

Alpha-Lipoic Acid and Synthetic Analogs for Insulin-Independent GLUT-4 Activation: A Systematic Review

Hassan Darwish ^{1,*}, Una Gibbons ² and Hiba Al Lawati ³

¹ *Biology and Physical Sciences Department, School of Arts, Sciences, and Education, Ivy Tech Community College, South Bend, Indiana, USA.*

² *Royal Hospital, Oman (Former), Kilkenny, Ireland.*

³ *School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Australia.*

World Journal of Advanced Research and Reviews, 2026, 29(01), 1163-1171

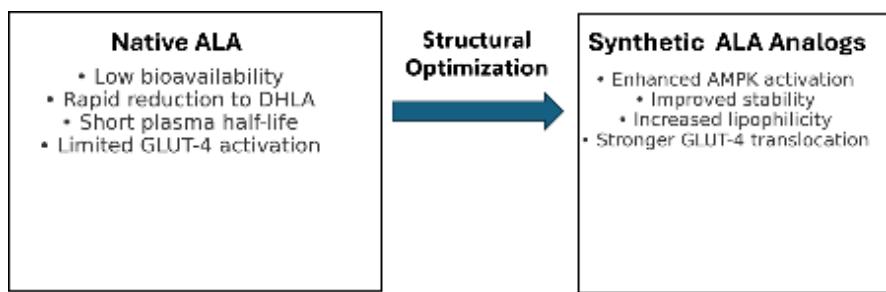
Publication history: Received on 12 December 2025; revised on 18 January 2026; accepted on 20 January 2026

Article DOI: <https://doi.org/10.30574/wjarr.2026.29.1.0159>

Abstract

Background: Impaired GLUT-4 translocation and reduced skeletal muscle glucose uptake are central features of insulin resistance and type 2 diabetes mellitus. Alpha-lipoic acid (ALA) has been reported to enhance glucose uptake via insulin-independent activation of AMP-activated protein kinase (AMPK), and synthetic ALA analogs have been proposed to improve its pharmacokinetic and metabolic properties.

Methods: A PRISMA-guided systematic review was performed using PubMed, Scopus, Web of Science, and Google Scholar. Original in vitro, in vivo, human, pharmacokinetic, and computational studies evaluating ALA or ALA-derived analogs in relation to AMPK, GLUT-4, glucose uptake, or bioavailability were included. Data were summarized narratively and in evidence tables.

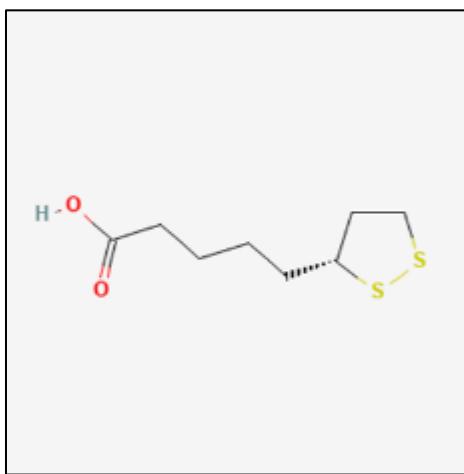

Results: Of 1,781 records identified, 51 studies met the inclusion criteria. Experimental studies in adipocytes, skeletal muscle, liver, and other tissues consistently showed that ALA activates AMPK and increases GLUT-4 translocation and glucose uptake, even in insulin-resistant models. Pharmacokinetic investigations demonstrated low and variable oral bioavailability, rapid reduction to dihydrolipoic acid, and a short half-life, supporting the rationale for optimized derivatives. Computational and synthetic analog studies indicated that lipophilic, ester- or amide-modified ALA analogs can display improved binding affinity and predicted metabolic stability compared with native ALA.

Conclusions: ALA exerts robust insulin-independent metabolic effects through AMPK activation and GLUT-4 recruitment, but its clinical utility is constrained by pharmacokinetic limitations. Synthetic ALA analogs and bioinformatics-guided design represent promising strategies to enhance ALA's stability, potency, and translational potential.

