RRRRR

World Journal of Advanced Research and Reviews W,

eISSN: 2581-9615 CODEN (USA): WIARAI R vanced

Cross Ref DOL: 10.30574/wjarr Begews
WJARR Journal homepage: https://wjarr.com/ o
(REVIEW ARTICLE) W) Check for updates

Al-Driven DevOps Acceleration: Orchestrating CI/CD Pipelines with Generative
Models

Amar Gurajapu ”

AT and T, Network Systems, New Jersey, United States.

World Journal of Advanced Research and Reviews, 2026, 29(01), 1033-1038

Publication history: Received on 29 November 2025; revised on 15 January 2026; accepted on 19 January 2026

Article DOI: https://doi.org/10.30574 /wjarr.2026.29.1.0154

Abstract

Modern software delivery pipelines face growing complexity and manual overhead when authoring code scaffolds, tests,
and infrastructure configurations. We introduce “DevGen” an integrated Generative-Al(GenAl) assistant that embeds
large language models at four pivotal stages of a CI/CD workflow, which includes feature breakdown, code templating,
automated test synthesis, and pipeline authoring. By integrating DevGen into a GitHub Actions environment, we
compare its performance against a traditional toolchain over multiple sprints. Our empirical analysis demonstrates a
30 % reduction in story completion lead time, a 25 % increase in automated test coverage, and measurable
improvements in developer satisfaction. We conclude with recommendations for domain-specialized fine-tuning,
closed-loop feedback, and security policy generation to further enhance Al-driven delivery.

Keywords: DevOps; CI/CD; Generative Al; LLM Integration; Pipeline Automation; Developer Productivity

1. Introduction

Modern software organizations rely on continuous integration and continuous delivery (CI/CD) pipelines to deliver
features rapidly and reliably. Even though we have lot of tools, we have observed that most of the tasks in a delivery
pipeline remain manual and repetitive

Drafting boilerplate code for new endpoints or services

Developing comprehensive suites for unit and integration tests

Setting up manifests for infrastructure-as-code and workflow YAML configurations
Maintaining alignment with coding standards established by the organization

These manual steps create bottlenecks. Teams often spend significant time on repetitive tasks rather than core business
logic, and mistakes in tests or pipeline configuration can introduce bugs or delays. Meanwhile, large language models
(LLMs) have demonstrated impressive capability at code generation, test writing, and configuration suggesting an
opportunity to automate much of this process.

However, simply invoking an LLM in an IDE or via adhoc scripts does not guarantee end-to-end pipeline integration or
measurable productivity gains. Key challenges include

e Context Preservation - Feeding the LLM project context (user stories, coding conventions, existing modules) so
its output aligns with the team’s standards.

e Workflow Orchestration - Embedding LLM calls into a CI/CD system (e.g., GitHub Actions) so that generated
artifacts like code, tests, YAML are automatically committed, validated, and deployed.

* Corresponding author: Amar Gurajapu; https://orcid.org/0009-0002-9038-2200

Copyright © 2026 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0.

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjarr.com/
https://doi.org/10.30574/wjarr.2026.29.1.0154
https://crossmark.crossref.org/dialog/?doi=10.30574/wjarr.2026.29.1.0154&domain=pdf

World Journal of Advanced Research and Reviews, 2026, 29(01), 1033-1038

e Quality Assurance - Ensuring Al-generated code and tests meet quality thresholds and do not introduce security
risks.

e Usability & Feedback - Providing developers with clear prompts, outputs, and a feedback loop to refine
generated artifacts over time.

To address these challenges, we can rely on DevGen framework that integrates GenAl at four pivotal stages of a CI/CD
pipeline

1.1. Feature Breakdown

DevGen automates the process of translating user stories into actionable tasks, clearly defined API specifications, and
well-structured data models. This ensures that development work is closely aligned with business requirements and
provides a solid foundation for subsequent stages of the pipeline.

1.2. Code Scaffolding

The framework generates the initial skeleton of a project, including module stubs, in a manner consistent with the
chosen programming language and framework. This scaffolding accelerates project setup and enforces adherence to
established conventions, reducing manual setup effort and risk of inconsistency.

1.3. Test Synthesis

DevGen produces both unit and integration tests that address common edge cases and recurring patterns. By
automating test creation, the framework helps ensure comprehensive test coverage and aids in early detection of
potential bugs.

