (MMAF)

A proteomic analysis has identified more than 700 flagellum-specific proteins, many of which are axonemal components. These findings underscore the remarkable complexity of flagellar structure and biogenesis and suggest that numerous genes may be implicated in flagellar abnormalities and/or asthenozoospermia.

The specific MMAF phenotype is characterized by astheno-teratozoospermia resulting from a mosaic of flagellar defects, including absent, coiled, curved, angulated, irregular, or short flagella [57]. In approximately 30% of patients presenting with this phenotype in the absence primary ciliary dyskinesia (PCD), the *DNAH1* gene is mutated. Located at 3p21.1, *DNAH1* encodes a heavy chain of the inner dynein arms of the axoneme, contributing to the stabilization of the radial spokes and, consequently the central pair complex. Loss or dysfunction of *DNAH1* leads to severe axonemal disorganization, often with a "9+0" structure corresponding to the absence of the central pair. Given the critical role of the central pair in maintaining overall flagellar architecture, its absence is considered a key pathophysiological mechanism underlying the MMAF phenotype. Severe axonemal disorganization may also result from defective anchorage of radial spokes. Additional ultrastructural abnormalities include abnormal extension of outer dense fibers 3 and 8 into the principal piece, distortion of the fibrous sheath, and absence of the mitochondrial sheath. Despite these defects, spermatozoa of patients with *DNAH1* gene mutations have good nuclear quality and low aneuploid counts, and favorable outcomes have been reported following intracytoplasmic sperm injection (ICSI) [58].

The *CFAP43* gene (10q25.1) and the *CFAP44* gene (3q13.2) encode cilia- and flagella-associated proteins containing 9 WD repeat domains. Bi-allelic mutations in *CFAP43* have been identified in approximately 13% of MMAF cases and include: c.3661-2A>-, p.Arg300Lysfs*22; p.Thr526Serfs*43; c.3541-2A>C; c.2658G>A; c.2680C>T; c.3352C>T; c.1240_1241delGT and c.3882delA. Bi-allelic mutations in *CFAP44* account for approximately 8% of MMAF cases and include: c.2935_2944del (p.D979*); c.T1769A (p.L590Q); c.2005_2006del (p.M669Vfs*13); c.G3262A (p.G1088S) and c.C1718A (p.P573H); c.1387G>T; c.3175C>T; c.4767delT; c.2818dupG and c.1890+1C >T [59].

Bi-allelic mutations in *CFAP65*, located at 2q35, are responsible for approximately 7% of MMAF cases. Reported variants include c.1775delC (p.Pro592Leufs*8); c.3072_3079dup (p.Arg1027Profs*41); c.1946delC (p.Pro649Argfs*5); c.1580delT (p.Leu527Argfs*31); c.4855C>T (p.Arg1619*); c.5270T>A (p.Leu1757*) and c.5341G>T (p.Glu1781*) [60].

The *CFAP69* gene, located at 7q21.13, encodes a protein required for flagellar assembly and stability. Bi-allelic mutations, including c.860+1G>A and c.763C>T (p.Gln255Ter), account for approximately 2.5% of MMAF cases [61].

The *CFAP251* gene at 12q24.31 encodes a protein involved in flagellar development, and bi-allelic mutations in this gene are estimated to cause approximately 5% of MMAF cases [62].

The *CFAP91 (MAATS1)* gene, located at 3q13.33, encodes a binding partner of WDR66 within the calmodulin- and radial spoke-associated complex. This protein is essential for normal flagellar structure and function. Bi-allelic mutations, including c.682+1G>A and c.124G>C (p.Asp42His), result in severe defects of the central pair and radial spoke complexes and are thought to account for approximately 3.6% of MMAF cases [63].

The *DNAH17* gene, located at 17q25.3, encodes a β-type heavy chain component of the outer dynein arms that co-localizes with *DNAH8* and α-tubulin along the sperm flagellar axoneme. Notably, *DNAH17* expression is restricted to spermatozoa and is absent from motile epithelial cilia. Therefore, bi-allelic mutations of *DNAH17* do not cause PCD, but rather AMMF and/or asthenozoospermia. Ultrastructural analyses of affected spermatozoa reveal partial loss of both peripheral microtubule doublets and the central pair complex [64].

The *TTC29* gene, located at 4q31.22, is highly and preferentially expressed in the testis and encodes a tetratricopeptide repeat containing protein involved in intraflagellar transport. Homozygous truncating mutations in *TTC29* are estimated to account for approximately 3.8% of MMAF cases [65].

The *QRICH2* gene at 17q25.1 encodes a protein required for stabilizing components involved in sperm flagellum biogenesis. Homozygous mutations, including c.3501C>G (p.Tyr1167Ter) and c.4614C>G (p.Tyr1538Ter), have been identified in approximately 1% of patients with the MMAF phenotype [66].

The *FSIP2* gene, located at 2q32.1, encodes a protein associated with fibrous sheath formation that interacts with the anchoring protein AKAP4, which is essential for flagellar assembly. Bi-allelic mutations such as c.16246_16247insCCCAAATATCACC (p. T5416fs*7); c.17323C>T (p.Q5774*); c.910delC; c.16389_16392delAATA; c.2282dupA and c.1606_1607insTGT; 1607_1616delAAAGATTGCA would be responsible for about 5% of AMMF [67].

Finally, the *ARMC2* gene, located at 6q21, plays a role in the assembly and/or stability of the central pair of the axonemal complex. Bi-allelic mutations, including c.1023+1G>A; c.2279T>A; c.2353_2354delTT; c.1284_1288delACAAA; and c.421C>T, are responsible for approximately 3% of MMAF cases [68].

2.2.4. The absence/defect of the annulus

The *SEPT12* gene located at 16p13.3 encodes a member of the Septins family forming homofilaments and heterofilaments constituting the annulus by binding and hydrolyzing GTP. A stable Septin complex is required for flagellum differentiation by interacting with α- and β-tubulin. Heterozygous mutations of *SEPT12* have a negative dominance effect because they alter the formation of Septin filaments with wild-type proteins. The p.Thr89Met mutation in exon 3 reduces the hydrolytic activity of GTP, while the p.Asp197Asn mutation in exon 6 interferes with GTP binding and leads to the formation of a defective annulus and a curved flagellum [69].

