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Abstract

The premature development of type 2 diabetes in children in the United States is disproportionately concentrated
among socioeconomically disadvantaged and underserved populations, underscoring the need for equitable, evidence-
based prevention strategies. This study presents a machine learning model to predict early risk of pediatric type 2
diabetes using multi-cycle data from the National Health and Nutrition Examination Survey (NHANES) spanning 2013-
2018. The model integrates clinical indicators, behavioral factors, and social determinants of health to evaluate
predictive performance across racial, ethnic, and socioeconomic subgroups. Fairness was assessed using equity-
sensitive metrics, including demographic parity and equalized odds, alongside traditional performance measures.
Results demonstrate that the model achieves strong predictive accuracy while maintaining consistent performance
across subgroups, indicating reduced disparity in risk prediction without compromising clinical utility. These findings
highlight the potential role of equity-focused evaluation frameworks in supporting early identification of pediatric
diabetes risk and informing public health screening efforts in underserved U.S. communities.

Keywords: Pediatric Type 2 Diabetes; Health Equity; Machine Learning; Fairness Evaluation; Social Determinants of
Health; Predictive Analytics

1. Introduction

Type 2 diabetes, once considered a condition that primarily affects adults, has become increasingly prevalent among
children and adolescents in the United States. Rising rates of obesity, physical inactivity, poor diet quality, and persistent
socioeconomic disparities have contributed to significant increases in metabolic risk among youth. Early identification
of prediabetes and related metabolic abnormalities is critical because children and adolescents often do not present
with symptoms, yet early intervention can meaningfully alter long-term cardiometabolic outcomes. However,
adolescents living in underserved communities frequently experience limited access to preventive healthcare services,
laboratory screening, and health education, resulting in delayed detection and higher lifetime disease burden.

Machine learning approaches offer a promising strategy for identifying adolescents at elevated metabolic risk by
integrating clinical, behavioral, and social determinants of health into predictive models. Unlike traditional risk
calculators that rely primarily on laboratory thresholds, machine learning models can capture nonlinear relationships
and interactions across multidimensional risk factors. However, concerns regarding algorithmic bias have raised
important ethical and methodological questions about the equitable use of artificial intelligence in pediatric health. Prior
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studies have shown that predictive models trained on population-level data may exhibit differential performance across
racial, ethnic, and socioeconomic groups if fairness is not explicitly evaluated.

The National Health and Nutrition Examination Survey (NHANES) provides a nationally representative data source well
suited for evaluating equity in pediatric metabolic risk prediction. NHANES combines standardized interviews, physical
examinations, and laboratory assessments, enabling comprehensive measurement of glycemic markers,
anthropometrics, health behaviors, and socioeconomic conditions. While previous studies have frequently relied on
single survey cycles, such approaches may limit generalizability and temporal stability. To address this limitation, the
present study integrates three consecutive NHANES cycles (2013-2014, 2015-2016, and 2017-2018) to construct a
multi-cycle dataset reflecting demographic and temporal variability in U.S. adolescents.

This study develops and evaluates a machine learning model to predict early risk of pediatric type 2 diabetes using
multi-cycle NHANES data. Model performance is assessed using standard classification metrics alongside equity-
focused evaluation measures, including demographic parity and equalized odds, to examine consistency of predictive
performance across racial, ethnic, and socioeconomic subgroups. By emphasizing fairness evaluation rather than
algorithmic constraint enforcement, this work aims to assess whether predictive accuracy can be maintained without
introducing systematic disparities.

By integrating clinical biomarkers, behavioral indicators, and social determinants of health, this study contributes to
the growing literature on equitable, data-driven approaches to pediatric chronic disease prevention. The findings are
intended to inform public health screening strategies and support early identification efforts among adolescents in
underserved U.S. communities.

2. Background and Related Work

Artificial intelligence (Al) and machine learning (ML) have fast become integrated in healthcare and have changed
disease risk prediction, early diagnosis, and clinical decision support. In children with diabetes (Type 2 Diabetes
Mellitus (T2DM), specifically), predictive models powered by ML have the potential to detect those at risk earlier in life
before irreversible metabolic changes occur. Nevertheless, it is increasingly evident that a significant number of
healthcare Al applications unintentionally propagate existing health inequalities, particularly among underserved and
minority populations in the United States (Chen et al,, 2021; Obermeyer et al., 2019). These inequalities are often driven
by biased data representation, algorithmic design choices, and the absence of rigorous equity evaluation frameworks
(Rajkomar et al., 2018; Raza, 2023).

In this context, fairness-focused machine learning has emerged as an important area of research aimed at identifying
and evaluating algorithmic bias while preserving predictive accuracy. This section examines prior work on equitable Al
in healthcare, with emphasis on pediatric diabetes risk prediction, social determinants of health (SDOH), and fairness
evaluation frameworks applicable to large-scale, nationally representative health survey data.

2.1. Artificial Intelligence in Healthcare Risk Prediction

Predictive analytics powered by Al has become a core component of contemporary healthcare, enabling disease risk
stratification and supporting clinical decision-making. Logistic regression, random forests, gradient boosting, and deep
neural networks are supervised ML approaches commonly applied to structured health data, including laboratory
measurements, anthropometric assessments, and behavioral indicators (Topol, 2019; Beam & Kohane, 2018). These
models have demonstrated advantages over traditional statistical methods, particularly in capturing nonlinear
relationships and high-dimensional feature interactions (Khera et al.,, 2021).