1.4. Pipeline Authoring

The system drafts CI/CD workflow definitions, such as GitHub Actions YAML files, to seamlessly connect build, test, lint,
and deployment steps. This automation streamlines pipeline setup, promotes best practices, and reduces the likelihood
of configuration errors.

2. Solution approach

Our work involves embedding generative Al into GitHub Actions workflow so that each stage can run automatically or
be invoked by a developer with a single command. A lightweight Python helper exemplifies how DevGen calls the LLM
during a pipeline run. DevGen is just going to offer a blueprint for accelerating software development on a scale. Few of
the existing approaches still have gaps which is the primary focus of this paper.

e Al-Driven Code Completion - GitHub Copilot and similar tools suggest code snippets in IDEs[1] but are limited
to ad-hoc prompts and lack end-to-end pipeline context.

e Automated Test Generation - Tools like EvoSuite[2] generate Java unit tests via search algorithms but LLMs
offer richer natural language testing.

e JaC Synthesis - Recent explorations leverage LLMs to draft Terraform or Kubernetes manifests[3] but struggle
with organizational conventions.

1034

World Journal of Advanced Research and Reviews, 2026, 29(01), 1033-1038

DevGen Pipeline

User Story

Feature Breakdown

l

Requirement Refinement

Code Scaffolding

l

Code Generation

Test Synthesis

l

Automated Test Generation

Pipeline Authoring

Pipeline Configuration

Execute CI/CD

l

CI/CD Workflow

Figure 1 Devgen workflow

We structure DevGen into four coordinated stages. Each stage has clear inputs, outputs, and integration points. To
illustrate the workflow, here is an example to depict the different components and their output.

2.1. Feature Breakdown

Table 1 Derive Yaml from User Story

Goal Turn a high-level story into concrete tasks, API specs, and data models.

Prompt "You are a REST API architect. Given the user story:

'As a user, [want to reset my password via email link.'

Produce:

1. A numbered task list.

2. REST endpoints with method, path, request/response schema.
3.JSON data model stubs.

Integration Snippet | request.post(<LLM>)

Output Yaml sketch (spec.yaml)

1035

2.2. Code Scaffolding

World Journal of Advanced Research and Reviews, 2026, 29(01), 1033-1038

Table 2 Generate reset.py

Goal

Generate a service skeleton matching the API spec

Prompt

You are an expert Python/Flask developer. Given this API spec in YAML:
<insert spec.yaml from previous section>
Generate a Flask module ‘reset.py’ that:

e Implements POST /reset-request and POST /reset-confirm

* Returns JSON responses with proper status codes

Include comments and docstrings.

Integration Snippet | request.post(<yaml spec>)

Output

Flask code (reset.py)

2.3. Automated Test Synthesis

Table 3 Generate testing snippet

Goal

Create pytest tests covering normal and edge cases.

Prompt

You are a senior QA engineer. Given this function:
“python
def send_reset_email(user_email: str) -> bool:
sends email and returns True if successful
Write pytest tests that simulate:
valid email success
invalid email format (assert exception)
SMTP failure (mock and assert False) Include fixtures and mock setup.

Integration Snippet | request.post(<LLM>)

Output

test_reset.py based on pytest

2.4. Pipeline Authoring

Table 4 Generate ci.yml

Goal

Draft a GitHub Actions YAML for build, test, and deploy.

Prompt

You are a DevOps engineer. Generate a ".github/workflows/ci.yml that:

- checks out the repo

- sets up Python 3.9

- installs ‘requirements.txt’

- runs ‘pytest --maxfail=1 --disable-warnings’

- builds a Docker image tagged “web-app:latest’

- pushes to Docker Hub using "'DOCKER_USERNAME" and 'DOCKER_PASSWORD' secrets
Respond in valid YAML.

Integration Snippet

request.post(<LLM>)

Output

Yaml sketch ‘ci.yml’

1036

World Journal of Advanced Research and Reviews, 2026, 29(01), 1033-1038

3. Results and discussion

Table 5 Improvements

TeamB TeamA
Metric (Manual) (DevGen) A (%)
Leadtime
per story 6.0+1.2 4.2+0.9 -30%
(hrs)
Test
coverage 605 754 +25%
(%)
Clduration 135,08 86+07 -16%
(mins)
a‘fé?facmn 31404 40%03 +29%

e Efficiency Gains: DevGen reduced manual coding time by ~2 hrs/feature.
e Quality Impact: 15 % more review comments on Al code, but 10 % fewer runtime defects.
e Prompt Engineering Overhead: Initial template tuning (~4 hrs) amortized after three features.