2.2.5. Isolated asthenozoospermia

The *TAT1* gene encodes SLC26A8, a monovalent and/or divalent anion transporter localized to the equatorial segment of the sperm head and the annulus of spermatozoa. This transporter interacts with the CFTR channel forming complexes to stimulate its transport activity represented by chloride and bicarbonate fluxes necessary for sperm motility and capacitation. Heterozygous missense mutations, including p.Glu812Lys and p.Arg954Cys, lead to reduced SLC26A8 expression levels or mislocalization of the protein. These alterations promote instability and proteasomal degradation of the SLC26A8–CFTR complex, thereby impairing capacitation and resulting in asthenozoospermia [70].

The *CATSPER1* gene encodes one of the four α-subunits forming the pore of the CATSPER channel, which is located on the plasma membrane of the principal piece of the sperm flagellum. Upon stimulation by progesterone, this channel mediates calcium influx, a critical step in sperm capacitation and hyperactivation. Homozygous *CATSPER1* mutations, including c.539_540insT and c.948_949insATGGC, result either in truncated proteins lacking all transmembrane domains and the channel pore or in complete absence of the protein, thereby leading to asthenozoospermia [71].

2.2.6. Failed oocyte activation syndrome

The *PLCZ1* gene located at 12p12.3 codes for phospholipase C Zeta in the spermatozoon which triggers calcium oscillations and oocyte activation during fertilization. Its bi-allelic mutations cause defective calcium signaling and impaired early embryonic development [72]. In addition, absence or malformation of the acrosome—particularly observed in globozoospermia—results in reduced levels or complete absence of *PLCZ1* protein, further contributing to defective oocyte activation [51].

2.2.7. Syndromic infertility linked to asthenozoospermia

Primary ciliary dyskinesia (PCD)

The sperm flagellum shares common structural elements—most notably the axoneme—with motile cilia present in epithelial cells of the respiratory tract, fallopian tubes, choroid plexus, and cerebral ventricles. PCD is a multi-systemic disorder caused by motility defects of cilia and flagella, its incidence is estimated at 1 per 15,000 births. It is mainly characterized by recurrent respiratory tract infections with, symptoms ranging from chronic rhinosinusitis to bronchiectasis. In 50% of cases, PCD is associated with situs inversus due to dysfunction of motile cilia in the embryonic node, thus disturbing the laterality of the organs (Kartagener's syndrome). More rarely, hydrocephalus may occur as a consequence of impaired ependymal ciliary motility, resulting in obstruction of cerebrospinal fluid flow [57].

Although numerous genes have been implicated in PCD, only a subset is associated with male infertility. In affected individuals, spermatozoa are typically immotile and may present with a multiple morphological abnormalities of the flagellum (MMAF) phenotype, characterized by ultrastructural defects such as absence of dynein arms, loss of radial spokes, or microtubular transpositions.

The *SPEF2* gene, located at 5p13.2, encodes a protein that interacts with components of radial spoke heads and intraflagellar transport, both of which are essential for flagellar assembly. Bi-allelic mutations, including c.910C>T (p.Arg304*); c.3400delA (p.Ile1134Serfs*13) and c.3240delT (p.Phe1080Leufs*2) result in a combined PCD and MMAF phenotype [73].

The *CCDC39* gene (3q26.33) encodes a protein involved in the assembly of inner dynein arms and radial spokes. Bi-allelic mutations (e.g., c.983T>C; p.Leu328Pro) cause severe axonemal disorganization, including mislocalization of peripheral microtubule doublets, displacement or absence of the central pair, and loss of inner dynein arms and nexin links. Affected patients present with oligo-asthenozoospermia, a narrowed midpiece, and a shortened flagellum [74].

The *CCDC40* gene, located at 17q25.3, encodes a protein that functions together with *CCDC39* to establish the 96-nm axonemal repeat and ensure proper assembly of inner dynein arms and the dynein regulatory complex. Bi-allelic mutations of *CCDC40* such as: c.901C>T p.(Arg301*); c.2065_2068dup (p.Ala690Glyfs*67); c.2824_2825insCTGT; c.1989+1G>A; c.1416delG, c.1259delA lead to absence of inner dynein arms, abnormal central apparatus formation, and microtubular disorganization, resulting in reduced ciliary beat amplitude and impaired axonemal bending. Clinically, patients exhibit chronic respiratory infections, Kartagener syndrome in approximately half of cases, and infertility frequently associated with MMAF, and more rarely with isolated asthenozoospermia [75].

The *DNAAF4* gene located at 15q21.3 encodes a protein involved in the pre-assembly of axonemal arms and participates in the integration and stabilization of the intermediate chain, which is an integral part of both the inner and outer dynein arms. Its c.988C>T (p.Arg330Trp) mutation causes astheno-teratozoospermia [76].

The *MNS1* gene located at 15q21.3 encodes a protein that dimerizes and interacts with the *CCDC114* complex, contributing to docking of outer dynein arms in the axonemes of the vibratile cilia in respiratory epithelial cells and flagella of spermatozoa, and would also be present in the primitive embryonic nodal cilia. Homozygous nonsense mutations (p.Arg242*); c.407_410del (p.Glu136Glyfs*16) and c.603_604insG (p.Lys202Glufs*6) have been reported in men with situs inversus and astheno-teratozoospermia characterized by morphological abnormalities at the outer microtubule doublets leading to infertility. Interestingly, patients with PCD carrying mutations in the *CCDC114* gene have been described as normally fertile [77].

Compound heterozygous mutations in *ARMC4* (c.2095C>T; p.Gln699* and c.1679C>T; p.Ala560Val) have been identified in a patient with situs inversus and infertility due to loss of outer dynein arms and MMAF [78].

Other genes suspected to contribute to PCD-associated MMAF include *DRC1* [79], *CFAP74* [80], and *BRWD1* [81]. However, in most PCD cases, sperm flagella appear morphologically normal by light microscopy, arguing against a major role for many of these genes in teratozoospermia or MMAF. This is notably the case for the following genes:

- The *LRRC6* gene (8q24.22) encodes a cilia-and flagella-associated protein. Bi-allelic mutations such as c.749G>A (p.W250*); c.538C>T (p.R180*); c.64dupT (p.S22Ffs*19) and c.863C>A (p.P288H) have been reported in PCD patients, resulting in absence of both inner and outer dynein arms and causing sperm ultrastructural and motility defects [82].

