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Abstract 

The premature development of type 2 diabetes in children in the United States is disproportionately concentrated 
among socioeconomically disadvantaged and underserved populations, underscoring the need for equitable, evidence-
based prevention strategies. This study presents a machine learning model to predict early risk of pediatric type 2 
diabetes using multi-cycle data from the National Health and Nutrition Examination Survey (NHANES) spanning 2013–
2018. The model integrates clinical indicators, behavioral factors, and social determinants of health to evaluate 
predictive performance across racial, ethnic, and socioeconomic subgroups. Fairness was assessed using equity-
sensitive metrics, including demographic parity and equalized odds, alongside traditional performance measures. 
Results demonstrate that the model achieves strong predictive accuracy while maintaining consistent performance 
across subgroups, indicating reduced disparity in risk prediction without compromising clinical utility. These findings 
highlight the potential role of equity-focused evaluation frameworks in supporting early identification of pediatric 
diabetes risk and informing public health screening efforts in underserved U.S. communities. 

Keywords: Pediatric Type 2 Diabetes; Health Equity; Machine Learning; Fairness Evaluation; Social Determinants of 
Health; Predictive Analytics 

1. Introduction

Type 2 diabetes, once considered a condition that primarily affects adults, has become increasingly prevalent among 
children and adolescents in the United States. Rising rates of obesity, physical inactivity, poor diet quality, and persistent 
socioeconomic disparities have contributed to significant increases in metabolic risk among youth. Early identification 
of prediabetes and related metabolic abnormalities is critical because children and adolescents often do not present 
with symptoms, yet early intervention can meaningfully alter long-term cardiometabolic outcomes. However, 
adolescents living in underserved communities frequently experience limited access to preventive healthcare services, 
laboratory screening, and health education, resulting in delayed detection and higher lifetime disease burden. 

Machine learning approaches offer a promising strategy for identifying adolescents at elevated metabolic risk by 
integrating clinical, behavioral, and social determinants of health into predictive models. Unlike traditional risk 
calculators that rely primarily on laboratory thresholds, machine learning models can capture nonlinear relationships 
and interactions across multidimensional risk factors. However, concerns regarding algorithmic bias have raised 
important ethical and methodological questions about the equitable use of artificial intelligence in pediatric health. Prior 
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studies have shown that predictive models trained on population-level data may exhibit differential performance across 
racial, ethnic, and socioeconomic groups if fairness is not explicitly evaluated. 

The National Health and Nutrition Examination Survey (NHANES) provides a nationally representative data source well 
suited for evaluating equity in pediatric metabolic risk prediction. NHANES combines standardized interviews, physical 
examinations, and laboratory assessments, enabling comprehensive measurement of glycemic markers, 
anthropometrics, health behaviors, and socioeconomic conditions. While previous studies have frequently relied on 
single survey cycles, such approaches may limit generalizability and temporal stability. To address this limitation, the 
present study integrates three consecutive NHANES cycles (2013–2014, 2015–2016, and 2017–2018) to construct a 
multi-cycle dataset reflecting demographic and temporal variability in U.S. adolescents. 

This study develops and evaluates a machine learning model to predict early risk of pediatric type 2 diabetes using 
multi-cycle NHANES data. Model performance is assessed using standard classification metrics alongside equity-
focused evaluation measures, including demographic parity and equalized odds, to examine consistency of predictive 
performance across racial, ethnic, and socioeconomic subgroups. By emphasizing fairness evaluation rather than 
algorithmic constraint enforcement, this work aims to assess whether predictive accuracy can be maintained without 
introducing systematic disparities. 

By integrating clinical biomarkers, behavioral indicators, and social determinants of health, this study contributes to 
the growing literature on equitable, data-driven approaches to pediatric chronic disease prevention. The findings are 
intended to inform public health screening strategies and support early identification efforts among adolescents in 
underserved U.S. communities. 

2. Background and Related Work 

Artificial intelligence (AI) and machine learning (ML) have fast become integrated in healthcare and have changed 
disease risk prediction, early diagnosis, and clinical decision support. In children with diabetes (Type 2 Diabetes 
Mellitus (T2DM), specifically), predictive models powered by ML have the potential to detect those at risk earlier in life 
before irreversible metabolic changes occur. Nevertheless, it is increasingly evident that a significant number of 
healthcare AI applications unintentionally propagate existing health inequalities, particularly among underserved and 
minority populations in the United States (Chen et al., 2021; Obermeyer et al., 2019). These inequalities are often driven 
by biased data representation, algorithmic design choices, and the absence of rigorous equity evaluation frameworks 
(Rajkomar et al., 2018; Raza, 2023). 

In this context, fairness-focused machine learning has emerged as an important area of research aimed at identifying 
and evaluating algorithmic bias while preserving predictive accuracy. This section examines prior work on equitable AI 
in healthcare, with emphasis on pediatric diabetes risk prediction, social determinants of health (SDOH), and fairness 
evaluation frameworks applicable to large-scale, nationally representative health survey data. 

2.1. Artificial Intelligence in Healthcare Risk Prediction 

Predictive analytics powered by AI has become a core component of contemporary healthcare, enabling disease risk 
stratification and supporting clinical decision-making. Logistic regression, random forests, gradient boosting, and deep 
neural networks are supervised ML approaches commonly applied to structured health data, including laboratory 
measurements, anthropometric assessments, and behavioral indicators (Topol, 2019; Beam & Kohane, 2018). These 
models have demonstrated advantages over traditional statistical methods, particularly in capturing nonlinear 
relationships and high-dimensional feature interactions (Khera et al., 2021). 