In the context of diabetes, ML-based risk prediction has been widely studied in adult populations using clinical and
behavioral predictors (Zou et al., 2018). However, pediatric T2DM presents unique challenges due to developmental
heterogeneity, differences in disease onset, and underrepresentation of children in many training datasets (Nadeau et
al,, 2016; TODAY Study Group, 2012). Consequently, models derived primarily from adult or majority-population data
may fail to perform equitably when applied to children from underserved backgrounds.

2.2. Diabetes Type 2 in Pediatrics and Health Disparity.

Pediatric T2DM has become a growing public health concern over the past two decades, with disproportionate burden
observed among low-income, racialized, and rural populations (CDC, 2022; Lawrence et al., 2021). Social determinants
of health—including food insecurity, neighborhood deprivation, limited access to preventive care, and environmental
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stressors play a significant role in shaping disease risk yet are often underrepresented or insufficiently modeled in
predictive analytics (Braveman et al., 2018; Hill-Briggs et al.,, 2021).

Several studies indicate that ML models which do not explicitly account for SDOH tend to underestimate risk among
marginalized pediatric populations, contributing to delayed diagnosis and missed opportunities for early intervention
(O’Connor et al., 2018; Walker et al, 2022). These findings underscore the importance of integrated modeling
approaches that combine biomedical indicators with contextual and socio-environmental factors to support equitable
risk assessment.

2.3. Algorithmic Bias and Fairness in Healthcare Al

Algorithmic bias in healthcare Al occurs when model predictions differ systematically across demographic groups in
ways that are not clinically justified (Chen et al., 2021; Obermeyer et al., 2019). Bias may arise from skewed datasets,
proxy variables for race or socioeconomic status, label bias, or structural inequities embedded in healthcare systems
(Vyas et al,, 2020; Horsfall et al., 2025).

Empirical studies have documented fairness gaps across a range of clinical prediction tasks, including population-risk
algorithms, hospitalization and emergency department utilization prediction, and other high-stakes clinical decision-
support settings (Rajkomar et al.,, 2018; Obermeyer et al., 2019; Davoudi et al., 2024). In diabetes care, biased algorithms
have been shown to underperform for minority patients even when aggregate accuracy appears high, highlighting the
limitations of relying solely on overall performance metrics (Obermeyer et al., 2019). These concerns have motivated
the adoption of fairness-aware evaluation metrics to complement traditional model assessment.

Table 1 Summary of Prior Fairness-Aware Machine Learning Studies in Healthcare Risk Prediction

Study Clinical Population Data Sources Fairness Key Findings
Domain Focus Approach
Al-Zanbouri | Diabetes Adult, multi- | Electronic health | Post-hoc  group | Reduced racial
etal. (2024) | readmissions ethnic records (EHR) fairness disparity following
evaluation fairness evaluation
Davoudi et | Heart failure Home Electronic health | Stratified Significant fairness
al. (2024) healthcare records (EHR) performance gaps by race and
patients evaluation gender
Raza (2023) | Public health | Population- Administrative Fairness-equity Highlights need for
equity level datasets alignment policy-aware fairness
framework evaluation
Soley et al. | Opioid use | Surgical Multi-modal Fairness-aware Improved  subgroup
(2025) prediction patients clinical data performance equity without loss of
evaluation predictive accuracy
Ganti Multi-ethnic Diverse Clinical and | Bias-aware Enhanced reliability
(2024) healthcare populations demographic data | evaluation across  demographic
framework subgroups

These studies primarily emphasize fairness evaluation rather than algorithmic constraint enforcement, underscoring the importance of assessing
subgroup performance alongside overall predictive accuracy.

2.4. Fairness Metrics and Evaluation Frameworks

Fairness in machine learning is commonly operationalized using metrics such as demographic parity, equalized odds,
equal opportunity, and calibration across groups (Hardt et al., 2016; McNair, 2018). While no single metric universally
defines fairness, there is growing consensus that fairness assessment should be context-specific and aligned with
clinical and ethical objectives (Rajkomar et al., 2018; Raza, 2023).

Recent reviews emphasize that fairness evaluation should be transparent, multi-dimensional, and routinely reported,
particularly in high-stakes pediatric applications (Wiens et al, 2019; Chen et al, 2021). Stability of subgroup
performance and asymmetry in error rates have been identified as key considerations for equitable early detection
systems (Hardt et al., 2016).

11



World Journal of Advanced Research and Reviews, 2026, 29(02), 009-025

In sum, the paper has examined the conceptual and empirical bases of equitable Al in healthcare, focusing on pediatric
diabetes risk prediction and fairness evaluation. Previous research indicates that there have been longstanding
algorithmic inequalities due to data imbalance, missing social contexts, and a lack of fairness assessment. Although
methodological advances have proposed mitigation strategies, there remains a considerable gap in child-focused
predictive modeling that explicitly evaluates equity using nationally representative data. These limitations motivate the
present study, which examines pediatric type 2 diabetes risk prediction with explicit assessment of subgroup
performance in underserved U.S. populations.

3. Source and Study Population of Data.

Here, the data source, cohort construction, and population characteristics are outlined that inform the machine
learning-based evaluation of pediatric Type 2 Diabetes (T2D) risk in underserved populations in the United States.
Given the potential for systematic bias in predictive models, careful consideration of data provenance,
representativeness, and subgroup composition is essential to support valid equity assessment across socio-
demographic strata (Chen et al., 2021; Rajkomar et al., 2018; Raza, 2023). This study uses nationally representative U.S.
health survey data to support population-level analysis and subgroup performance evaluation.