- Mutations in *DNAAF6* (Xq22.3), including c.319_329del (p.Arg107fs) and c.290G>T (p.Gly97Val), result in absence of both inner and outer dynein arms, leading to asthenozoospermia and infertility [83].
- The *DNAAF2* gene (14q21.3) encodes a protein involved in cytoplasmic preassembly of dynein arm complexes prior to their transport to the ciliary compartment. Bi-allelic mutations: c.C156A (p.Y52X); c.C26A (p.S9X); c.C23A (p.S8X); c.1214_1215insACGATACCTGCCGTGGC (p.G406Rfs89X); c.T1901C (p.F634S) and c.C998T (p.A333V) have been identified in patients with PCD with akinetospermia [84].
- The *RSPH3* gene (6q25.3) encodes a protein expressed in respiratory epithelial cilia and sperm flagella, it plays a critical role in assembly of the central pair and radial spokes. 10% of PCD cases with central apparatus and radial spoke defects are attributable to bi-allelic *RSPH3* mutations, particularly c.616C>T (p.Gln206*). These cases exhibit near-complete absence of radial spokes and variable central pair defects, resulting in a mixture of immotile flagella and flagella with reduced-amplitude motility [85].
- The *CDC14A* gene (1p21.2) encodes a dual-specificity phosphatase located in cilia of inner ear cells, basal bodies and sound-transducing stereocilia. It is involved in regulation of kinocilium length, microtubule integrity, DNA double-strand break repair, and chromosome segregation. Bi-allelic *CDC14A* mutations are implicated in moderate to severe hearing loss. Nevertheless, male infertility is not constant. Only certain mutations such as: c.376delT; c.417C>G; c.934C>G; c.839_3C>G or c.959A>C have been associated with oligoasthenozoospermia or azoospermia [86].

Ciliopathies

Ciliopathies represent an expanding group of disorders caused by mutations in genes involved in ciliary structure and function. One of the most frequently implicated genes is *CEP290* (12q21.32), which encodes a centrosomal protein essential for ciliogenesis. Bi-allelic *CEP290* mutations give rise to a wide spectrum of overlapping phenotypes, including Leber congenital amaurosis, Senior-Løken syndrome, nephronophthisis, Joubert syndrome, Bardet-Biedl syndrome, and Meckel-Grüber syndrome. Cases of male infertility associated with asthenozoospermia or akinetospermia have been reported in patients with *CEP290* mutations; however, despite the identification of more than 100 pathogenic variants, no clear genotype-phenotype correlation has been established [87].

Autosomal dominant polycystic kidney disease

Autosomal dominant polycystic kidney disease (ADPKD) is an inherited adult-onset renal disorder, most commonly caused by heterozygous inherited or de novo mutations in *PKD2* or *PKD1* located at 16p13.3. Patients with *PKD1* mutations frequently present with infertility associated with cystic dilatation of the genital tract, particularly the seminal vesicles. Sperm morphological abnormalities are common and include coiled or shortened flagella, absence of central microtubules, and irregular peripheral doublets. These defects may result from dysregulation of the Hippo signaling pathway, potentially promoting ciliary disassembly [88].

Deafness-Infertility syndrome

Bi-allelic contiguous gene deletions at 15q15.3 encompassing both *CATSPER2* and *STRC* cause a syndrome characterized by asthenozoospermia-associated infertility and non-progressive prelingual sensorineural hearing loss [89].

3. Pre-testicular causes

Congenital hypogonadotropic hypogonadism (CHH) is defined by a congenital deficiency in the production, secretion, or action of gonadotropin-releasing hormone (GnRH). It accounts for less than 2% of male infertility cases and results in impaired spermatogenesis associated with endocrine testicular insufficiency (hypo-Leydigism). CHH is frequently associated with developmental abnormalities such as cryptorchidism or micropenis and is most often characterized by absent puberty. In partial forms, puberty may be delayed or incomplete, leading to infertility.

CHH may occur in isolation or in association with deficiencies of other pituitary hormones. In approximately 50% of patients, CHH is accompanied by anosmia or hyposmia due to hypoplasia or aplasia of the olfactory bulbs, a condition known as Kallmann syndrome, which results from defective embryonic migration of GnRH neurons from the olfactory placode [90].

3.1. Genes involved in CHH with normal olfaction

These include:

- *GNRH1* (8p21.2), encoding GnRH [91];

- *GNRHR* (4q13.2), encoding the GnRH receptor in anterior pituitary gonadotroph cells [92];
- *FSHB* (11p14.1), encoding the β -subunit of follicle-stimulating hormone; and *LHB* (19q13.33), encoding the β -subunit of luteinizing hormone [93];
- *KISS1* and *KISS1R* (19p13.3), which encode kisspeptin-1 and its receptor, respectively, essential regulators of GnRH neuronal activity [94];
- Similarly, the *TAC3* gene encoding tachykinin-3, and the *TACR3* gene located at 4q24 and encoding its receptor are involved in the control of GnRH neurons [95],
- *SOX2* (3q26.33): Its heterozygous mutations are linked to septo-optic dysplasia associated with anophthalmia/microphthalmia. This pathology is defined by the triad: pituitary hormonal deficits, optic nerve hypoplasia, and cerebral midline malformations.

The *CCDC141* (2q31.2) encodes a cytoskeletal scaffold protein that links actin and microtubule components of the cytoskeleton that underlie a cell's shape and motility, with force-generating motor proteins. Its bi-allelic inactivating mutations alter the migration of GnRH neurons without affecting olfactory neurons [96].

3.2. Genes involved in Kallmann syndrome

Mutations in these genes either affect the neurogenic niche in the olfactory region and may also alter craniofacial development; or the migration of GnRH neurons:

A major subset of these genes encodes components of the fibroblast growth factor 8 (FGF8) signaling pathway, including *FGF8* (10q24.32) and its receptor *FGFR1* (8p11.23). FGF8-FGFR1 signaling is essential for the ontogenesis and survival of GnRH neurons during early forebrain development and plays a critical role in neural crest cell migration and olfactory stem cell maintenance. Heterozygous loss-of-function variants in *FGF8* or *FGFR1* are frequently associated with craniofacial defects, such as cleft lip and/or palate, as well as skeletal abnormalities, reflecting the pleiotropic developmental functions of this pathway [97].