In the context of diabetes, ML-based risk prediction has been widely studied in adult populations using clinical and 
behavioral predictors (Zou et al., 2018). However, pediatric T2DM presents unique challenges due to developmental 
heterogeneity, differences in disease onset, and underrepresentation of children in many training datasets (Nadeau et 
al., 2016; TODAY Study Group, 2012). Consequently, models derived primarily from adult or majority-population data 
may fail to perform equitably when applied to children from underserved backgrounds. 

2.2. Diabetes Type 2 in Pediatrics and Health Disparity. 

Pediatric T2DM has become a growing public health concern over the past two decades, with disproportionate burden 
observed among low-income, racialized, and rural populations (CDC, 2022; Lawrence et al., 2021). Social determinants 
of health—including food insecurity, neighborhood deprivation, limited access to preventive care, and environmental 
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stressors play a significant role in shaping disease risk yet are often underrepresented or insufficiently modeled in 
predictive analytics (Braveman et al., 2018; Hill-Briggs et al., 2021). 

Several studies indicate that ML models which do not explicitly account for SDOH tend to underestimate risk among 
marginalized pediatric populations, contributing to delayed diagnosis and missed opportunities for early intervention 
(O’Connor et al., 2018; Walker et al., 2022). These findings underscore the importance of integrated modeling 
approaches that combine biomedical indicators with contextual and socio-environmental factors to support equitable 
risk assessment. 

2.3. Algorithmic Bias and Fairness in Healthcare AI 

Algorithmic bias in healthcare AI occurs when model predictions differ systematically across demographic groups in 
ways that are not clinically justified (Chen et al., 2021; Obermeyer et al., 2019). Bias may arise from skewed datasets, 
proxy variables for race or socioeconomic status, label bias, or structural inequities embedded in healthcare systems 
(Vyas et al., 2020; Horsfall et al., 2025). 

Empirical studies have documented fairness gaps across a range of clinical prediction tasks, including population-risk 
algorithms, hospitalization and emergency department utilization prediction, and other high-stakes clinical decision-
support settings (Rajkomar et al., 2018; Obermeyer et al., 2019; Davoudi et al., 2024). In diabetes care, biased algorithms 
have been shown to underperform for minority patients even when aggregate accuracy appears high, highlighting the 
limitations of relying solely on overall performance metrics (Obermeyer et al., 2019). These concerns have motivated 
the adoption of fairness-aware evaluation metrics to complement traditional model assessment. 

Table 1 Summary of Prior Fairness-Aware Machine Learning Studies in Healthcare Risk Prediction 

Study Clinical 
Domain 

Population 
Focus 

Data Sources Fairness 
Approach 

Key Findings 

Al-Zanbouri 
et al. (2024) 

Diabetes 
readmissions 

Adult, multi-
ethnic 

Electronic health 
records (EHR) 

Post-hoc group 
fairness 
evaluation 

Reduced racial 
disparity following 
fairness evaluation 

Davoudi et 
al. (2024) 

Heart failure Home 
healthcare 
patients 

Electronic health 
records (EHR) 

Stratified 
performance 
evaluation 

Significant fairness 
gaps by race and 
gender 

Raza (2023) Public health 
equity 

Population-
level 

Administrative 
datasets 

Fairness–equity 
alignment 
framework 

Highlights need for 
policy-aware fairness 
evaluation 

Soley et al. 
(2025) 

Opioid use 
prediction 

Surgical 
patients 

Multi-modal 
clinical data 

Fairness-aware 
performance 
evaluation 

Improved subgroup 
equity without loss of 
predictive accuracy 

Ganti 
(2024) 

Multi-ethnic 
healthcare 

Diverse 
populations 

Clinical and 
demographic data 

Bias-aware 
evaluation 
framework 

Enhanced reliability 
across demographic 
subgroups 

These studies primarily emphasize fairness evaluation rather than algorithmic constraint enforcement, underscoring the importance of assessing 
subgroup performance alongside overall predictive accuracy. 

2.4. Fairness Metrics and Evaluation Frameworks 

Fairness in machine learning is commonly operationalized using metrics such as demographic parity, equalized odds, 
equal opportunity, and calibration across groups (Hardt et al., 2016; McNair, 2018). While no single metric universally 
defines fairness, there is growing consensus that fairness assessment should be context-specific and aligned with 
clinical and ethical objectives (Rajkomar et al., 2018; Raza, 2023). 

Recent reviews emphasize that fairness evaluation should be transparent, multi-dimensional, and routinely reported, 
particularly in high-stakes pediatric applications (Wiens et al., 2019; Chen et al., 2021). Stability of subgroup 
performance and asymmetry in error rates have been identified as key considerations for equitable early detection 
systems (Hardt et al., 2016). 



World Journal of Advanced Research and Reviews, 2026, 29(02), 009-025 

12 

In sum, the paper has examined the conceptual and empirical bases of equitable AI in healthcare, focusing on pediatric 
diabetes risk prediction and fairness evaluation. Previous research indicates that there have been longstanding 
algorithmic inequalities due to data imbalance, missing social contexts, and a lack of fairness assessment. Although 
methodological advances have proposed mitigation strategies, there remains a considerable gap in child-focused 
predictive modeling that explicitly evaluates equity using nationally representative data. These limitations motivate the 
present study, which examines pediatric type 2 diabetes risk prediction with explicit assessment of subgroup 
performance in underserved U.S. populations. 