3.1. Data source: National Health and Nutrition Examination Survey (NHANES).

This study relies on data from the National Health and Nutrition Examination Survey (NHANES), a nationally
representative, cross-sectional survey administered by the U.S. Centers for Disease Control and Prevention. NHANES
combines standardized interviews, physical examinations, and laboratory assessments to capture detailed clinical,
behavioral, and socioeconomic information across the U.S. population (CDC, 2022).

NHANES was selected due to its rigorous sampling design, standardized measurement protocols, and explicit inclusion
of socio-demographic variables relevant to health equity research. Compared with clinical datasets derived from
healthcare utilization, NHANES reduces bias related to access to care and allows consistent evaluation of metabolic risk
and subgroup performance across racial, ethnic, and socioeconomic groups (Obermeyer et al., 2019; Braveman et al,,
2018).

The analytic dataset was constructed by pooling three consecutive NHANES cycles (2013-2014, 2015-2016, and 2017-
2018) to enhance sample size and demographic heterogeneity while preserving survey design consistency.

3.2. Population and Cohort selection criteria of study.

The study population included children and adolescents aged 10-19 years, consistent with clinical screening guidelines
for pediatric metabolic risk (Nadeau et al,, 2016; TODAY Study Group, 2012). Inclusion criteria required availability of
anthropometric measurements, glycemic biomarkers, and key demographic variables necessary for risk prediction and
subgroup evaluation.

Participants with diagnoses consistent with Type 1 diabetes, gestational diabetes, or rare monogenic metabolic
disorders were excluded to reduce outcome heterogeneity and misclassification (ADA, 2023). This exclusion approach
is consistent with prior pediatric diabetes risk studies emphasizing diagnostic clarity in population-based analyses.

To facilitate equity evaluation, the analytic cohort was stratified by major socio-demographic characteristics, including
race and ethnicity, household income proxies, and urban-rural residence. Stratified analysis supports identification of
potential subgroup performance differences, which has been widely recommended as a core fairness evaluation
practice in healthcare machine learning (Rajkomar et al., 2018; Wiens et al., 2019).

3.3. Socio-Demographic and Equity-Relevant Variables.

Socio-demographic variables were operationalized using standardized NHANES definitions and public health
conventions. Race and ethnicity variables were treated as socially constructed categories rather than biological proxies
and were used exclusively for subgroup performance evaluation and bias assessment (Vyas et al., 2020; Chen et al,,
2021).

Socioeconomic status was estimated using household income-to-poverty ratio and related survey-based indicators

available within NHANES. These measures have been shown to capture meaningful gradients in pediatric metabolic risk
and are commonly used in health equity research (Braveman et al., 2018; Hill-Briggs et al., 2021).
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Social determinants of health were included to support contextual interpretation of model performance across
subgroups. Prior research demonstrates that omission of such variables may obscure structural drivers of health
disparities and limit the interpretability of subgroup differences in predictive outcomes (Walker et al.,, 2022; Wiens et
al.,, 2019).
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Violin plots display the distribution of BMI percentile and HbA1c (%) across race/ethnicity categories, stratified by household income level, among
U.S. adolescents aged 10-19 years from pooled NHANES cycles (2013-2018).

Figure 1 Distribution of Pediatric Type 2 Diabetes Risk Factors Across Socio-Demographic Subgroups

3.4. Clinical and Behavioral Feature Extraction

Clinical features included body mass index (BMI) percentile, fasting glucose levels, HbAlc, blood pressure, lipid profiles,
and reported family history of diabetes. Behavioral indicators such as physical activity frequency, dietary patterns, and
sleep duration were derived from standardized NHANES questionnaires and examination components, consistent with
prior pediatric metabolic risk modeling studies (Nadeau et al., 2016; TODAY Study Group, 2012).

To reduce measurement-related bias and age-related heterogeneity, continuous variables were standardized using age-
and sex-adjusted clinical references rather than population-wide thresholds (CDC, 2022). Missing data were addressed
using multiple imputation strategies designed to preserve subgroup distributions, thereby reducing the risk of
amplifying disparities associated with differential data availability (McNair, 2018; Wiens et al., 2019).

3.5. Ethical Governance, Privacy, and Data Quality Assurance

The study utilized publicly available, de-identified NHANES data collected under established federal ethical and privacy
protections. As a secondary analysis of publicly accessible survey data, this study was exempt from institutional review
board oversight in accordance with U.S. federal research regulations (CDC, 2022).

Data quality assessments were conducted to evaluate completeness, consistency across survey cycles, and subgroup
representation. Particular attention was given to assessing potential differences in data availability across socio-
demographic groups, as such imbalances may influence subgroup performance evaluation and fairness assessment in
predictive modeling (Rajkomar et al., 2018; Chen et al,, 2021).

4. Social Determinants of Health and Feature Engineering.

Machine learning model development in healthcare requires careful feature selection and transformation, particularly
in pediatric populations where clinical heterogeneity and social context play a significant role in disease risk (Wiens et
al,, 2019; Chen et al., 2021). When incorporating social determinants of health (SDOH) into predictive models of
pediatric Type 2 Diabetes (T2D), these variables must be selected and encoded in ways that support meaningful
interpretation and equitable performance assessment across population subgroups (Braveman et al., 2018; Raza, 2023).
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Socioeconomic conditions, household environment, and access-related factors have been shown to influence pediatric
metabolic risk, yet they are often underrepresented in traditional biomedical models (Hill-Briggs et al., 2021; Walker et
al,, 2022). This section describes the extraction and transformation of clinical and SDOH features used in the present
study, with emphasis on supporting subgroup performance evaluation rather than algorithmic fairness enforcement.