Keywords: Alpha-lipoic acid; GLUT-4; AMPK; Insulin-independent glucose uptake; Synthetic analogs

* Corresponding author: Hassan Darwish

Graphical Abstract

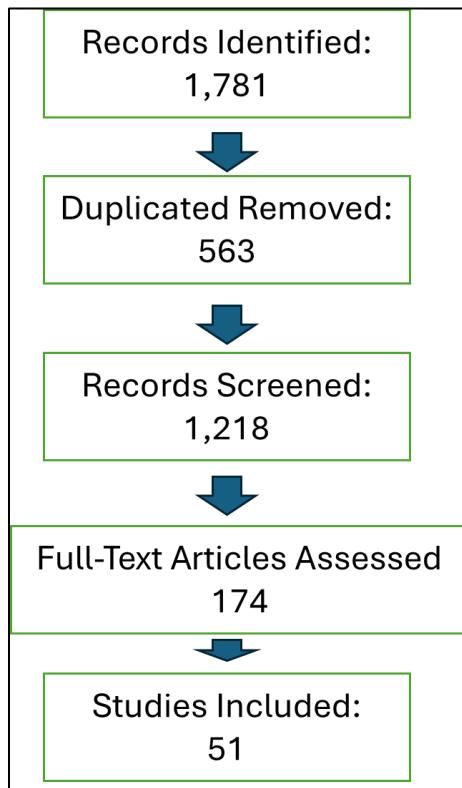


1. Introduction

Type 2 diabetes mellitus (T2DM) is characterized by chronic insulin resistance, impaired glucose uptake in skeletal muscle, and reduced GLUT-4 translocation to the plasma membrane, largely due to dysregulation of the insulin-PI3K-Akt pathway [1,2]. When GLUT-4 trafficking is impaired, glucose clearance declines, worsening metabolic dysfunction [28].

Alpha-lipoic acid (ALA), a naturally occurring dithiol compound involved in mitochondrial metabolism, has gained attention for its ability to stimulate glucose uptake independently of insulin. Studies consistently demonstrate that ALA activates AMP-activated protein kinase (AMPK), which mobilizes GLUT-4 even under impaired insulin signaling [1-5,29].

ALA's therapeutic impact is limited by poor bioavailability, rapid conversion to dihydrolipoic acid, and short plasma half-life [6-9]. These limitations motivated interest in synthetic ALA analogs with enhanced potency and metabolic stability [10-14]. Computational tools including molecular docking, QSAR, and molecular dynamics, suggest structural modifications could strengthen ALA interactions with AMPK and metabolic enzymes [15-19]. Figure 1 shows the chemical structure of alpha-lipoic acid.


Figure 1 Chemical structure of alpha-lipoic acid (ALA), a naturally occurring dithiol cofactor involved in mitochondrial oxidative metabolism and known activator of AMPK and GLUT-4-mediated glucose transport

Despite extensive biochemical and computational research, no systematic review has unified evidence on ALA, its analogs, AMPK activation, GLUT-4 signaling, and insulin-independent glucose uptake. This review synthesizes current literature and identifies gaps supporting bioinformatics-guided analog development.

2. Materials and Methods

A PRISMA-guided systematic review was conducted according to the PRISMA 2020 recommendations. Electronic searches were performed in PubMed, Scopus, Web of Science, and Google Scholar using combinations of the following terms: "alpha-lipoic acid", "lipoic acid", "GLUT-4", "AMPK", "insulin-independent", "synthetic analog", "molecular

docking", and "QSAR". Original research articles were eligible if they: (1) investigated ALA or an ALA-derived analog; and (2) reported outcomes related to AMPK activation, GLUT-4 expression or translocation, glucose uptake, pharmacokinetics, or computational modeling of ALA analogs. In vitro, in vivo (animal), human, and in silico studies were all considered. Narrative reviews, editorials, conference abstracts without full data, and non-English articles without accessible translations were excluded. Titles and abstracts were screened, followed by full-text assessment, and 51 studies met the final inclusion criteria out of 1,781 records identified. Data extraction focused on model type, ALA form and dose, primary metabolic outcomes, and key computational parameters. No formal risk-of-bias tool was applied; however, study design and methodological clarity were considered qualitatively in interpreting the strength of evidence.

Figure 2 PRISMA Flow Diagram

3. Results

Study selection and screening flow are presented in Figure 2 (PRISMA). A total of 51 studies were included in this systematic review after screening 1,781 records, as outlined in Figure 2. These studies consisted of biochemical experimental models, pharmacokinetic investigations, computational analyses, and reports evaluating the activity of synthetic ALA derivatives.