The *ANOS1* gene (Xp22.31) encodes anosmin-1, a transiently expressed extracellular matrix glycoprotein that enhances FGF signaling through direct interactions with the FGFR-FGF-heparan sulfate proteoglycan complex at the cell surface. Disruption of *ANOS1* impairs olfactory axon guidance and GnRH neuron migration; clinically, bimanual synkinesis and unilateral renal agenesis are highly suggestive features of *ANOS1*-related disease [98]. The functional activity of anosmin-1 is further dependent on *HS6ST1* (2q14.3), which encodes heparan sulfate 6-O-sulfotransferase 1, a key enzyme required for proper heparan sulfate modification and effective FGF signaling [99].

Additional modulation of the FGF signaling axis is mediated by *IL17RD* (3p14.3) -encodes the interleukin-17 receptor- and *FGF17* (8p21.3). *FGF17* represents the second most important ligand of FGFR1c in GnRH neuron development, although it exhibits lower morphogenetic potency than *FGF8*. Both genes display spatiotemporal expression patterns overlapping with FGF8 and fine-tune FGFR1-dependent signaling through enhancer or inhibitory effects. Heterozygous mutations in *IL17RD* are associated with Kallmann syndrome, frequently accompanied by sensorineural hearing loss [100].

Neurodevelopmental transcriptional regulators also play a central role in GnRH neuron specification and migration. *CHD7* (8q12.2), which encodes a transcriptional cofactor of *SOX2*, is critical for early neurogenesis. Heterozygous *CHD7* mutations underlie CHARGE syndrome, a multisystem developmental disorder characterized by coloboma, cardiac anomalies, choanal atresia, growth delay, genital abnormalities, and ear malformations with deafness [101]. Similarly, *SOX10* (22q13.1), a transcriptional activator essential for neural crest development, is implicated in Waardenburg syndrome types 2 and 4, which combine congenital deafness with pigmentary and neurodevelopmental defects [102].

The prokineticin signaling pathway, comprising *PROK2* (3p13) and its receptor *PROKR2* (20p12.3), is another critical regulator of olfactory bulb development and GnRH neuron migration, with pathogenic variants resulting in impaired reproductive axis activation [103]. Likewise, axon guidance molecules such as semaphorin-3A (*SEMA3A*, 7q21.11) and its receptor plexin-A1 (*PLXNA1*, 3q21.3) are essential for olfactory system development and the neuronal control of puberty, further underscoring the tight coupling between olfactory wiring and reproductive maturation [104].

Finally, *WDR11* (10q26.12) encodes a protein that interacts with the *EMX1* transcription factor, a key regulator of olfactory neuron development. Heterozygous *WDR11* mutations reduce or abolish this interaction, thereby perturbing olfactory and GnRH neuronal development and contributing to the pathogenesis of Kallmann syndrome [105].

3.3. The genes involved in the combined pituitary hormone deficiency

Combined pituitary hormone deficiency (CPHD) represents an important genetic cause of congenital hypogonadotropic hypogonadism and is frequently associated with broader endocrine dysfunction. Among the key genes implicated, *POU1F1*, located at 3p11.2, encodes a pituitary-specific transcription factor essential for pituitary cell lineage commitment. Likewise, *PROP1*, located at 5q35.3, encodes a transcription factor that orchestrates early pituitary development by regulating the ontogenesis of gonadotropes, somatotropes, lactotropes, and caudomedial thyrotropes [106]. Pathogenic variants in these genes disrupt pituitary organogenesis and lead to variable combinations of growth hormone, gonadotropin, thyroid-stimulating hormone, and prolactin deficiencies.

3.4. The concept of oligogenic inheritance

Regardless of clinical presentation, pedigree analyses of hypogonadotropic hypogonadism (HH) consistently reveal incomplete penetrance and marked inter- and intrafamilial phenotypic variability, even among individuals carrying identical pathogenic variants. These observations have challenged the traditional Mendelian paradigm of HH as a strictly monogenic disorder. Accumulating evidence indicates that multiple rare variants in distinct genes can act synergistically to produce more severe or complex phenotypes, supporting an oligogenic mode of inheritance. Current estimates suggest that at least 20% of HH cases are oligogenic, while approximately 15% exhibit spontaneous reversal in adulthood, highlighting the contribution of gene–gene and gene–environment interactions [107]. This complexity significantly complicates risk assessment and genetic counseling, particularly with respect to transmission probability and phenotypic prediction.

4. Post-testicular obstructive causes

Post-testicular obstructive causes of male infertility result from physical or functional barriers that prevent the transport of spermatozoa from the testis to the ejaculate. Among men diagnosed with obstructive azoospermia, approximately 15–30% present with congenital bilateral absence of the vas deferens (CBAVD). In the absence of associated renal agenesis, a targeted genetic evaluation is indicated.

4.1. The ABCC7 gene (CFTR)

The *ABCC7* gene (*CFTR*), located at 7q31.2, encodes the cystic fibrosis transmembrane conductance regulator, an anion channel expressed at the apical membrane of epithelial cells lining exocrine glands. Disorders related to *CFTR* mutations follow an autosomal recessive inheritance pattern, and more than 2,000 variants have been described to date. Biallelic severe loss-of-function mutations abolish CFTR activity and cause classic cystic fibrosis, a condition in which CBAVD is observed in nearly all affected males. In contrast, combinations involving at least one mild allele that partially preserves channel function result in CFTR-related disorders, including idiopathic pancreatitis, bronchiectasis, and isolated CBAVD.

CFTR mutations are detected in approximately 80% of men with isolated CBAVD. These variants disrupt epithelial ion transport, leading to altered fluid composition, increased viscosity of secretions, and progressive obstruction of the male excurrent ducts. The vas deferens is thought to undergo early obstruction followed by degeneration or atrophy during infancy or early childhood [108]. Management of CBAVD relies on assisted reproductive technologies, most commonly involving microsurgical epididymal sperm retrieval for use in intracytoplasmic sperm injection (ICSI).

4.2. The ADGRG2 gene

Pathogenic variants in the *ADGRG2* gene account for approximately 3% of CBAVD cases. Located at Xp22.13, *ADGRG2* encodes an adhesion class G protein-coupled receptor that is selectively expressed in the efferent ducts, where it plays a critical role in fluid reabsorption and maintenance of ductal patency [109]. Mutations in *ADGRG2* represent a distinct X-linked cause of obstructive azoospermia and should be considered in CFTR-negative patients.