3. Source and Study Population of Data. 

Here, the data source, cohort construction, and population characteristics are outlined that inform the machine 
learning–based evaluation of pediatric Type 2 Diabetes (T2D) risk in underserved populations in the United States. 
Given the potential for systematic bias in predictive models, careful consideration of data provenance, 
representativeness, and subgroup composition is essential to support valid equity assessment across socio-
demographic strata (Chen et al., 2021; Rajkomar et al., 2018; Raza, 2023). This study uses nationally representative U.S. 
health survey data to support population-level analysis and subgroup performance evaluation. 

3.1. Data source: National Health and Nutrition Examination Survey (NHANES). 

This study relies on data from the National Health and Nutrition Examination Survey (NHANES), a nationally 
representative, cross-sectional survey administered by the U.S. Centers for Disease Control and Prevention. NHANES 
combines standardized interviews, physical examinations, and laboratory assessments to capture detailed clinical, 
behavioral, and socioeconomic information across the U.S. population (CDC, 2022). 

NHANES was selected due to its rigorous sampling design, standardized measurement protocols, and explicit inclusion 
of socio-demographic variables relevant to health equity research. Compared with clinical datasets derived from 
healthcare utilization, NHANES reduces bias related to access to care and allows consistent evaluation of metabolic risk 
and subgroup performance across racial, ethnic, and socioeconomic groups (Obermeyer et al., 2019; Braveman et al., 
2018). 

The analytic dataset was constructed by pooling three consecutive NHANES cycles (2013–2014, 2015–2016, and 2017–
2018) to enhance sample size and demographic heterogeneity while preserving survey design consistency. 

3.2. Population and Cohort selection criteria of study. 

The study population included children and adolescents aged 10–19 years, consistent with clinical screening guidelines 
for pediatric metabolic risk (Nadeau et al., 2016; TODAY Study Group, 2012). Inclusion criteria required availability of 
anthropometric measurements, glycemic biomarkers, and key demographic variables necessary for risk prediction and 
subgroup evaluation. 

Participants with diagnoses consistent with Type 1 diabetes, gestational diabetes, or rare monogenic metabolic 
disorders were excluded to reduce outcome heterogeneity and misclassification (ADA, 2023). This exclusion approach 
is consistent with prior pediatric diabetes risk studies emphasizing diagnostic clarity in population-based analyses. 

To facilitate equity evaluation, the analytic cohort was stratified by major socio-demographic characteristics, including 
race and ethnicity, household income proxies, and urban–rural residence. Stratified analysis supports identification of 
potential subgroup performance differences, which has been widely recommended as a core fairness evaluation 
practice in healthcare machine learning (Rajkomar et al., 2018; Wiens et al., 2019). 

3.3. Socio-Demographic and Equity-Relevant Variables. 

Socio-demographic variables were operationalized using standardized NHANES definitions and public health 
conventions. Race and ethnicity variables were treated as socially constructed categories rather than biological proxies 
and were used exclusively for subgroup performance evaluation and bias assessment (Vyas et al., 2020; Chen et al., 
2021). 

Socioeconomic status was estimated using household income–to–poverty ratio and related survey-based indicators 
available within NHANES. These measures have been shown to capture meaningful gradients in pediatric metabolic risk 
and are commonly used in health equity research (Braveman et al., 2018; Hill-Briggs et al., 2021). 
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Social determinants of health were included to support contextual interpretation of model performance across 
subgroups. Prior research demonstrates that omission of such variables may obscure structural drivers of health 
disparities and limit the interpretability of subgroup differences in predictive outcomes (Walker et al., 2022; Wiens et 
al., 2019). 

 
Violin plots display the distribution of BMI percentile and HbA1c (%) across race/ethnicity categories, stratified by household income level, among 

U.S. adolescents aged 10–19 years from pooled NHANES cycles (2013–2018). 

Figure 1 Distribution of Pediatric Type 2 Diabetes Risk Factors Across Socio-Demographic Subgroups 

3.4. Clinical and Behavioral Feature Extraction 

Clinical features included body mass index (BMI) percentile, fasting glucose levels, HbA1c, blood pressure, lipid profiles, 
and reported family history of diabetes. Behavioral indicators such as physical activity frequency, dietary patterns, and 
sleep duration were derived from standardized NHANES questionnaires and examination components, consistent with 
prior pediatric metabolic risk modeling studies (Nadeau et al., 2016; TODAY Study Group, 2012). 

To reduce measurement-related bias and age-related heterogeneity, continuous variables were standardized using age- 
and sex-adjusted clinical references rather than population-wide thresholds (CDC, 2022). Missing data were addressed 
using multiple imputation strategies designed to preserve subgroup distributions, thereby reducing the risk of 
amplifying disparities associated with differential data availability (McNair, 2018; Wiens et al., 2019). 

3.5. Ethical Governance, Privacy, and Data Quality Assurance 

The study utilized publicly available, de-identified NHANES data collected under established federal ethical and privacy 
protections. As a secondary analysis of publicly accessible survey data, this study was exempt from institutional review 
board oversight in accordance with U.S. federal research regulations (CDC, 2022). 

Data quality assessments were conducted to evaluate completeness, consistency across survey cycles, and subgroup 
representation. Particular attention was given to assessing potential differences in data availability across socio-
demographic groups, as such imbalances may influence subgroup performance evaluation and fairness assessment in 
predictive modeling (Rajkomar et al., 2018; Chen et al., 2021). 