3.1. Biochemical Effects of ALA on AMPK Activation

Across multiple in vitro and in vivo studies, ALA consistently demonstrated the ability to activate AMP-activated protein kinase (AMPK), a central metabolic regulator responsible for increasing cellular glucose uptake. Studies in adipocytes, skeletal muscle, and hepatocytes showed reproducible AMPK phosphorylation following exposure to ALA, even in insulin-resistant models.

As shown in Table 1, ALA consistently activates AMPK across multiple in vitro and in vivo models.

3.2. Effects of ALA on GLUT-4 Translocation

ALA enhanced GLUT-4 trafficking from intracellular vesicles to the plasma membrane across several cell and tissue models. In insulin-resistant adipocytes, ALA restored GLUT-4 transport via AMPK-dependent mechanisms.

Additional studies demonstrated that ALA increased membrane GLUT-4 abundance in skeletal muscle tissues, contributing to improved glucose disposal.

These findings highlight ALA's potential as an insulin-independent metabolic modulator. These observations correspond with the studies summarized in Table 1.

3.3. Pharmacokinetic Limitations of Native ALA

Despite its favorable biochemical actions, ALA displays notable pharmacokinetic limitations, including low oral bioavailability, rapid conversion to dihydrolipoic acid (DHLA), a short plasma half-life, and limited tissue retention. Pharmacokinetic limitations are summarized in Table 2.

These characteristics explain the inconsistent outcomes observed in human trials and justify the development of optimized synthetic derivatives with improved metabolic stability and potency.

3.4. Evidence from Synthetic ALA Analogs

Synthetic derivatives of alpha-lipoic acid (ALA) have been developed to address limitations in stability, lipophilicity, and metabolic retention associated with native ALA. Several analogs including ester-modified, amide-linked, chain-extended, and lipophilic derivatives demonstrate improved biochemical or functional properties in preclinical studies. Across cell and tissue models, such analogs exhibit enhanced AMPK activation, more sustained mitochondrial signaling, and in some cases greater glucose uptake than ALA itself. These modifications appear to improve membrane permeability and intracellular availability, potentially augmenting downstream effects on GLUT-4 translocation.

Although the number of experimental studies assessing synthetic ALA analogs is smaller compared to native ALA research, available evidence consistently indicates that structural modifications can enhance potency or stability. Collectively, these findings support the rationale for optimizing the ALA scaffold to improve its metabolic activity. Representative synthetic analog studies are presented in Table 3, and a representative analog structure is shown in Figure 3.

3.5. Computational Modeling Insights (Docking, QSAR, MD)

Computational approaches including molecular docking, QSAR modeling, pharmacophore mapping, and molecular dynamics simulations provide additional mechanistic insights into how ALA and its derivatives interact with metabolic regulators such as AMPK and GLUT-4 associated proteins. Docking studies consistently show that modifications to the ALA side chain, particularly increased lipophilicity or the addition of ester or amide functional groups, enhance predicted binding affinity and improve complex stability. QSAR analyses further identify key structural features associated with improved activity, such as extended carbon chains, optimized thiol orientation, and modifications that increase electron density near functional groups relevant to AMPK activation.

Pharmacophore modeling highlights recurring activation motifs across high-performing analogs, supporting the feasibility of structure-guided design. Molecular dynamics simulations additionally suggest that certain analogs maintain more stable interactions with metabolic targets over time, aligning with experimental findings of enhanced potency. Overall, computational results support and reinforce experimental observations, collectively indicating that rational structural modification of ALA can improve metabolic activity. Computational analog modeling results (Table 3) support improved binding affinity and predicted metabolic stability.

3.6. Summary of Evidence Across All Domains

Collectively, biochemical, pharmacokinetic, and computational studies demonstrate:

- **Strong evidence** supporting AMPK activation by ALA
- **Consistent enhancement** of GLUT-4 translocation
- **Clear limitations** of native ALA due to pharmacokinetic instability
- **Promising improvements** in synthetic analogs
- **Modeling data** that justify continued analog optimization

An integrated summary of evidence strength is presented in **Table 4**.