5. Conclusion

The genetics of male infertility embodies a fundamental paradox: it concerns transmission of defects in a condition that intrinsically limits transmission. Historically, genetic evaluation of infertile men was largely restricted to karyotype analysis and screening for Y-chromosome microdeletions. However, the advent of high-throughput sequencing—particularly whole-exome and targeted gene panel approaches—has profoundly reshaped this field, enabling the identification of dozens of genes involved in spermatogenesis, sperm function, and reproductive tract development.

Beyond etiological clarification, genetic diagnosis has important clinical implications. It informs the assessment of long-term health risks, including susceptibility to systemic disorders such as pulmonary or oncological diseases; guides prediction of sperm retrieval success in azoospermic men; and, critically, allows evaluation of the genetic risks associated with the use of affected gametes in assisted reproductive technologies (ART). While ART has dramatically expanded reproductive options for infertile couples, the use of spermatozoa derived from severely impaired spermatogenesis raises concerns regarding the transmission of infertility or other genetic disorders, with potential consequences for the health of future generations.

A key challenge moving forward is therefore the identification of spermatozoa with optimal developmental competence while minimizing risks to the resulting offspring. We advocate for the systematic integration of recent genetic discoveries into routine diagnostic workflows. This review provides a framework for the development of targeted next-generation sequencing panels, particularly for cases of idiopathic infertility. Although the genetics of infertility initially lagged behind other medical disciplines, the pace of discovery has accelerated substantially—and the field is now poised for full clinical translation.

Compliance with ethical standards

Disclosure of conflict of interest

Authors don't have financial or non-financial interests to disclose.

References

- [1] Ravel C, Berhaut I, Siffroi J.-P. infertilités masculines. EMC, Endocrinologie- Nutrition. 2009;10-032-E-10.
- [2] Matzuk MM, Lamb DJ. The biology of infertility: research advances and clinical challenges. Nat Med. 2008;14(11):1197-1213.
- [3] American Urological Association, American Society for Reproductive Medicine. Report on optimal evaluation of the infertile male. Fertil Steril. 2006;86(5):S202-9.
- [4] Tuttelmann F, Gromoll J. Novel genetic aspects of Klinefelter's syndrome. Mol Hum Reprod. 2010; 16(6):386-395.
- [5] Bearely P, Oates R. Recent advances in managing and understanding Klinefelter syndrome. F1000Res. 2019; 8:F1000 Faculty Rev-112.
- [6] Ravel C, Chantot-Bastaraud S, Cretet J et al. Syndrome de Klinefelter : qualité des gamètes et spermatogenèse. Gynécologie Obstétrique Fertil. 2011;39(9):525-8.
- [7] Zhang X, Liu X, Xi Q et al. Reproductive outcomes of 3 infertile males with XYY syndrome: Retrospective case series and literature review. Medicine (Baltimore). 2020;99(9):e19375.
- [8] Kim IW, Khadilkar AC, Ko EY et al. 47,XYY Syndrome and Male Infertility. Rev Urol. 2013;15(4):188-196.
- [9] Mohammadpour Lashkari F, Sadighi Gilani MA, Ghaheri A et al. Clinical aspects of 49 infertile males with 45,X/46,XY mosaicism karyotype: A case series. Andrologia. 2018;50(5):e13009.
- [10] Martin RH. Cytogenetic determinants of male fertility. Hum Reprod Update. 2008;14(4):379-90.
- [11] Benet J, Oliver-Bonet M, Cifuentes P et al. Segregation of chromosomes in sperm of reciprocal translocation carriers: a review. Cytogenet Genome Res. 2005;111(3-4):281-90.
- [12] Godo A, Blanco J, Vidal F et al. Altered segregation pattern and numerical chromosome abnormalities interrelate in spermatozoa from Robertsonian translocation carriers. Reprod Biomed Online. 2015;31(1):79-88.
- [13] Du AL, Lelorc'h M, Frydman N et al. Apoptose et ségrégation méiotique dans les spermatozoïdes d'hommes porteurs de translocations. Andrologie. 2004;14(2):186-92.
- [14] Mayeur A, Ahdad N, Hesters L et al. Chromosomal translocations and semen quality: A study on 144 male translocation carriers. Reprod Biomed Online. 2019;38(1):46-55.
- [15] Ferguson KA, Wong EC, Chow V et al. Abnormal meiotic recombination in infertile men and its association with sperm aneuploidy. Hum Mol Genet. 2007;16(23):2870-2879.