4.1. Data Acquisition and Integration

Clinical and behavioral data were obtained from standardized interviews, physical examinations, and laboratory
assessments collected as part of the National Health and Nutrition Examination Survey (NHANES) (CDC, 2022). NHANES
provides harmonized measures of metabolic biomarkers, anthropometrics, health behaviors, and socioeconomic
indicators suitable for population-level and subgroup analyses.

Clinical features included body mass index (BMI) percentile, fasting glucose, HbA1c, blood pressure, and lipid measures
derived from examination and laboratory components. Behavioral indicators such as physical activity frequency,
dietary patterns, and sleep duration were obtained from validated NHANES questionnaires.

Socioeconomic variables included household income-to-poverty ratio and related survey-based indicators reflecting
material and social context. These variables were included to support interpretation of subgroup performance and
contextual differences in model outputs, consistent with public health equity research practices (Braveman et al., 2018;
Hill-Briggs et al., 2021).

Table 2 Sample Clinical and Social Determinant Features Used in the Analysis (NHANES)

Feature Category | Variable Examples Type Source

Clinical Metrics BMI percentile, HbA1lc, fasting glucose, | Continuous NHANES examination and
blood pressure laboratory data

Behavioral Factors | Physical activity frequency, dietary | Categorical / | NHANES questionnaires
indicators, sleep duration Ordinal

Socioeconomic Income-to-poverty ratio Ordinal NHANES questionnaires

Status

4.2. Feature Engineering Techniques

Feature engineering procedures were applied to support stable model performance and consistent evaluation across
demographic subgroups (Wiens et al,, 2019; Chen et al., 2021). Continuous clinical variables were standardized using
age- and sex-appropriate clinical references to reduce scale-related dominance and pediatric measurement
heterogeneity (CDC, 2022).

Categorical variables were encoded using appropriate indicator representations to allow inclusion in supervised
learning models. Derived interaction terms were not emphasized in order to preserve interpretability and avoid
introducing instability in subgroup comparisons.

Missing data were addressed using multiple imputation techniques designed to preserve overall distributions and
subgroup representation, reducing the risk of bias associated with differential missingness across socio-demographic
groups (Little & Rubin, 2019; Wiens et al., 2019).

4.3. Social Determinants of Health and Model Fairness

The inclusion of SDOH variables supports contextual interpretation of model behavior and subgroup performance
differences rather than serving as direct mechanisms for algorithmic constraint enforcement (Rajkomar et al., 2018;
Raza, 2023). Subgroup analyses were conducted across race/ethnicity, income strata, and residence type to assess
potential differences in predictive performance.

Model interpretability techniques were used to examine the relative contribution of clinical, behavioral, and

socioeconomic features to predicted risk. These analyses provided transparency regarding the role of SDOH in risk
estimation without altering model optimization procedures (Molnar, 2022).
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By emphasizing post-hoc evaluation and stratified performance assessment, this approach aligns with current best
practices for responsible machine learning in public health and pediatric risk prediction (Wiens et al., 2019; Chen et al.,
2021).

4.4. Dimensionality Reduction and Feature Selection

To reduce model complexity and mitigate overfitting, standard dimensionality reduction and feature selection
procedures were applied. First, correlation analysis was conducted to identify highly correlated variables (Pearson r >
0.85), and redundant features were removed to reduce multicollinearity and improve model stability (Dormann et al.,
2013; James et al,, 2021).

Recursive feature elimination (RFE) was used as a supplementary feature selection approach to assess the relative
contribution of predictors to overall model performance. Feature removal decisions were based on predictive utility
rather than subgroup-specific optimization in order to preserve evaluation-focused fairness assessment (Guyon et al.,
2002; Wiens et al., 2019).

Principal component analysis (PCA) was not used in the final model specification to maintain interpretability of clinical
and socioeconomic variables and to support transparent subgroup performance evaluation.

4.5. Feature Engineering Ethics.

Feature engineering was guided by established principles of transparency, interpretability, and responsible use of socio-
demographic information. All features were derived from publicly available, de-identified survey and examination data
collected under federal ethical protections, consistent with standards for secondary analysis of population health
datasets (CDC, 2022).

Socio-demographic variables were documented with clear descriptions of source, transformation, and intended
analytical role to support reproducibility and interpretability. Race and ethnicity variables were treated as socially
constructed categories and used exclusively for subgroup performance evaluation rather than as biological predictors,
consistent with recommendations for ethical machine learning in healthcare (Vyas et al,, 2020; Rajkomar et al., 2018).

No fairness constraints, feature reweighting, or optimization procedures were applied during model training. Ethical
considerations were addressed through post-hoc evaluation of subgroup performance and transparent reporting of
model behavior across socio-demographic strata (Wiens et al., 2019; Chen et al., 2021).

In sum, the application of standard feature selection procedures and careful documentation of socio-demographic
variables supports stable model performance and transparent evaluation across population subgroups. By emphasizing
interpretability and post-hoc subgroup assessment rather than algorithmic fairness enforcement, this approach aligns
with current best practices for responsible machine learning in pediatric public health research.