4. Social Determinants of Health and Feature Engineering. 

Machine learning model development in healthcare requires careful feature selection and transformation, particularly 
in pediatric populations where clinical heterogeneity and social context play a significant role in disease risk (Wiens et 
al., 2019; Chen et al., 2021). When incorporating social determinants of health (SDOH) into predictive models of 
pediatric Type 2 Diabetes (T2D), these variables must be selected and encoded in ways that support meaningful 
interpretation and equitable performance assessment across population subgroups (Braveman et al., 2018; Raza, 2023). 
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Socioeconomic conditions, household environment, and access-related factors have been shown to influence pediatric 
metabolic risk, yet they are often underrepresented in traditional biomedical models (Hill-Briggs et al., 2021; Walker et 
al., 2022). This section describes the extraction and transformation of clinical and SDOH features used in the present 
study, with emphasis on supporting subgroup performance evaluation rather than algorithmic fairness enforcement. 

4.1. Data Acquisition and Integration  

Clinical and behavioral data were obtained from standardized interviews, physical examinations, and laboratory 
assessments collected as part of the National Health and Nutrition Examination Survey (NHANES) (CDC, 2022). NHANES 
provides harmonized measures of metabolic biomarkers, anthropometrics, health behaviors, and socioeconomic 
indicators suitable for population-level and subgroup analyses. 

Clinical features included body mass index (BMI) percentile, fasting glucose, HbA1c, blood pressure, and lipid measures 
derived from examination and laboratory components. Behavioral indicators such as physical activity frequency, 
dietary patterns, and sleep duration were obtained from validated NHANES questionnaires. 

Socioeconomic variables included household income–to–poverty ratio and related survey-based indicators reflecting 
material and social context. These variables were included to support interpretation of subgroup performance and 
contextual differences in model outputs, consistent with public health equity research practices (Braveman et al., 2018; 
Hill-Briggs et al., 2021). 

Table 2 Sample Clinical and Social Determinant Features Used in the Analysis (NHANES) 

Feature Category Variable Examples Type Source 

Clinical Metrics BMI percentile, HbA1c, fasting glucose, 
blood pressure 

Continuous NHANES examination and 
laboratory data 

Behavioral Factors Physical activity frequency, dietary 
indicators, sleep duration 

Categorical / 
Ordinal 

NHANES questionnaires 

Socioeconomic 
Status 

Income-to-poverty ratio Ordinal NHANES questionnaires 

4.2. Feature Engineering Techniques 

Feature engineering procedures were applied to support stable model performance and consistent evaluation across 
demographic subgroups (Wiens et al., 2019; Chen et al., 2021). Continuous clinical variables were standardized using 
age- and sex-appropriate clinical references to reduce scale-related dominance and pediatric measurement 
heterogeneity (CDC, 2022). 

Categorical variables were encoded using appropriate indicator representations to allow inclusion in supervised 
learning models. Derived interaction terms were not emphasized in order to preserve interpretability and avoid 
introducing instability in subgroup comparisons. 

Missing data were addressed using multiple imputation techniques designed to preserve overall distributions and 
subgroup representation, reducing the risk of bias associated with differential missingness across socio-demographic 
groups (Little & Rubin, 2019; Wiens et al., 2019). 

4.3. Social Determinants of Health and Model Fairness 

The inclusion of SDOH variables supports contextual interpretation of model behavior and subgroup performance 
differences rather than serving as direct mechanisms for algorithmic constraint enforcement (Rajkomar et al., 2018; 
Raza, 2023). Subgroup analyses were conducted across race/ethnicity, income strata, and residence type to assess 
potential differences in predictive performance. 

Model interpretability techniques were used to examine the relative contribution of clinical, behavioral, and 
socioeconomic features to predicted risk. These analyses provided transparency regarding the role of SDOH in risk 
estimation without altering model optimization procedures (Molnar, 2022). 
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By emphasizing post-hoc evaluation and stratified performance assessment, this approach aligns with current best 
practices for responsible machine learning in public health and pediatric risk prediction (Wiens et al., 2019; Chen et al., 
2021). 

4.4. Dimensionality Reduction and Feature Selection 

To reduce model complexity and mitigate overfitting, standard dimensionality reduction and feature selection 
procedures were applied. First, correlation analysis was conducted to identify highly correlated variables (Pearson r > 
0.85), and redundant features were removed to reduce multicollinearity and improve model stability (Dormann et al., 
2013; James et al., 2021). 

Recursive feature elimination (RFE) was used as a supplementary feature selection approach to assess the relative 
contribution of predictors to overall model performance. Feature removal decisions were based on predictive utility 
rather than subgroup-specific optimization in order to preserve evaluation-focused fairness assessment (Guyon et al., 
2002; Wiens et al., 2019). 

Principal component analysis (PCA) was not used in the final model specification to maintain interpretability of clinical 
and socioeconomic variables and to support transparent subgroup performance evaluation. 

4.5. Feature Engineering Ethics. 

Feature engineering was guided by established principles of transparency, interpretability, and responsible use of socio-
demographic information. All features were derived from publicly available, de-identified survey and examination data 
collected under federal ethical protections, consistent with standards for secondary analysis of population health 
datasets (CDC, 2022). 

Socio-demographic variables were documented with clear descriptions of source, transformation, and intended 
analytical role to support reproducibility and interpretability. Race and ethnicity variables were treated as socially 
constructed categories and used exclusively for subgroup performance evaluation rather than as biological predictors, 
consistent with recommendations for ethical machine learning in healthcare (Vyas et al., 2020; Rajkomar et al., 2018). 

No fairness constraints, feature reweighting, or optimization procedures were applied during model training. Ethical 
considerations were addressed through post-hoc evaluation of subgroup performance and transparent reporting of 
model behavior across socio-demographic strata (Wiens et al., 2019; Chen et al., 2021). 

In sum, the application of standard feature selection procedures and careful documentation of socio-demographic 
variables supports stable model performance and transparent evaluation across population subgroups. By emphasizing 
interpretability and post-hoc subgroup assessment rather than algorithmic fairness enforcement, this approach aligns 
with current best practices for responsible machine learning in pediatric public health research. 