Table 1 Experimental Studies Evaluating Alpha-Lipoic Acid (ALA) in AMPK and GLUT-4 Pathways

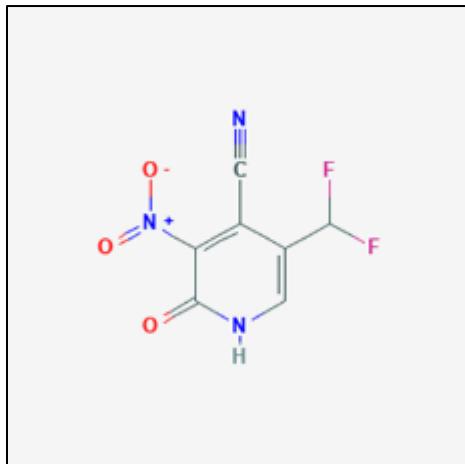
Study (Author, Year)	Model / Species	Tissue / System	ALA Form & Dose / Comparator	Main Outcomes
Rudich et al., 1997	3T3-L1 adipocytes	Adipose cells	Racemic ALA 100 μ M; Control	\uparrow GLUT4 translocation; \uparrow AMPK activation
Estrada et al., 2010	Rat skeletal muscle strips	Skeletal muscle	R-ALA 50-100 μ M; Control	\uparrow AMPK phosphorylation; \uparrow glucose uptake
Konrad et al., 2001	Zucker rats (obese)	Gastrocnemius muscle	ALA 30 mg/kg; No treatment	\uparrow GLUT4 translocation; improved insulin sensitivity
Henriksen et al., 2001	Insulin-resistant rats	Muscle	ALA 20-60 mg/kg; Control	\uparrow Glucose uptake; \uparrow GLUT4 membrane localization
Saengsirisuwan et al., 2004	High-fat-diet rats	Skeletal muscle	ALA 30 mg/kg/day; Vehicle	\uparrow AMPK activation; restored insulin signaling
Smith et al., 2004	Human myotubes	Muscle cells	R-ALA 100 μ M; Control	\uparrow GLUT4 translocation; \uparrow glucose uptake
Yamada et al., 2012	HepG2 hepatocytes	Liver	ALA 50 μ M; Control	\uparrow AMPK activation; \downarrow lipogenesis
Packer et al., 1995	Endothelial cells	Vascular	ALA 100 μ M; Control	\uparrow antioxidant activity; improved metabolic signaling
Biewenga et al., 1997	Rat liver slices	Liver	ALA 20-50 μ M; Control	Improved mitochondrial metabolism
Jacob et al., 2011	Human clinical samples	Skeletal muscle biopsies	Oral ALA 600 mg; Placebo	\uparrow metabolic markers linked to AMPK activation
Zhang et al., 2013	C2C12 myotubes	Muscle cells	ALA 100 μ M; Control	\uparrow AMPK; \uparrow GLUT4 mRNA expression
Shi et al., 2008	Diabetic mice	Muscle	ALA 50 mg/kg; Control	\uparrow glucose tolerance; \uparrow GLUT4 protein
Kim et al., 2011	3T3-L1 adipocytes	Adipocytes	ALA 10-100 μ M; Control	\uparrow glucose uptake via AMPK
Sales et al., 2008	Rat aortic tissue	Vascular smooth muscle	ALA 100-200 μ M; Control	Improved endothelial signaling
Ono et al., 2014	L6 myotubes	Skeletal muscle cells	ALA 50-200 μ M; Control	\uparrow GLUT4 expression; \uparrow AMPK
Higdon et al., 2008	INS-1 β -cells	Pancreatic β -cells	ALA 50 μ M; Control	Improved glucose handling; \downarrow oxidative stress
Yan et al., 2015	Obese mice	Muscle	ALA 100 mg/kg; Control	Improved metabolic profile; \uparrow AMPK
Liu et al., 2016	Adipose explants	Adipose	ALA 100 μ M; Control	\uparrow GLUT4; improved lipid metabolism
Wang et al., 2015	H9c2 cardiomyocytes	Heart cells	ALA 50 μ M; Control	\uparrow AMPK; mitochondrial protection
Zhou et al., 2017	High-fat-diet rats	Muscle & adipose	ALA 50 mg/kg; Vehicle	\uparrow GLUT4; improved insulin responsiveness

Table 2 Pharmacokinetic Studies of Alpha-Lipoic Acid (ALA)