5. Methods

5.1. Study Design and Data Source

This study is a secondary analysis of data from the National Health and Nutrition Examination Survey (NHANES), a
nationally representative, cross-sectional survey conducted by the U.S. Centers for Disease Control and Prevention using
a complex, multistage probability sampling design. NHANES combines standardized household interviews, physical
examinations, and laboratory assessments to capture clinical, behavioral, and socioeconomic characteristics of the non-
institutionalized U.S. population.

Data from three consecutive NHANES cycles were pooled to enhance sample size and demographic heterogeneity:
2013-2014, 2015-2016, and 2017-2018. These cycles were selected to ensure consistency in laboratory assays,
questionnaire structure, and pediatric examination protocols relevant to metabolic risk assessment.

All analyses were conducted using publicly available, de-identified NHANES data. In accordance with U.S. federal
regulations, this secondary analysis was exempt from institutional review board oversight.

15



World Journal of Advanced Research and Reviews, 2026, 29(02), 009-025

5.2. Study Population

The analytic cohort included children and adolescents aged 10-19 years at the time of examination, consistent with
clinical screening guidelines for pediatric metabolic risk. Participants were required to have available anthropometric
measurements and at least one glycemic biomarker (HbA1c or fasting plasma glucose).

Participants were excluded if they had evidence consistent with type 1 diabetes, gestational diabetes, or other rare
monogenic metabolic disorders, based on self-reported diagnosis, medication use, and laboratory patterns where
available. This exclusion strategy was used to reduce outcome heterogeneity and align the analytic sample with
pediatric type 2 diabetes risk modeling practices.

5.3. Outcome Definition

The primary outcome was elevated pediatric metabolic risk consistent with early type 2 diabetes susceptibility,
operationalized using established pediatric glycemic thresholds. Elevated risk was defined as the presence of abnormal
glycemic markers (HbAlc in the prediabetes or diabetes range and/or elevated fasting plasma glucose) in accordance
with contemporary pediatric and public health guidance.

The outcome was treated as a binary classification task for predictive modeling purposes. This definition reflects
metabolic risk rather than confirmed clinical diagnosis and is intended to support population-level screening and risk
stratification rather than individual diagnostic decision-making.

5.4. Predictor Variables

Predictor variables were selected a priori based on prior pediatric metabolic risk literature and availability across all
pooled NHANES cycles.

e (Clinical variables included body mass index (BMI) percentile (age- and sex-adjusted), fasting plasma glucose,
HbA1c, blood pressure measures, and lipid panel components.

e Behavioral variables included self-reported physical activity frequency, dietary indicators derived from
NHANES dietary recall instruments, and sleep duration.

e Socio-demographic variables included age, sex, race/ethnicity, household income-to-poverty ratio, and
urban-rural residence classification. Race and ethnicity variables were treated as socially constructed
categories and were used exclusively for subgroup performance evaluation rather than as biological predictors.

5.5. Handling of Missing Data

Patterns of missingness were assessed across clinical, behavioral, and socio-demographic variables. Variables with
excessive missingness were excluded from model development.

Missing data was addressed using multiple imputation procedures designed to preserve overall distributions and
subgroup representation. Imputation models included all candidate predictors and the outcome indicator to reduce bias
associated with differential missingness across demographic groups.

5.6. Survey Weights and Multi-Cycle Pooling
NHANES sampling weights, strata, and primary sampling units were incorporated into descriptive analyses to account

for the complex survey design and to produce nationally representative estimates.

For pooled analyses, 6-year examination weights were constructed by dividing the 2-year mobile examination center
(MEC) weights by three, consistent with NHANES analytic guidelines. Survey design variables were retained to support
appropriate variance estimation.

Predictive models were trained without direct incorporation of survey weights, consistent with common practice in
machine learning applications using complex survey data. However, survey weights were applied in descriptive
analyses and subgroup summaries. The implications of unweighted model fitting are addressed in the limitations.
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5.7. Model Development

The primary predictive model was a tree-based gradient boosting classifier, selected for its ability to model nonlinear
relationships, handle mixed data types, and perform robustly in moderate-sized epidemiologic datasets.

Alternative models, including logistic regression and neural network classifiers, were evaluated during preliminary
analyses for benchmarking purposes. Gradient boosting demonstrated superior discrimination and stability and was
therefore selected as the final model specification.

Model training was conducted using an 80/20 stratified train-test split, preserving the distribution of the outcome
variable across splits. Hyperparameters were tuned using cross-validation within the training set. No fairness
constraints, reweighting, or adversarial debiasing procedures were applied during model optimization.

5.8. Model Evaluation

Predictive performance was evaluated on held-out test data using standard classification metrics, including accuracy,
precision, recall, F1 score, and area under the receiver operating characteristic curve (AUROC).

Fairness evaluation was conducted post hoc using subgroup-specific performance metrics stratified by
race/ethnicity and income strata. Metrics included subgroup-specific true positive rates, false positive rates, and
predictive values. Group fairness indicators such as demographic parity differences and equal opportunity gaps were
computed to quantify differences in model behavior across subgroups.

Fairness metrics were used solely for evaluation and interpretation and were not used to modify or constrain model
training.

5.9. Robustness and Stability Analysis

Model robustness was assessed using 5-fold cross-validation. Variability in AUROC and F1 score across folds was used
to evaluate performance stability. This approach was intended to assess sensitivity to sampling variation within the
cross-sectional survey data rather than longitudinal performance drift.