5. Methods 

5.1. Study Design and Data Source 

This study is a secondary analysis of data from the National Health and Nutrition Examination Survey (NHANES), a 
nationally representative, cross-sectional survey conducted by the U.S. Centers for Disease Control and Prevention using 
a complex, multistage probability sampling design. NHANES combines standardized household interviews, physical 
examinations, and laboratory assessments to capture clinical, behavioral, and socioeconomic characteristics of the non-
institutionalized U.S. population. 

Data from three consecutive NHANES cycles were pooled to enhance sample size and demographic heterogeneity: 
2013–2014, 2015–2016, and 2017–2018. These cycles were selected to ensure consistency in laboratory assays, 
questionnaire structure, and pediatric examination protocols relevant to metabolic risk assessment. 

All analyses were conducted using publicly available, de-identified NHANES data. In accordance with U.S. federal 
regulations, this secondary analysis was exempt from institutional review board oversight. 
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5.2. Study Population 

The analytic cohort included children and adolescents aged 10–19 years at the time of examination, consistent with 
clinical screening guidelines for pediatric metabolic risk. Participants were required to have available anthropometric 
measurements and at least one glycemic biomarker (HbA1c or fasting plasma glucose). 

Participants were excluded if they had evidence consistent with type 1 diabetes, gestational diabetes, or other rare 
monogenic metabolic disorders, based on self-reported diagnosis, medication use, and laboratory patterns where 
available. This exclusion strategy was used to reduce outcome heterogeneity and align the analytic sample with 
pediatric type 2 diabetes risk modeling practices. 

5.3. Outcome Definition 

The primary outcome was elevated pediatric metabolic risk consistent with early type 2 diabetes susceptibility, 
operationalized using established pediatric glycemic thresholds. Elevated risk was defined as the presence of abnormal 
glycemic markers (HbA1c in the prediabetes or diabetes range and/or elevated fasting plasma glucose) in accordance 
with contemporary pediatric and public health guidance. 

The outcome was treated as a binary classification task for predictive modeling purposes. This definition reflects 
metabolic risk rather than confirmed clinical diagnosis and is intended to support population-level screening and risk 
stratification rather than individual diagnostic decision-making. 

5.4. Predictor Variables 

Predictor variables were selected a priori based on prior pediatric metabolic risk literature and availability across all 
pooled NHANES cycles. 

• Clinical variables included body mass index (BMI) percentile (age- and sex-adjusted), fasting plasma glucose, 
HbA1c, blood pressure measures, and lipid panel components. 

• Behavioral variables included self-reported physical activity frequency, dietary indicators derived from 
NHANES dietary recall instruments, and sleep duration. 

• Socio-demographic variables included age, sex, race/ethnicity, household income-to-poverty ratio, and 
urban–rural residence classification. Race and ethnicity variables were treated as socially constructed 
categories and were used exclusively for subgroup performance evaluation rather than as biological predictors. 

5.5. Handling of Missing Data 

Patterns of missingness were assessed across clinical, behavioral, and socio-demographic variables. Variables with 
excessive missingness were excluded from model development. 

Missing data was addressed using multiple imputation procedures designed to preserve overall distributions and 
subgroup representation. Imputation models included all candidate predictors and the outcome indicator to reduce bias 
associated with differential missingness across demographic groups. 

5.6. Survey Weights and Multi-Cycle Pooling 

NHANES sampling weights, strata, and primary sampling units were incorporated into descriptive analyses to account 
for the complex survey design and to produce nationally representative estimates. 

For pooled analyses, 6-year examination weights were constructed by dividing the 2-year mobile examination center 
(MEC) weights by three, consistent with NHANES analytic guidelines. Survey design variables were retained to support 
appropriate variance estimation. 

Predictive models were trained without direct incorporation of survey weights, consistent with common practice in 
machine learning applications using complex survey data. However, survey weights were applied in descriptive 
analyses and subgroup summaries. The implications of unweighted model fitting are addressed in the limitations. 
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5.7. Model Development 

The primary predictive model was a tree-based gradient boosting classifier, selected for its ability to model nonlinear 
relationships, handle mixed data types, and perform robustly in moderate-sized epidemiologic datasets. 

Alternative models, including logistic regression and neural network classifiers, were evaluated during preliminary 
analyses for benchmarking purposes. Gradient boosting demonstrated superior discrimination and stability and was 
therefore selected as the final model specification. 

Model training was conducted using an 80/20 stratified train–test split, preserving the distribution of the outcome 
variable across splits. Hyperparameters were tuned using cross-validation within the training set. No fairness 
constraints, reweighting, or adversarial debiasing procedures were applied during model optimization. 

5.8. Model Evaluation 

Predictive performance was evaluated on held-out test data using standard classification metrics, including accuracy, 
precision, recall, F1 score, and area under the receiver operating characteristic curve (AUROC). 

Fairness evaluation was conducted post hoc using subgroup-specific performance metrics stratified by 
race/ethnicity and income strata. Metrics included subgroup-specific true positive rates, false positive rates, and 
predictive values. Group fairness indicators such as demographic parity differences and equal opportunity gaps were 
computed to quantify differences in model behavior across subgroups. 

Fairness metrics were used solely for evaluation and interpretation and were not used to modify or constrain model 
training. 

5.9. Robustness and Stability Analysis 

Model robustness was assessed using 5-fold cross-validation. Variability in AUROC and F1 score across folds was used 
to evaluate performance stability. This approach was intended to assess sensitivity to sampling variation within the 
cross-sectional survey data rather than longitudinal performance drift. 