4. Conclusion

We introduced DevGen, a generative-Al assistant integrated into CI/CD that yields measurable reductions in lead time,
higher test coverage, and improved developer satisfaction. Future improvements can consider domain specific tuning,
security controls and Grafana integration.

Compliance with ethical standards

Acknowledgments

Thanks to Anurag Agarwal for support during review phase.

References
[1] “Build software better, together,” GitHub, 2024. https://github.com/copilot

[2] G. Fraser and A. Arcuri, “Automated Test Generation for Java Generics.” Accessed: Jan. 11, 2026. [Online].
Available: https://www.evosuite.org/wp-content/papercite-data/pdf/swqd14_generics.pdf

[3] J.Lee, S. Kang, and L.-Y. Ko, “An LLM-driven Framework for Dynamic Infrastructure as Code Generation,” pp. 9-
10, Dec. 2024, doi: https://doi.org/10.1145/3704440.3704778.

[4] A.Gurajapu. “Leveraging Artificial Intelligence to Bridge Execution Gaps in SAFe®-Scaled Agile Based Programs.”
World Journal of Advanced Engineering Technology and Sciences, vol. 18, no. 1, Jan. 2026, pp. 001-6,
https://doi.org/10.30574/wjaets.2026.18.1.1585

[5] A Gurajapu. “Shift-Left Security Validation of Containers via Kubernetes Admission Webhook.” Frontiers in
Computer Science and Artificial Intelligence, vol. 5, no. 2, Jan. 2026, pp. 63-68,
https://doi.org/10.32996/jcsts.2026.5.1.6

[6] A. Gurajapu. “Static Analysis of Kubernetes Object Definitions Using Kube-Score: Enhancing Security and
Resilience.” European Journal of Information Technologies and Computer Science, unknown, Dec. 2025,
https://doi.org/10.13140/RG.2.2.22384.11528

[7] A. Gurajapu. “Swap Kubernetes Secrets without Application Disruption: Comparative Study and EBPF-Powered
Kernel Interception Framework.” World Journal of Advanced Engineering Technology and Sciences, vol. 18, no. 1,
Jan. 2026, pp. 066-70, https://doi.org/10.30574/wjaets.2026.18.1.0005

1037

World Journal of Advanced Research and Reviews, 2026, 29(01), 1033-1038

A. Gurajapu, and Anurag Agarwal. “Orchestrating Adaptive Resilience and Continuity Restoration in Cloud-Native
Environments.” International Journal of Inventions in Engineering & Science Technology, vol. 12, no. 1, Jan. 2026,
pp. 1-6, https://doi.org/10.37648/ijiest.v12i01.001

A. Gurajapu. “Secure Runtime Encryption of Critical Source-Code Functions for IP Protection.” World Journal of
Advanced Research and Reviews, vol. 29, no. 1, GSC Online Press, Jan. 2026, pp. 734-37,
https://doi.org/10.30574/wjarr.2026.29.1.0079

[10] Gurajapu, Amar. “Best Practices for Monitoring Kubernetes Clusters: Reliability and Minimise Operational
Overhead.” World Journal of Advanced Engineering Technology and Sciences, vol. 18, no. 1, GSC Online Press, Jan.
2026, pp- 007-015, https://doi.org/10.30574/wjaets.2026.18.1.0002

[11] A. Gurajapu, “Towards a Futuristic Security Roadmap: Advanced Strategies.” Journal of Computer Science and
Technology Studies, vol. 8, no. 1, Al-Kindi Center for Research and Development, Jan. 2026, pp. 31-39,
https://doi.org/10.32996/jcsts.2025.8.1.2

About the authors

The key author works for AT&T and has extensive work experience on DevOps, SDN, Cloud
Computing, Artificial Intelligence, Cybersecurity which aligns with the citation.

Amar Gurajapu is Principal Member of Technical Staff at AT&T. Amar has 25 years of experience
in Telecom Software Engineering. He is leading for key initiatives for Vice President portfolio
in Network systems domain which are directly aligned with AT&T organization goals

1038