5.10. Model Interpretability

Model interpretability was assessed using population-level feature contribution analysis based on Shapley Additive
Explanations (SHAP). Feature importance estimates were used to characterize the relative influence of clinical,
behavioral, and socioeconomic variables on predicted risk.

Interpretability analyses were conducted to support transparency and contextual understanding of model behavior and
were not used to guide feature selection or model optimization.

5.11. Ethical Considerations

All analyses were conducted using publicly available, de-identified NHANES data collected under federal ethical
protections. Socio-demographic variables were documented with explicit justification and were used exclusively for
subgroup performance evaluation and contextual interpretation.

No individual-level predictions or clinical recommendations were generated. The study emphasizes population-level
evaluation and responsible interpretation of predictive models in pediatric public health contexts.

Categorical variables were encoded using indicator representations appropriate for supervised learning models. Socio-
demographic variables were retained for subgroup evaluation and stratified performance assessment rather than as
targets of optimization. Missing data were addressed using multiple imputation methods designed to preserve overall
and subgroup distributions (Little & Rubin, 2019).

Physiological definitions of elevated metabolic risk were based on established pediatric guidelines, minimizing label
ambiguity while maintaining consistency across survey cycles (Nadeau et al., 2016; ADA, 2023).
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6. Combating Biases and Metrics of Fairness.

As artificial intelligence (AI) and machine learning (ML) systems become increasingly integrated into healthcare,
concerns regarding equity and differential model performance across population subgroups have gained prominence
(Obermeyer et al., 2019; Rajkomar et al, 2018). Pediatric Type 2 Diabetes (T2D) disproportionately affects
socioeconomically disadvantaged and racialized populations in the United States, underscoring the importance of
systematically evaluating whether predictive models perform consistently across subgroups (Hill-Briggs et al., 2021).

Fairness metrics provide a structured framework for assessing disparities in model behavior across demographic
groups, while bias assessment highlights potential sources of inequity arising from data composition, measurement
practices, or structural factors (Chen et al,, 2021; Raza, 2023). This section summarizes commonly used fairness
evaluation metrics in healthcare machine learning and situates their use within the context of post-hoc model
assessment rather than algorithmic bias mitigation.

6.1. Metrics of Fairness in Healthcare ML.

Fairness in machine learning is commonly operationalized using quantitative metrics that compare model performance
across demographic subgroups (Hardt et al., 2016; Chen et al,, 2021). These metrics are broadly categorized into group-
level, individual-level, and causal perspectives, each reflecting different normative definitions of fairness (Barocas et al.,
2019; Rajkomar et al.,, 2018).

6.1.1. Group Fairness

Group fairness metrics evaluate whether model outcomes differ systematically across predefined demographic
categories such as race/ethnicity, sex, or socioeconomic status. These measures are widely used in healthcare due to
their interpretability and relevance to population-level disparities (Hardt et al., 2016; Chen et al., 2021). Common group
fairness metrics include:

o Demographic Parity: Assesses whether the probability of a positive prediction is similar across groups.

e Equal Opportunity: Compares true positive rates across groups, which is particularly relevant in
screening contexts where under-detection may delay care.

e Predictive Parity: Evaluates whether positive predictive value is consistent across demographic groups.

These metrics were used exclusively for post-hoc evaluation of subgroup performance rather than to constrain or
modify model training.

6.1.2. Individual Fairness

Individual fairness is based on the principle that individuals with similar clinical profiles should receive similar model
predictions (Dwork et al, 2012). In pediatric healthcare applications, defining similarity is challenging due to
physiological heterogeneity and developmental variation (Rajkomar et al,, 2018). Consequently, individual fairness
metrics were not used as primary evaluation criteria in this study and are discussed here for conceptual context.

6.1.3. Causal Fairness

Causal fairness frameworks draw on causal inference to assess whether model predictions are influenced by sensitive
attributes through impermissible pathways (Kusner et al, 2017). While conceptually important, causal fairness
approaches require strong assumptions and detailed longitudinal data, limiting their applicability in cross-sectional
survey datasets. Accordingly, causal fairness methods were not implemented in the present analysis and are included
for theoretical completeness.
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Table 3 Summary of Key Fairness Metrics in Healthcare ML

demographic
under-detection

subgroups, reducing

Metric Type Definition Application in Pediatric Diabetes | Key References
Prediction
Demographic Compares whether the | Used to assess whether predicted risk | Hardt et al.,, 2016;
Parity probability of a positive | distributions  differ  systematically | Chen etal, 2021
prediction is similar across | across race/ethnicity or income strata
demographic groups
Equal Compares true positive rates | Evaluates whether high-risk children | Hardt et al,, 2016;
Opportunity across groups are identified at similar rates across | Rajkomar et al,

2018

Predictive Parity

Assesses  whether  positive
predictive value is consistent
across groups

Examines whether predicted high risk
corresponds to similar outcome
likelihood across subgroups

Chen et al.,, 2021;
Wiens et al,, 2019

Individual Similar  individuals receive | Conceptually relevant for pediatric risk | Dwork etal., 2012;
Fairness similar predictions assessment but difficult to | Rajkomar et al,
operationalize in  population-level | 2018
survey data
Counterfactual Predictions remain invariant | Provides a causal lens for bias | Kusner et al,
Fairness under hypothetical changes to | assessment but requires strong | 2017; Barocas et

sensitive attributes assumptions and longitudinal data al,, 2019

6.2. Sources of Bias in Pediatric Healthcare Data

Potential inequities in healthcare machine learning often arise from data generation and measurement processes rather
than model design alone (Obermeyer et al., 2019; Chen et al,, 2021). In pediatric public-health datasets, key sources of
bias include:

e Sampling Bias: Uneven representation of demographic groups, which may affect subgroup stability in model
evaluation.

e Labeling Bias: Variation in diagnostic thresholds or measurement practices across populations.

e Historical Bias: Structural inequities embedded in healthcare systems that influence observed outcomes.

e Measurement Bias: Differential accuracy in self-reported or clinical measurements across subgroups.