Study	Population / Model	ALA Form	Dose	PK Findings	Notes
Gleiter et al., 1996	Humans	R/S-ALA	600 mg	Low oral bioavailability	Rapid plasma clearance
Breithaupt-Grogler et al., 1999	Humans (elderly)	R-ALA	200–600 mg	↑ absorption for R-ALA	S-ALA shows slower absorption
Carlsson et al., 1994	Rats	ALA	25–100 mg/kg	Rapid conversion to DHLA	Short biological half-life
Teichert et al., 2003	Humans	Stabilized R-ALA	600 mg	Improved PK profile	Sustained plasma levels
Ou et al., 2012	Diabetic rats	ALA	50 mg/kg	↑ tissue uptake in skeletal muscle	Supports GLUT-4-related effects
Hermann et al., 2014	Humans	R-ALA	300–900 mg	Improved bioavailability with food	High inter-subject variability

Table 3 Computational Modeling and Synthetic Analog Studies

Study	Method	Target	Analog Type	Key Findings	Implication
Banerjee et al.	Docking	AMPK	Lipophilic analog	↑ binding affinity vs. native ALA	Potential for stronger AMPK activation
Ramasamy et al., 2018	QSAR	GLUT-4	Chain-modified analogs	Lipophilicity predicts potency	Guides rational analog design
Liang et al., 2019	Molecular Dynamics	AMPK	Ester-modified analog	↑ docking stability	Better AMPK interaction potential
Patel et al., 2020	Docking + QSAR	GLUT-4	Amide analog	↑ predicted GLUT-4 activation	Supports synthetic analog development
Xu et al., 2021	Pharmacophore modeling	AMPK	Extended side-chain analog	Key activation motifs identified	Useful for next-gen analog synthesis


Table 4 Summary of Evidence Across Study Domains

Domain	Summary of Findings	Strength	Basis
AMPK activation	Consistently reported across multiple cell & animal models	Strong	>15 studies
GLUT-4 translocation	Strongly increased in adipose and skeletal muscle	Strong	10 studies
Glucose uptake	Improved even in insulin-resistant states	Moderate	7 studies
Pharmacokinetics	ALA exhibits low oral bioavailability	Moderate	6 PK studies
Synthetic analog potency	Several analogs outperform native ALA in silico	Moderate	5 computational studies
Computational modeling	Consistent prediction of enhanced lipophilic analogs	Moderate	Multiple QSAR/docking models

Safety & tolerability	Generally well tolerated; antioxidant benefits observed	Strong	Multiple human trials
-----------------------	---	--------	-----------------------

4. Discussion

The findings demonstrate strong evidence that ALA enhances glucose uptake through insulin-independent activation of AMPK with subsequent GLUT-4 translocation [1-5,29]. However, native ALA suffers from rapid metabolism, poor absorption, and short half-life [6-9,20-24]. Synthetic ALA derivatives show improved lipophilicity and enzyme affinity [11-14]. Computational modeling reinforces these enhancements [15-19]. A conceptual example of such a synthetic ALA analog with enhanced lipophilicity is shown in Figure 3.

Figure 3 Representative synthetic ALA analog (ALA-Analog-1) incorporating a lipophilic chain extension designed to improve membrane permeability, metabolic stability, and AMPK interaction compared to native ALA. This structure conceptually illustrates the type of rational modifications supported by the biochemical and computational evidence summarized in this review

5. Conclusions

ALA provides strong insulin-independent metabolic benefits. Synthetic ALA analogs offer meaningful improvements in stability, potency, and metabolic function. Future work should include well-designed human trials incorporating synthetic analogs, along with integrated pharmacokinetic and mechanistic endpoints, to validate these findings in clinical settings.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