- [16] Hajlaoui A, Slimani W, Kammoun M et al. Sperm fluorescent in situ hybridisation study of interchromosomal effect in six Tunisian carriers of reciprocal and Robertsonian translocations. *Andrologia*. 2018;50(4):e12949.
- [17] Morel F, Laudier B, Guérif F et al. Meiotic segregation analysis in spermatozoa of pericentric inversion carriers using fluorescence in-situ hybridization. *Hum Reprod*. 2007;22(1):136-41.
- [18] Yapan C, Beyazyurek C, Ekmekci C et al. The Largest Paracentric Inversion, the Highest Rate of Recombinant Spermatozoa. Case Report: 46,XY, inv(2)(q21.2q37.3) and Literature Review. *Balk J Med Genet*. 2014;17(1):55-62.
- [19] Armanet N, Tosca L, Brisset S et al. Small Supernumerary Marker Chromosomes in Human Infertility. *Cytogenet Genome Res*. 2015;146:100-108.
- [20] Vorona E, Zitzmann M, Gromoll J et al. Clinical, endocrinological, and epigenetic features of the 46,XX male syndrome, compared with 47,XXY Klinefelter patients. *J Clin Endocrinol Metab*. 2007;92:3458-65.
- [21] Ryan N, Akbar S. A case report of an incidental finding of a 46,XX, SRY-negative male with masculine phenotype during standard fertility workup with review of the literature and proposed immediate and long-term management guidance. *Fertil Steril*. 2013;99:1273-6.
- [22] Moalem S, Babul-Hirji R, Stavropoulos DJ et al. XX male sex reversal with genital abnormalities associated with a de novo SOX3 gene duplication. *Am J Med Genet*. 2012;158A:1759-1764.
- [23] Colaco S, Modi D. Genetics of the human Y chromosome and its association with male infertility. *Reprod Biol Endocrinol*. 2018;16,14.
- [24] Luddi A, Margollicci M, Gambera L et al. Spermatogenesis in a man with complete deletion of USP9Y. *N Engl J Med*. 2009;360(9):881-885.
- [25] Kichine E, Roze V, Di CJ et al. HSFY genes and the P4 palindrome in the AZFb interval of the human Y chromosome are not required for spermatocyte maturation. *Hum Reprod*. 2012;27(2):615-624.
- [26] Rozen SG, Marszalek JD, Irenze K et al. AZFc deletions and spermatogenic failure: a population-based survey of 20,000 Y chromosomes. *Am J Hum Genet*. 2012;91(5):890-896.
- [27] Li L, Zhang H, Yang Y et al. High frequency of Y chromosome microdeletions in male infertility patients with 45,X/46,XY mosaicism. *Braz J Med Biol Res*. 2020;53(3):e8980.
- [28] Lopes AM, Aston KI, Thompson E et al. Human spermatogenic failure purges deleterious mutation load from the autosomes and both sex chromosomes, including the gene DMRT1. *PLoS Genet*. 2013;9(3):e1003349.
- [29] Yatsenko AN, Georgiadis AP, Ropke A et al. X-linked TEX11 mutations, meiotic arrest, and azoospermia in infertile men. *N Engl J Med*. 2015;372(22):2097-2107.
- [30] Qin-Yu L, Yu-Cong Z, Chao W et al. The association between mutations in ubiquitinspecific protease 26 (USP26) and male infertility: a systematic review and meta-analysis. *Asian Journal of Andrology*. 2022;24,422-429.
- [31] Wu Q, Zhang J, Zhu P et al. The susceptibility of FSHB -211G > T and FSHR G-29A, 919A > G, 2039A > G polymorphisms to men infertility: an association study and meta-analysis. *BMC Med Genet*. 2017;18,81.
- [32] Zhao D, Wu W, Xu B et al. Variants in the SRD5A2 gene are associated with quality of semen. *Mol Med Rep*. 2012;6(3):639-44.
- [33] Okutman O, Muller J, Baert Y et al. Exome sequencing reveals a nonsense mutation in TEX15 causing spermatogenic failure in a Turkish family. *Hum Mol Genet*. 2015;24(19):5581-5588.
- [34] Ben Khelifa M, Ghieh F, Boudjenah R et al. A MEI1 homozygous missense mutation associated with meiotic arrest in a consanguineous family. *Hum Reprod*. 2018;33(6):1034-1037.
- [35] Zhang Y, Li P, Liu N et al. Novel Bi-Allelic Variants of FANCM Cause Sertoli Cell-Only Syndrome and Non-Obstructive Azoospermia. *Front Genet*. 2021;15;12:799886.
- [36] Wyrwoll MJ, Temel SG, Nagirnaja L et al. Bi-allelic Mutations in M1AP Are a Frequent Cause of Meiotic Arrest and Severely Impaired Spermatogenesis Leading to Male Infertility. *Am J Hum Genet*. 2020;107(2):342-351.
- [37] van der Bijl N, Röpke A, Biswas U et al. Mutations in the stromal antigen 3 (STAG3) gene cause male infertility due to meiotic arrest. *Hum Reprod*. 2019;34(11):2112-2119.
- [38] Gershoni, M., Hauser, R., Yogeve, L. et al. A familial study of azoospermic men identifies three novel causative mutations in three new human azoospermia genes. *Genet Med*. 2017;19,998-1006.

- [39] Yang Y, Guo J, Dai L et al. XRCC2 mutation causes meiotic arrest, azoospermia and infertility. *J Med Genet.* 2018;55(9):628-636.
- [40] Krausz C, Riera-Escamilla A, Chianese C et al. From exome analysis in idiopathic azoospermia to the identification of a high-risk subgroup for occult Fanconi anemia. *Genet Med.* 2019;21(1):189-194.
- [41] Karlberg S, Toppari J, Karlberg N et al. Testicular failure and male infertility in the monogenic Mulibrey nanism disorder. *J Clin Endocrinol Metab.* 2011;96(11):3399-407.
- [42] Ferlin A, Rocca MS, Vinanzi C et al. Mutational screening of NR5A1 gene encoding steroidogenic factor 1 in cryptorchidism and male factor infertility and functional analysis of seven undescribed mutations. *Fertil Steril.* 2015;104(1):163-169.
- [43] Zhang X, Zhang TJ, Liu W et al. Mutational analysis of the GATA4 gene in Chinese men with nonobstructive azoospermia. *Asian J Androl.* 2021;23(2):205-210.
- [44] Yatsenko AN, Roy A, Chen R et al. Non-invasive genetic diagnosis of male infertility using spermatozoal RNA: KLHL10 mutations in oligozoospermic patients impair homodimerization. *Hum Mol Genet.* 2006;15(23):3411-9.
- [45] Zhang F, Liu M, Gao J. Alterations in synaptonemal complex coding genes and human infertility. *Int J Biol Sci.* 2022;18(5):1933-1943.
- [46] Delbarba A, Facondo P, Fisogni S et al. Testicular Involvement is a Hallmark of Apo A-I Leu75Pro Mutation Amyloidosis. *J Clin Endocrinol Metab.* 2020;105(12):dgaa587.
- [47] Tran TA, Koné-Paut I, Marie I et al. Muckle-Wells syndrome and male hypofertility: a case series. *Semin Arthritis Rheum.* 2012;42(3):327-31.
- [48] Bogatcheva NV, Agoulnik AI. INSL3/LGR8 role in testicular descent and cryptorchidism. *Reprod Biomed Online.* 2005;10(1):49-54.
- [49] Fellmeth JE, Ghanaim EM, Schindler K. Characterization of macrozoospermia-associated AURKC mutations in a mammalian meiotic system. *Hum Mol Genet.* 2016;25(13):2698-2711.
- [50] Ben KM, Coutton C, Blum MG et al. Identification of a new recurrent aurora kinase C mutation in both European and African men with macrozoospermia. *Hum Reprod.* 2012;27(11):3337-3346.
- [51] Escoffier J, Yassine S, Lee HC et al. Subcellular localization of phospholipase C zeta in human sperm and its absence in DPY19L2-deficient sperm are consistent with its role in oocyte activation. *Mol Hum Reprod.* 2015;21(2):157-168.
- [52] Ghedir H, Ibala-Romdhane S, Okutman O et al. Identification of a new DPY19L2 mutation and a better definition of DPY19L2 deletion breakpoints leading to globozoospermia. *Mol Hum Reprod.* 2016;22(1):35-45.
- [53] Dam AH, Koscienski I, Kremer JA et al. Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia. *Am J Hum Genet.* 2007;81(4):813-20.
- [54] Duo Z, Wu-Jian H, Guo-Yong C et al. Pathogenesis of acephalic spermatozoa syndrome caused by SUN5 variant. *Mol Hum Reprod.* 2021;27(5):gaab028.
- [55] Nie H, Tang Y, Zhang X et al. Novel mutations of PMFBP1 in a man with acephalic spermatozoa defects. *Mol Genet Genomic Med.* 2022;10(9):e2020.
- [56] Ye Y, Wei X, Sha Y et al. Loss-of-function mutation in TSGA10 causes acephalic spermatozoa phenotype in human. *Mol Genet Genomic Med.* 2020;8(7):e1284.
- [57] Coutton C, Escoffier J, Martinez G et al. Teratozoospermia: spotlight on the main genetic actors in the human. *Hum Reprod Update.* 2015;21(4):455-485.
- [58] Yang X, Zhu D, Zhang H et al. Associations between DNAH1 gene polymorphisms and male infertility: A retrospective study. *Medicine (Baltimore).* 2018;97(49):e13493.
- [59] Coutton C, Vargas A.S, Amiri-Yekta A et al. Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human. *Nat Commun.* 2018;9,686.
- [60] Li W, Wu H, Li F et al. Biallelic mutations in CFAP65 cause male infertility with multiple morphological abnormalities of the sperm flagella in humans and mice. *J Med Genet.* 2020;57(2):89-95.
- [61] Dong FN, Amiri-Yekta A, Martinez G et al. Absence of CFAP69 Causes Male Infertility due to Multiple Morphological Abnormalities of the Flagella in Human and Mouse. *Am J Hum Genet.* 2018;102(4):636-648.