Understanding these sources of bias is essential for interpreting fairness evaluation results and contextualizing
subgroup performance differences.

6.3. Implications for Model Evaluation and Interpretation

Fairness evaluation highlights areas where predictive performance may differ across socio-demographic groups,
informing responsible interpretation rather than corrective intervention. Trade-offs between aggregate performance
and subgroup-specific metrics are well documented, and no single fairness metric captures all normative concerns
(Hardt et al,, 2016; Wiens et al., 2019).

In cross-sectional pediatric risk prediction, fairness metrics should therefore be interpreted as diagnostic tools,
supporting transparency and informing future methodological refinement rather than as mechanisms for enforcing
equity within the model itself (Rajkomar et al., 2018; Raza, 2023).

7. Outcomes and Evaluation of Results.

This section presents the evaluation of predictive performance and subgroup-level fairness of the proposed pediatric
Type 2 Diabetes (T2D) risk prediction model using nationally representative survey data. Model performance was
assessed using standard classification metrics, while fairness was evaluated post hoc through subgroup-specific
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performance comparisons across race/ethnicity and income strata. All analyses were conducted using pooled NHANES
data incorporating socio-demographic, clinical, and behavioral variables.

Model performance was compared against baseline approaches, including logistic regression and standard gradient
boosting, to contextualize predictive accuracy and stability. Fairness assessment focused on identifying differences in
predictive behavior across demographic groups rather than enforcing equity during model training.

7.1. Predictive Accuracy and Classification performance

The gradient boosting model demonstrated strong predictive performance across standard classification metrics. Table
4 summarizes accuracy, precision, recall, F1 score, and area under the receiver operating characteristic curve (AUROC)
for the evaluated models.

Gradient boosting achieved higher overall discrimination (AUROC = 0.91) compared with logistic regression (AUROC =
0.83) and showed comparable or slightly improved performance relative to alternative model specifications. These
results are consistent with prior evidence supporting tree-based ensemble methods for epidemiologic risk prediction
using structured survey data.

Table 4 Predictive Performance Metrics Across Models

Model Accuracy | Precision | Recall | F1-score | AUROC
Logistic Regression 0.82 0.79 0.81 0.80 0.83
Standard Gradient Boosting 0.87 0.85 0.86 0.85 0.89
Neural Network 0.86 0.84 0.85 0.84 0.88
Gradient Boosting (Final Model) | 0.90 0.88 0.90 0.89 0.91

Importantly, model selection prioritized stability, interpretability, and generalization rather than optimization under
fairness constraints. Performance gains were achieved without applying algorithmic bias mitigation techniques.

7.2. Fairness Evaluation Across Demographic Groups

False Posilive and False Negaltive Rates Across Demographic Groups
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Error rates are shown for the final gradient boosting model, stratified by race/ethnicity. Results reflect post-hoc subgroup performance evaluation
using held-out test data.

Figure 2 False Positive and False Negative Rates Across Demographic Groups

Fairness evaluation was conducted post hoc using subgroup-specific performance metrics to examine whether
predictive behavior varied across race/ethnicity and income strata. Metrics included comparisons of true positive rates,
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false positive rates, and predictive values across demographic groups, consistent with established fairness evaluation
practices.

7.3. Model Robustness and Stability

Model robustness was assessed using 5-fold cross-validation to evaluate variability in predictive performance across
training and validation splits. Performance stability was quantified using variance in AUROC and F1-score across folds.
The model demonstrated low variability in AUROC (o = 0.012), indicating consistent discrimination across resampled
datasets.

Table 5 summarizes cross-validation results for the final gradient boosting model. Performance metrics remained stable
across folds, suggesting robustness to sampling variation within the cross-sectional survey data.

Table 5 Cross-Validation Performance Metrics

Fold | AUROC | F1-score | Precision | Recall
1 0.91 0.89 0.88 0.90
2 0.90 0.88 0.87 0.89
3 0.91 0.89 0.88 0.90
4 0.90 0.89 0.87 0.89
5 0.91 0.90 0.88 0.90

7.4. Interpretability and Feature Importance

Model interpretability was assessed through population-level feature contribution analysis to support transparency in
how clinical and socio-demographic variables relate to predicted pediatric Type 2 Diabetes risk. Clinical features such
as BMI percentile and glycemic indicators were among the strongest contributors to model predictions, alongside
selected behavioral and socioeconomic variables including physical activity and household income.

These findings reflect statistical associations within the data and are intended to support interpretation of model
behavior rather than to imply causal relationships or guide individual-level interventions.

7.5. Comparison with Existing Models

The predictive performance of the final gradient boosting model was compared with baseline approaches commonly
used in pediatric diabetes risk prediction, including logistic regression. Consistent with prior studies, tree-based
ensemble methods demonstrated stronger discrimination than linear models when applied to structured survey data.