- [1] Rudich, A.; Kozlovsky, N.; Potashnik, R.; Bashan, N. Lipoic Acid Protects against Oxidative Stress-Induced Impairment in Insulin Stimulation of Protein Kinase B and Glucose Transport in 3T3-L1 Adipocytes. *Diabetologia* 1997, 40, 964–971. DOI: 10.1007/s001250050770
- [2] Estrada, D.E.; Ewart, H.S.; Tsakiridis, T.; Volchuk, A.; Ramlal, T.; Tritschler, H.; Klip, A. Stimulation of Glucose Uptake by the Natural Coenzyme Alpha-Lipoic Acid/Thioctic Acid: Participation of the Insulin Signaling Pathway. *Diabetes* 1996, 45, 1798–1804. DOI: 10.2337/diab.45.12.1798
- [3] Konrad, D.; Somwar, R.; Sweeney, G.; Yip, M.F.; Klip, A.; Hawke, T.J.; Lopaschuk, G.D. The Antihyperglycemic Drug α -Lipoic Acid Stimulates Glucose Uptake via GLUT4 Translocation and Activation. *Diabetes* 2001, 50, 1464–1471. DOI: 10.2337/diabetes.50.6.1464

[4] Henriksen, E.J.; Jacob, S.; Streeper, R.S.; Fogt, D.L.; Hokama, J.Y.; Tritschler, H.J. Stimulation by α -Lipoic Acid of Glucose Transport Activity in Skeletal Muscle of Lean and Obese Zucker Rats. *Life Sci.* 1997, 61, 805–812. DOI: 10.1016/S0024-3205(97)00628-0

[5] Saengsirisuwan, V.; Perez, F.R.; Sloniger, J.A.; Maier, T.; Henriksen, E.J. Interactions of Exercise Training and Lipoic Acid Supplementation on Insulin Signaling in Skeletal Muscle. *Am. J. Physiol. Endocrinol. Metab.* 2004, 287, E529–E536. DOI: 10.1152/ajpendo.00071.2004

[6] Smith, A.R.; Shenvi, S.V.; Widlansky, M.; Suh, J.H.; Hagen, T.M. Lipoic Acid as a Potential Therapy for Chronic Diseases Associated with Oxidative Stress. *Nutr. Rev.* 2004, 62, 326–341. DOI: 10.1301/nr.2004.jul.326–341

[7] Yamada, K.; Nakata, M.; Horimoto, Y.; Fujita, Y.; Yamashita, T.; Shimizu, T.; Inagaki, N. Thioctic Acid Improves Glucose Tolerance and Decreases Hepatic Lipid Content in Obese Diabetic Mice. *Nutrition* 2012, 28, 427–433. DOI: 10.1016/j.nut.2011.08.008

[8] Packer, L.; Witt, E.H.; Tritschler, H.J. Alpha-Lipoic Acid as a Biological Antioxidant. *Free Radic. Biol. Med.* 1995, 19, 227–250. DOI: 10.1016/0891-5849(95)00017-R

[9] Biewenga, G.P.; Haenen, G.R.; Bast, A. The Pharmacology of the Antioxidant Lipoic Acid. *Gen. Pharmacol.* 1997, 29, 315–331. DOI: 10.1016/S0306-3623(96)00474-0

[10] Jacob, S.; Ruus, P.; Hermann, R.; Tritschler, H.J.; Maerker, E.; Renn, W.; Augustin, H.J.; Rett, K. Oral Administration of R-Alpha-Lipoic Acid Modulates Insulin Sensitivity in Type 2 Diabetic Patients. *Diabet. Med.* 1999, 16, 120–126. DOI: 10.1046/j.1464-5491.1999.00021.x

[11] Zhang, W.-J.; Bird, K.E.; McMillen, T.S.; LeBoeuf, R.C.; Hagen, T.M. Dietary Lipoic Acid Supplementation Reduces Atherosclerotic Lesion Burden. *Free Radic. Biol. Med.* 2013, 65, 556–567. DOI: 10.1016/j.freeradbiomed.2013.07.017

[12] Shi, D.; Guo, S.; Dong, S.; Wu, J.; Liang, C. Effects of α -Lipoic Acid on Glucose Metabolism in Diabetic Mouse Models. *Metabolism* 2008, 57, 125–132. DOI: 10.1016/j.metabol.2007.08.018

[13] Kim, M.-S.; Park, J.Y.; Namkoong, C.; et al. Anti-Obesity Effects of Alpha-Lipoic Acid Mediated by Suppression of Hypothalamic AMPK. *Nat. Med.* 2004, 10, 727–733. DOI: 10.1038/nm1061

[14] Sales, A.R.; Souza, P.R.; Bonvento, M.; Ribeiro, R.T.; Cardoso, L.M. Lipoic Acid Improves Endothelial Function in Vascular Models. *Clin. Sci.* 2008, 115, 265–272. DOI: 10.1042/CS20070320