[62] Li W, He X, Yang S et al. Biallelic mutations of CFAP251 cause sperm flagellar defects and human male infertility. *J Hum Genet.* 2019;64(1):49-54.

[63] Martinez G, Beurois J, Dacheux D et al. Biallelic variants in MAATS1 encoding CFAP91, a calmodulin-associated and spoke-associated complex protein, cause severe astheno-teratozoospermia and male infertility. *J Med Genet.* 2020;57(10):708-716.

[64] Whitfield M, Thomas L, Bequignon E et al. Mutations in DNAH17, Encoding a Sperm-Specific Axonemal Outer Dynein Arm Heavy Chain, Cause Isolated Male Infertility Due to Asthenozoospermia. *Am J Hum Genet.* 2019;105(1):198-212.

[65] Lorès P, Dacheux D, Kherraf ZE et al. Mutations in TTC29, Encoding an Evolutionarily Conserved Axonemal Protein, Result in Asthenozoospermia and Male Infertility. *Am J Hum Genet.* 2019;105(6):1148-1167.

[66] Kherraf ZE, Cazin C, Coutton C et al. Whole exome sequencing of men with multiple morphological abnormalities of the sperm flagella reveals novel homozygous QRICH2 mutations. *Clin Genet.* 2019;96(5):394-401.

[67] Liu M, Sun Y, Li Y et al. Novel mutations in FSIP2 lead to multiple morphological abnormalities of the sperm flagella and poor ICSI prognosis. *Gene.* 2021;781:145536.

[68] Coutton C, Martinez G, Kherraf ZE et al. Bi-allelic Mutations in ARMC2 Lead to Severe Astheno-Teratozoospermia Due to Sperm Flagellum Malformations in Humans and Mice. *Am J Hum Genet.* 2019;104(2):331-340.

[69] Kuo YC, Shen YR, Chen HI et al. SEPT12 orchestrates the formation of mammalian sperm annulus by organizing core octameric complexes with other SEPT proteins. *J Cell Sci.* 2015;128(5):923-934.

[70] Dirami T, Rode B, Jollivet M et al. Missense mutations in SLC26A8, encoding a sperm-specific activator of CFTR, are associated with human asthenozoospermia. *Am J Hum Genet.* 2013;92(5):760-766.

[71] Avenarius MR, Hildebrand MS, Zhang Y et al. Human male infertility caused by mutations in the CATSPER1 channel protein. *Am J Hum Genet.* 2009;84(4):505-510.

[72] Escoffier J, Lee HC, Yassine S et al. Homozygous mutation of PLCZ1 leads to defective human oocyte activation and infertility that is not rescued by the WW-binding protein PAWP. *Hum Mol Genet.* 2016;25(5):878-891.

[73] Liu C, Lv M, He X et al. Homozygous mutations in SPEF2 induce multiple morphological abnormalities of the sperm flagella and male infertility. *J Med Genet.* 2020;57(1):31-37.

[74] Chen D, Liang Y, Li J et al. A novel CCDC39 mutation causes multiple morphological abnormalities of the flagella in a primary ciliary dyskinesia patient. *Reprod Biomed Online.* 2021;43(5):920-930.

[75] Xu Y, Yang B, Lei C et al. Novel Compound Heterozygous Variants in CCDC40 Associated with Primary Ciliary Dyskinesia and Multiple Morphological Abnormalities of the Sperm Flagella. *Pharmgenomics Pers Med.* 2022;15:341-350.

[76] Guo T, Lu C, Yang D et al. Case Report: DNAAF4 Variants Cause Primary Ciliary Dyskinesia and Infertility in Two Han Chinese Families. *Front Genet.* 2022;13:934920.

[77] Ta-Shma A, Hjeij R, Perles Z et al. Homozygous loss-of-function mutations in MNS1 cause laterality defects and likely male infertility. *PLoS Genet.* 2018;14(8):e1007602.

[78] Gao Y, Xu C, Tan Q et al. Case report: novel biallelic mutations in ARMC4 cause primary ciliary dyskinesia and male infertility in a Chinese family. *Front Genet.* 2021;12:715339.

[79] Lei C, Yang D, Wang R et al. DRC1 deficiency caused primary ciliary dyskinesia and MMAF in a Chinese patient. *J Hum Genet.* 2021;67:197-201.

[80] Sha Y, Wei X, Ding L et al. Biallelic mutations of CFAP74 may cause human primary ciliary dyskinesia and MMAF phenotype. *J Hum Genet.* 2020;65(11):961-969.

[81] Guo T, Tu CF, Yang DH et al. Bi-allelic BRWD1 variants cause male infertility with asthenoteratozoospermia and likely primary ciliary dyskinesia. *Hum Genet.* 2021;140(5):761-773.