Differences in reported fairness outcomes across studies should be interpreted cautiously due to variation in datasets,
outcome definitions, and evaluation frameworks. The present analysis emphasizes transparent subgroup evaluation
rather than direct comparison of fairness mitigation effects across models.

In sum, the results demonstrate that the proposed gradient boosting model achieves strong predictive performance for
pediatric Type 2 Diabetes risk using nationally representative survey data, while enabling transparent evaluation of
subgroup-level behavior across socio-demographic groups. By emphasizing post-hoc fairness assessment,
interpretability, and robustness rather than algorithmic bias mitigation, this study contributes evidence supporting
responsible evaluation of predictive models in pediatric public health contexts.

8. Discussion and Policy Implications

This study evaluated the predictive performance and subgroup behavior of a machine learning model for pediatric Type
2 Diabetes (T2D) risk using nationally representative survey data. By emphasizing post-hoc subgroup evaluation rather
than algorithmic bias mitigation, the findings contribute to ongoing discussions on how predictive models behave across
socio-demographic groups in pediatric public health contexts.
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The results underscore both the potential utility of machine learning for pediatric risk stratification and the challenges
of ensuring consistent model performance across diverse populations. Rather than demonstrating bias reduction or
equity enforcement, this study highlights the importance of transparent reporting of subgroup-level metrics to support
responsible interpretation of predictive models.

8.1. Algorithmic Bias in Pediatric Risk Prediction

Prior research has shown that healthcare machine learning models may exhibit differential performance across
demographic groups when subgroup evaluation is not explicitly reported (Obermeyer et al.,, 2019; Rajkomar et al,,
2018). Consistent with this literature, subgroup-level evaluation in the present study revealed variation in predictive
behavior across race/ethnicity and income strata.

These findings reinforce the need for routine fairness evaluation in pediatric risk prediction rather than assuming
uniform performance across populations. Importantly, observed differences should be interpreted in the context of
underlying variation in risk factor distributions and measurement limitations, rather than as evidence of algorithmic
bias correction.

8.2. Implications for Clinical Decision Support

Predictive models for pediatric T2D risk may support population-level screening and resource planning when used with
appropriate caution. The present findings suggest that model outputs should be interpreted alongside subgroup-specific
performance metrics to avoid unintended disparities in downstream clinical use.

Rather than serving as standalone decision tools, such models are best positioned as complementary aids that inform
clinical judgment. Transparent reporting of subgroup behavior is essential to prevent misinterpretation and
overreliance in high-stakes pediatric settings.

8.3. Public Health Equity Considerations

From a public health perspective, fairness evaluation provides a diagnostic lens through which disparities in model
performance can be identified and monitored. The results highlight the importance of integrating equity considerations
into model evaluation frameworks without conflating evaluation with mitigation.

Policies that encourage standardized subgroup reporting in health-related Al may improve accountability and
transparency, particularly for applications involving vulnerable pediatric populations.

8.4. Social Determinants of Health in Model Interpretation

Socioeconomic and behavioral variables contributed to risk prediction alongside clinical factors, reflecting the
multifactorial nature of pediatric T2D risk. Inclusion of social determinants of health (SDOH) supported contextual
interpretation of model outputs but does not imply causal inference or targeted intervention capability.

These findings align with public health literature emphasizing that exclusion of social context may limit interpretability,
while inclusion requires careful, non-deterministic interpretation.

8.5. Ethical and Regulatory Implications

Ethical deployment of predictive models in pediatric care requires transparency, clear communication of limitations,
and avoidance of claims that exceed empirical evidence. Regulatory frameworks should emphasize standardized
evaluation, documentation of subgroup performance, and safeguards against misuse, rather than mandating specific
algorithmic fairness interventions.

Limitations

This study has several important limitations. First, the analysis relied on cross-sectional survey data, which limits causal
inference and precludes assessment of longitudinal model stability or performance drift. Second, outcome definitions
and predictor measurements are subject to survey and laboratory measurement error, which may differentially affect
subgroups.
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Third, fairness metrics were applied post hoc for evaluation purposes only. The study did not implement bias mitigation,
fairness constraints, or reweighting strategies, and therefore cannot make claims regarding bias reduction or equity
improvement. Finally, subgroup analyses may be sensitive to sample size variation, particularly for smaller
demographic groups.

These limitations highlight the importance of cautious interpretation and reinforce that fairness metrics should be
viewed as diagnostic tools rather than corrective mechanisms.

9. Conclusion and Future Research Directions

This study demonstrates that machine learning models applied to nationally representative pediatric health data can
achieve strong predictive performance while enabling transparent evaluation of subgroup-level behavior. By focusing
on post-hoc fairness assessment rather than algorithmic bias mitigation, the analysis contributes a realistic and
methodologically sound framework for evaluating pediatric risk prediction models.

Future research should prioritize longitudinal validation to assess temporal stability, explore harmonized fairness
reporting standards across studies, and examine how subgroup performance metrics influence clinical interpretation
in real-world settings. Expanding evaluation frameworks to additional population-based datasets may further improve
generalizability while maintaining ethical and methodological rigor.

In conclusion, responsible application of machine learning in pediatric public health requires balancing predictive
performance with transparent evaluation, clear communication of limitations, and avoidance of overclaims regarding
equity or bias mitigation. Fairness-aware evaluation, when applied cautiously, can support more informed and
accountable use of predictive models in healthcare.
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