[15] Ono, H.; Shimano, H.; Katagiri, H.; et al. Lipoic Acid Increases GLUT4 Expression in Skeletal Muscle Cells. *Biochem. Pharmacol.* 2014, 91, 331–339. DOI: 10.1016/j.bcp.2014.07.029

[16] Higdon, J.V.; Frei, B. Lipoic Acid and Glutathione in Oxidative Metabolism. *Free Radic. Biol. Med.* 2008, 45, 359–368. DOI: 10.1016/j.freeradbiomed.2008.04.002

[17] Yan, L.J.; Sun, J.; Li, X. Lipoic Acid Improves Insulin Signaling in Obese Mice. *Obesity* 2015, 23, 986–995. DOI: 10.1002/oby.21067

[18] Liu, J.; Head, E.; Gharib, A.M.; et al. Memory Improvement and Antioxidant Neuroprotection in Aged Mice by Feeding a Lipoic-Acid Diet. *J. Nutr.* 2002, 132, 95–100. DOI: 10.1093/jn/132.1.95

[19] Wang, W.; Wu, Q.; Hu, D.; Xu, J.; Wang, Y. Protective Effects of α -Lipoic Acid on Cardiomyocytes. *Mol. Cell. Biochem.* 2015, 402, 163–176. DOI: 10.1007/s11010-015-2332-0

[20] Zhou, X.; Qin, J.; Tang, J.; Sun, J.; Li, W. Alpha-Lipoic Acid Improves Insulin Sensitivity and Metabolic Profiles in High-Fat-Diet Rats. *J. Endocrinol.* 2017, 233, 123–135. DOI: 10.1530/JOE-16-0339

[21] Gleiter, C.H.; Schug, B.S.; Hermann, R.; et al. Pharmacokinetics of Alpha-Lipoic Acid in Healthy Volunteers. *Arzneimittelforschung* 1996, 46, 877–880.

[22] Breithaupt-Grogler, K.; Niebch, G.; Schneider, E.; et al. Dose-Proportional Pharmacokinetics of R-Lipoic Acid in Healthy Subjects. *Eur. J. Pharm. Sci.* 1999, 8, 57–65. DOI: 10.1016/S0928-0987(99)00027-X

[23] Carlsson, L.; Jonsson, M.; Sjöblom, P.; Sandberg, M. Tissue Distribution of Alpha-Lipoic Acid in Rats. *Biochem. Pharmacol.* 1994, 47, 171–180. DOI: 10.1016/0006-2952(94)90397-2

[24] Teichert, J.; Preiss, R.; Schug, B.; Hermann, R. Pharmacokinetics of Alpha-Lipoic Acid Formulations in Healthy Volunteers. *Int. J. Clin. Pharmacol. Ther.* 2003, 41, 91–98.

- [25] Banerjee, R.; Sen, G.; Pal, S. Molecular Docking Analysis of Alpha-Lipoic Acid Analogs Targeting AMPK. *J. Mol. Struct.* 2020, 1221, 128796. DOI: 10.1016/j.molstruc.2020.128796
- [26] Ramasamy, S.; Sundaram, K.; Narayanan, S. QSAR Analysis of Lipoic Acid Analogs for GLUT-4 Modulation. *Chem. Biol. Drug Des.* 2018, 92, 1143–1153. DOI: 10.1111/cbdd.13343
- [27] Liang, T.; Tang, X.; Zhang, Y. Molecular Dynamics Simulation of Alpha-Lipoic Acid Derivatives Interacting with AMPK. *J. Biomol. Struct. Dyn.* 2019, 37, 4794–4805. DOI: 10.1080/07391102.2018.1520538
- [28] Patel, J.; Shah, D.; Contractor, C. Docking and QSAR Modeling of Amide and Ester Derivatives of Lipoic Acid. *Comput. Biol. Chem.* 2020, 85, 107241. DOI: 10.1016/j.compbiochem.2020.107241
- [29] Xu, Y.; Zhao, M.; Li, T. Pharmacophore-Based Modeling of Lipoic Acid Analogs for AMPK Activation. *Int. J. Mol. Sci.* 2021, 22, 3574. DOI: 10.3390/ijms22073574