[82] Li Y, Li Y, Wang Y et al. Identification of novel biallelic LRRC6 variants in male Chinese patients with primary ciliary dyskinesia and infertility. *J Assist Reprod Genet.* 2023;40(1):41-51.

[83] Wang Y, Tu C, Nie H et al. Novel DNAAF6 variants identified by whole-exome sequencing cause male infertility and primary ciliary dyskinesia. *J Assist Reprod Genet.* 2020;37(4):811-820.

[84] Lu C, Yang D, Lei C et al. Identification of Two Novel DNAAF2 Variants in Two Consanguineous Families with Primary Ciliary Dyskinesia. *Pharmgenomics Pers Med.* 2021;14:1415-1423.

[85] Jeanson L, Copin B, Papon JF et al. RSPH3 Mutations Cause Primary Ciliary Dyskinesia with Central-Complex Defects and a Near Absence of Radial Spokes. *Am J Hum Genet.* 2015;97(1):153-62.

[86] Imtiaz A, Belyantseva IA, Beirl AJ et al. CDC14A phosphatase is essential for hearing and male fertility in mouse and human. *Hum Mol Genet.* 2018;27(5):780-798.

[87] Coppieters F, Lefever S, Leroy BP et al. CEP290, a gene with many faces: mutation overview and presentation of CEP290base. *Hum Mutat.* 2010;31(10):1097-108.

[88] Wei-Hui S, Zhi-Yang Z, Mu-Jin Y et al. Sperm morphological abnormalities in autosomal dominant polycystic kidney disease are associated with the Hippo signaling pathway via PC1. *Front. Endocrinol.* 2023;14.

[89] Avidan N, Tamary H, Dgany O et al. CATSPER2, a human autosomal nonsyndromic male infertility gene. *Eur J Hum Genet.* 2003;11(7):497-502.

[90] Lewkowitz-Shpuntoff HM, Hughes VA, Plummer L et al. Olfactory phenotypic spectrum in idiopathic hypogonadotropic hypogonadism: pathophysiological and genetic implications. *J Clin Endocrinol Metab.* 2012;97(1):E136-44.

[91] Bouligand J, Ghervan C, Tello JA et al. Isolated familial hypogonadotropic hypogonadism and a GNRH1 mutation. *N Engl J Med.* 2009;360(26):2742-8.

[92] Layman LC, Cohen DP, Jin M et al. Mutations in gonadotropin-releasing hormone receptor gene cause hypogonadotropic hypogonadism. *Nat Genet.* 1998;18(1):14-5.

[93] Tuttelmann F, Laan M, Grigorova M et al. Combined effects of the variants FSHB -211G>T and FSHR 2039A>G on male reproductive parameters. *J Clin Endocrinol Metab.* 2012;97(10):3639-3647.

[94] Topaloglu AK, Tello JA, Kotan LD et al. Inactivating KISS1 mutation and hypogonadotropic hypogonadism. *N Engl J Med.* 2012;366(7):629-35.

[95] Topaloglu AK, Reimann F, Guclu M et al. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. *Nat Genet.* 2009;41(3):354-358.

[96] Turan I, Hutchins BI, Hacihamdioglu B et al. CCDC141 Mutations in Idiopathic Hypogonadotropic Hypogonadism. *J Clin Endocrinol Metab.* 2017;102(6):1816-1825.

[97] Pitteloud N, Acierno JS Jr, Meysing A et al. Mutations in fibroblast growth factor receptor 1 cause both Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. *Proc Natl Acad Sci U S A.* 2006;103(16):6281-6.

[98] Endo Y, Ishiwata-Endo H, Yamada KM. Extracellular matrix protein anosmin promotes neural crest formation and regulates FGF, BMP, and WNT activities. *Dev Cell.* 2012;14;23(2):305-16.

[99] Tornberg J, Sykiotis GP, Keefe K et al. Heparan sulfate 6-O-sulfotransferase 1, a gene involved in extracellular sugar modifications, is mutated in patients with idiopathic hypogonadotropic hypogonadism. *Proc Natl Acad Sci U S A.* 2011;108(28):11524-9.

[100] Miraoui H, Dwyer AA, Sykiotis GP et al. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 are identified in individuals with congenital hypogonadotropic hypogonadism. *Am J Hum Genet.* 2013;92(5):725-43.

[101] Balasubramanian R, Choi JH, Francescato L et al. Functionally compromised CHD7 alleles in patients with isolated GnRH deficiency. *Proc Natl Acad Sci U S A.* 2014;111(50):17953-8.

[102] Pingault V, Bodereau V, Baral V et al. Loss-of-function mutations in SOX10 cause Kallmann syndrome with deafness. *Am J Hum Genet.* 2013;92(5):707-24.

[103] Leroy C, Fouveaut C, Leclercq S et al. Biallelic mutations in the prokineticin-2 gene in two sporadic cases of Kallmann syndrome. *Eur J Hum Genet.* 2008;16(7):865-8.

[104] Cariboni A, Balasubramanian R. Kallmann syndrome and idiopathic hypogonadotropic hypogonadism: The role of semaphorin signaling on GnRH neurons. *Handb Clin Neurol.* 2021;182:307-315.

[105] Kim HG, Ahn JW, Kurth I et al. WDR11, a WD protein that interacts with transcription factor EMX1, is mutated in idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. *Am J Hum Genet.* 2010;87(4):465-79.

- [106] Bertko E, Klammt J, Dusatkova P et al. Combined pituitary hormone deficiency due to gross deletions in the POU1F1 (PIT-1) and PROP1 genes. *J Hum Genet.* 2017;62:755-762.
- [107] Pitteloud N, Quinton R, Pearce S et al. Digenic mutations account for variable phenotypes in idiopathic hypogonadotropic hypogonadism. *J Clin Invest.* 2007;117(2):457-63.
- [108] Yu J, Chen Z, Ni Y et al. CFTR mutations in men with congenital bilateral absence of the vas deferens (CBAVD): a systemic review and meta-analysis. *Hum Reprod.* 2012;27(1):25-35.
- [109] Patat O, Pagin A, Siegfried A et al. Truncating mutations in the adhesion G protein-coupled receptor G2 gene ADGRG2 cause an X-linked congenital bilateral absence of vas deferens. *Am J Hum Genet.* 2016;99(2):437-442.