5.10. Model Interpretability 

Model interpretability was assessed using population-level feature contribution analysis based on Shapley Additive 
Explanations (SHAP). Feature importance estimates were used to characterize the relative influence of clinical, 
behavioral, and socioeconomic variables on predicted risk. 

Interpretability analyses were conducted to support transparency and contextual understanding of model behavior and 
were not used to guide feature selection or model optimization. 

5.11. Ethical Considerations 

All analyses were conducted using publicly available, de-identified NHANES data collected under federal ethical 
protections. Socio-demographic variables were documented with explicit justification and were used exclusively for 
subgroup performance evaluation and contextual interpretation. 

No individual-level predictions or clinical recommendations were generated. The study emphasizes population-level 
evaluation and responsible interpretation of predictive models in pediatric public health contexts. 

Categorical variables were encoded using indicator representations appropriate for supervised learning models. Socio-
demographic variables were retained for subgroup evaluation and stratified performance assessment rather than as 
targets of optimization. Missing data were addressed using multiple imputation methods designed to preserve overall 
and subgroup distributions (Little & Rubin, 2019). 

Physiological definitions of elevated metabolic risk were based on established pediatric guidelines, minimizing label 
ambiguity while maintaining consistency across survey cycles (Nadeau et al., 2016; ADA, 2023). 
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6. Combating Biases and Metrics of Fairness. 

As artificial intelligence (AI) and machine learning (ML) systems become increasingly integrated into healthcare, 
concerns regarding equity and differential model performance across population subgroups have gained prominence 
(Obermeyer et al., 2019; Rajkomar et al., 2018). Pediatric Type 2 Diabetes (T2D) disproportionately affects 
socioeconomically disadvantaged and racialized populations in the United States, underscoring the importance of 
systematically evaluating whether predictive models perform consistently across subgroups (Hill-Briggs et al., 2021). 

Fairness metrics provide a structured framework for assessing disparities in model behavior across demographic 
groups, while bias assessment highlights potential sources of inequity arising from data composition, measurement 
practices, or structural factors (Chen et al., 2021; Raza, 2023). This section summarizes commonly used fairness 
evaluation metrics in healthcare machine learning and situates their use within the context of post-hoc model 
assessment rather than algorithmic bias mitigation. 

6.1. Metrics of Fairness in Healthcare ML. 

Fairness in machine learning is commonly operationalized using quantitative metrics that compare model performance 
across demographic subgroups (Hardt et al., 2016; Chen et al., 2021). These metrics are broadly categorized into group-
level, individual-level, and causal perspectives, each reflecting different normative definitions of fairness (Barocas et al., 
2019; Rajkomar et al., 2018). 

6.1.1. Group Fairness 

Group fairness metrics evaluate whether model outcomes differ systematically across predefined demographic 
categories such as race/ethnicity, sex, or socioeconomic status. These measures are widely used in healthcare due to 
their interpretability and relevance to population-level disparities (Hardt et al., 2016; Chen et al., 2021). Common group 
fairness metrics include: 

• Demographic Parity: Assesses whether the probability of a positive prediction is similar across groups. 
• Equal Opportunity: Compares true positive rates across groups, which is particularly relevant in 

screening contexts where under-detection may delay care. 
• Predictive Parity: Evaluates whether positive predictive value is consistent across demographic groups. 

These metrics were used exclusively for post-hoc evaluation of subgroup performance rather than to constrain or 
modify model training. 

6.1.2. Individual Fairness 

Individual fairness is based on the principle that individuals with similar clinical profiles should receive similar model 
predictions (Dwork et al., 2012). In pediatric healthcare applications, defining similarity is challenging due to 
physiological heterogeneity and developmental variation (Rajkomar et al., 2018). Consequently, individual fairness 
metrics were not used as primary evaluation criteria in this study and are discussed here for conceptual context. 

6.1.3. Causal Fairness 

Causal fairness frameworks draw on causal inference to assess whether model predictions are influenced by sensitive 
attributes through impermissible pathways (Kusner et al., 2017). While conceptually important, causal fairness 
approaches require strong assumptions and detailed longitudinal data, limiting their applicability in cross-sectional 
survey datasets. Accordingly, causal fairness methods were not implemented in the present analysis and are included 
for theoretical completeness. 
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Table 3 Summary of Key Fairness Metrics in Healthcare ML 

Metric Type Definition Application in Pediatric Diabetes 
Prediction 

Key References 

Demographic 
Parity 

Compares whether the 
probability of a positive 
prediction is similar across 
demographic groups 

Used to assess whether predicted risk 
distributions differ systematically 
across race/ethnicity or income strata 

Hardt et al., 2016; 
Chen et al., 2021 

Equal 
Opportunity 

Compares true positive rates 
across groups 

Evaluates whether high-risk children 
are identified at similar rates across 
demographic subgroups, reducing 
under-detection 

Hardt et al., 2016; 
Rajkomar et al., 
2018 

Predictive Parity Assesses whether positive 
predictive value is consistent 
across groups 

Examines whether predicted high risk 
corresponds to similar outcome 
likelihood across subgroups 

Chen et al., 2021; 
Wiens et al., 2019 

Individual 
Fairness 

Similar individuals receive 
similar predictions 

Conceptually relevant for pediatric risk 
assessment but difficult to 
operationalize in population-level 
survey data 

Dwork et al., 2012; 
Rajkomar et al., 
2018 

Counterfactual 
Fairness 

Predictions remain invariant 
under hypothetical changes to 
sensitive attributes 

Provides a causal lens for bias 
assessment but requires strong 
assumptions and longitudinal data 

Kusner et al., 
2017; Barocas et 
al., 2019 

6.2. Sources of Bias in Pediatric Healthcare Data 

Potential inequities in healthcare machine learning often arise from data generation and measurement processes rather 
than model design alone (Obermeyer et al., 2019; Chen et al., 2021). In pediatric public-health datasets, key sources of 
bias include: 

• Sampling Bias: Uneven representation of demographic groups, which may affect subgroup stability in model 
evaluation. 

• Labeling Bias: Variation in diagnostic thresholds or measurement practices across populations. 
• Historical Bias: Structural inequities embedded in healthcare systems that influence observed outcomes. 
• Measurement Bias: Differential accuracy in self-reported or clinical measurements across subgroups. 

Understanding these sources of bias is essential for interpreting fairness evaluation results and contextualizing 
subgroup performance differences. 

6.3. Implications for Model Evaluation and Interpretation 

Fairness evaluation highlights areas where predictive performance may differ across socio-demographic groups, 
informing responsible interpretation rather than corrective intervention. Trade-offs between aggregate performance 
and subgroup-specific metrics are well documented, and no single fairness metric captures all normative concerns 
(Hardt et al., 2016; Wiens et al., 2019). 

In cross-sectional pediatric risk prediction, fairness metrics should therefore be interpreted as diagnostic tools, 
supporting transparency and informing future methodological refinement rather than as mechanisms for enforcing 
equity within the model itself (Rajkomar et al., 2018; Raza, 2023). 

7. Outcomes and Evaluation of Results. 

This section presents the evaluation of predictive performance and subgroup-level fairness of the proposed pediatric 
Type 2 Diabetes (T2D) risk prediction model using nationally representative survey data. Model performance was 
assessed using standard classification metrics, while fairness was evaluated post hoc through subgroup-specific 
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performance comparisons across race/ethnicity and income strata. All analyses were conducted using pooled NHANES 
data incorporating socio-demographic, clinical, and behavioral variables. 

Model performance was compared against baseline approaches, including logistic regression and standard gradient 
boosting, to contextualize predictive accuracy and stability. Fairness assessment focused on identifying differences in 
predictive behavior across demographic groups rather than enforcing equity during model training. 

7.1. Predictive Accuracy and Classification performance  

The gradient boosting model demonstrated strong predictive performance across standard classification metrics. Table 
4 summarizes accuracy, precision, recall, F1 score, and area under the receiver operating characteristic curve (AUROC) 
for the evaluated models. 

Gradient boosting achieved higher overall discrimination (AUROC = 0.91) compared with logistic regression (AUROC = 
0.83) and showed comparable or slightly improved performance relative to alternative model specifications. These 
results are consistent with prior evidence supporting tree-based ensemble methods for epidemiologic risk prediction 
using structured survey data. 

Table 4 Predictive Performance Metrics Across Models 

Model Accuracy Precision Recall F1-score AUROC 

Logistic Regression 0.82 0.79 0.81 0.80 0.83 

Standard Gradient Boosting 0.87 0.85 0.86 0.85 0.89 

Neural Network 0.86 0.84 0.85 0.84 0.88 

Gradient Boosting (Final Model) 0.90 0.88 0.90 0.89 0.91 

Importantly, model selection prioritized stability, interpretability, and generalization rather than optimization under 
fairness constraints. Performance gains were achieved without applying algorithmic bias mitigation techniques. 

7.2. Fairness Evaluation Across Demographic Groups 

 
Error rates are shown for the final gradient boosting model, stratified by race/ethnicity. Results reflect post-hoc subgroup performance evaluation 

using held-out test data. 

Figure 2 False Positive and False Negative Rates Across Demographic Groups 

Fairness evaluation was conducted post hoc using subgroup-specific performance metrics to examine whether 
predictive behavior varied across race/ethnicity and income strata. Metrics included comparisons of true positive rates, 
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false positive rates, and predictive values across demographic groups, consistent with established fairness evaluation 
practices. 

7.3. Model Robustness and Stability 

Model robustness was assessed using 5-fold cross-validation to evaluate variability in predictive performance across 
training and validation splits. Performance stability was quantified using variance in AUROC and F1-score across folds. 
The model demonstrated low variability in AUROC (σ = 0.012), indicating consistent discrimination across resampled 
datasets. 

Table 5 summarizes cross-validation results for the final gradient boosting model. Performance metrics remained stable 
across folds, suggesting robustness to sampling variation within the cross-sectional survey data. 

Table 5 Cross-Validation Performance Metrics 

Fold AUROC F1-score Precision Recall 

1 0.91 0.89 0.88 0.90 

2 0.90 0.88 0.87 0.89 

3 0.91 0.89 0.88 0.90 

4 0.90 0.89 0.87 0.89 

5 0.91 0.90 0.88 0.90 

7.4. Interpretability and Feature Importance 

Model interpretability was assessed through population-level feature contribution analysis to support transparency in 
how clinical and socio-demographic variables relate to predicted pediatric Type 2 Diabetes risk. Clinical features such 
as BMI percentile and glycemic indicators were among the strongest contributors to model predictions, alongside 
selected behavioral and socioeconomic variables including physical activity and household income. 

These findings reflect statistical associations within the data and are intended to support interpretation of model 
behavior rather than to imply causal relationships or guide individual-level interventions. 

7.5. Comparison with Existing Models 

The predictive performance of the final gradient boosting model was compared with baseline approaches commonly 
used in pediatric diabetes risk prediction, including logistic regression. Consistent with prior studies, tree-based 
ensemble methods demonstrated stronger discrimination than linear models when applied to structured survey data. 

Differences in reported fairness outcomes across studies should be interpreted cautiously due to variation in datasets, 
outcome definitions, and evaluation frameworks. The present analysis emphasizes transparent subgroup evaluation 
rather than direct comparison of fairness mitigation effects across models. 

In sum, the results demonstrate that the proposed gradient boosting model achieves strong predictive performance for 
pediatric Type 2 Diabetes risk using nationally representative survey data, while enabling transparent evaluation of 
subgroup-level behavior across socio-demographic groups. By emphasizing post-hoc fairness assessment, 
interpretability, and robustness rather than algorithmic bias mitigation, this study contributes evidence supporting 
responsible evaluation of predictive models in pediatric public health contexts. 

8. Discussion and Policy Implications 

This study evaluated the predictive performance and subgroup behavior of a machine learning model for pediatric Type 
2 Diabetes (T2D) risk using nationally representative survey data. By emphasizing post-hoc subgroup evaluation rather 
than algorithmic bias mitigation, the findings contribute to ongoing discussions on how predictive models behave across 
socio-demographic groups in pediatric public health contexts. 
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The results underscore both the potential utility of machine learning for pediatric risk stratification and the challenges 
of ensuring consistent model performance across diverse populations. Rather than demonstrating bias reduction or 
equity enforcement, this study highlights the importance of transparent reporting of subgroup-level metrics to support 
responsible interpretation of predictive models. 

8.1. Algorithmic Bias in Pediatric Risk Prediction 

Prior research has shown that healthcare machine learning models may exhibit differential performance across 
demographic groups when subgroup evaluation is not explicitly reported (Obermeyer et al., 2019; Rajkomar et al., 
2018). Consistent with this literature, subgroup-level evaluation in the present study revealed variation in predictive 
behavior across race/ethnicity and income strata. 

These findings reinforce the need for routine fairness evaluation in pediatric risk prediction rather than assuming 
uniform performance across populations. Importantly, observed differences should be interpreted in the context of 
underlying variation in risk factor distributions and measurement limitations, rather than as evidence of algorithmic 
bias correction. 

8.2. Implications for Clinical Decision Support 

Predictive models for pediatric T2D risk may support population-level screening and resource planning when used with 
appropriate caution. The present findings suggest that model outputs should be interpreted alongside subgroup-specific 
performance metrics to avoid unintended disparities in downstream clinical use. 

Rather than serving as standalone decision tools, such models are best positioned as complementary aids that inform 
clinical judgment. Transparent reporting of subgroup behavior is essential to prevent misinterpretation and 
overreliance in high-stakes pediatric settings. 

8.3. Public Health Equity Considerations 

From a public health perspective, fairness evaluation provides a diagnostic lens through which disparities in model 
performance can be identified and monitored. The results highlight the importance of integrating equity considerations 
into model evaluation frameworks without conflating evaluation with mitigation. 

Policies that encourage standardized subgroup reporting in health-related AI may improve accountability and 
transparency, particularly for applications involving vulnerable pediatric populations. 

8.4. Social Determinants of Health in Model Interpretation 

Socioeconomic and behavioral variables contributed to risk prediction alongside clinical factors, reflecting the 
multifactorial nature of pediatric T2D risk. Inclusion of social determinants of health (SDOH) supported contextual 
interpretation of model outputs but does not imply causal inference or targeted intervention capability. 

These findings align with public health literature emphasizing that exclusion of social context may limit interpretability, 
while inclusion requires careful, non-deterministic interpretation. 

8.5. Ethical and Regulatory Implications 

Ethical deployment of predictive models in pediatric care requires transparency, clear communication of limitations, 
and avoidance of claims that exceed empirical evidence. Regulatory frameworks should emphasize standardized 
evaluation, documentation of subgroup performance, and safeguards against misuse, rather than mandating specific 
algorithmic fairness interventions. 

Limitations 

This study has several important limitations. First, the analysis relied on cross-sectional survey data, which limits causal 
inference and precludes assessment of longitudinal model stability or performance drift. Second, outcome definitions 
and predictor measurements are subject to survey and laboratory measurement error, which may differentially affect 
subgroups. 
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Third, fairness metrics were applied post hoc for evaluation purposes only. The study did not implement bias mitigation, 
fairness constraints, or reweighting strategies, and therefore cannot make claims regarding bias reduction or equity 
improvement. Finally, subgroup analyses may be sensitive to sample size variation, particularly for smaller 
demographic groups. 

These limitations highlight the importance of cautious interpretation and reinforce that fairness metrics should be 
viewed as diagnostic tools rather than corrective mechanisms. 

9. Conclusion and Future Research Directions 

This study demonstrates that machine learning models applied to nationally representative pediatric health data can 
achieve strong predictive performance while enabling transparent evaluation of subgroup-level behavior. By focusing 
on post-hoc fairness assessment rather than algorithmic bias mitigation, the analysis contributes a realistic and 
methodologically sound framework for evaluating pediatric risk prediction models. 

Future research should prioritize longitudinal validation to assess temporal stability, explore harmonized fairness 
reporting standards across studies, and examine how subgroup performance metrics influence clinical interpretation 
in real-world settings. Expanding evaluation frameworks to additional population-based datasets may further improve 
generalizability while maintaining ethical and methodological rigor. 

In conclusion, responsible application of machine learning in pediatric public health requires balancing predictive 
performance with transparent evaluation, clear communication of limitations, and avoidance of overclaims regarding 
equity or bias mitigation. Fairness-aware evaluation, when applied cautiously, can support more informed and 
accountable use of predictive models in healthcare. 
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