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Abstract 

This work presents an analytical study of several partial differential equations commonly used to model physical 
phenomena such as heat diffusion, wave propagation, and fluid flow. Emphasis is placed on the use of trigonometric 
functions to derive exact or synthetic solutions. The heat equations are then is examined using Fourier series and a 
complex-variable approach. The linearized Saint-Venant equations are then analyzed to describe shallow water wave 
propagation. The Burgers, in both inviscid and viscous forms, is used to illustrate nonlinear effects, damping, and shock 
formation. Finally, the Korteweg-de Vrie equation is discussed through its soliton solution, highlighting the balance 
between nonlinearity and dispersion. These results underline the importance of analytical and trigonometric methods 
in the modeling of thermal and hydraulic phenomena. 

Keywords: Partial differential equations; Trigonometric functions; Heat equation; Saint-Venant equations; Burgers 
equation; Korteweg-de Vrie equation; Analytical solutions 

1. Introduction

Partial differential equations (PDEs) play a central role in the mathematical modeling of many physical phenomena, 
such as heat diffusion, wave propagation, and fluid flow [1,2]. In this document, we focus on several classical PDEs-the 
heat equation, the Saint-Venant equations Partial, the Burgers equation, and the Korteweg-de Vries equation-for which 
simple analytical solutions can be constructed using trigonometric functions. 

The use of sine and cosine functions naturally arises when the phenomena under study exhibit periodic or wave-like 
behavior. These functions form the basis of the Fourier method, which allows a solution to be represented as a 
superposition of elementary wave [4 ,5]. This approach is particularly well suited to the study of the heat equation, 
where it clearly describes the temporal evolution of temperature under given boundary conditions [5]. 

Furthemore, trigonometric functions also play an important role in the description of waves in fluid mechanics. The 
Saint-Venant equations, for example, model free-surface flows and the propagation of floods and inundation 
phenomena, especially in large river basins. 

The objective of this work is to demonstrate, through several representative examples, how trigonometric functions can 
be used to construct and verify analytical solutions of PDEs. The study thus aims to establish a clear link between the 
mathematical tools taught in trigonometry and their concrete applications in physics and hydraulics. 

http://creativecommons.org/licenses/by/4.0/deed.en_US
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1.1. Heat equation 

The heat equation describes the temporal evolution of temperature in a continuoius medium and constitutes a 
fundamental model for thermal diffusion phenomena [1,4]. It can be written as follows; 

𝝏𝒖

𝝏𝒕
− 𝜶

𝝏𝟐𝒖

𝝏𝒙𝟐 = 𝟎           (1.1). 

Where  

𝑢(𝑥, 𝑡) denotes the temperature at spatial position 𝑥 and time 𝑡. 

𝛼 denotes the thermal diffusivity of the medium, which characterizes the rate at which heat is transferred within the 
material. 

1.1.1. Classical solution based on Fourier series 

By considering a bar of finite length 𝐿 with homogeneous boundary condition (𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0), the solution of the 
heat equation can be expressed in the form of a Fourier series involving sine functions and decaying exponentials [4,5]. 
It is given by : 

𝑢(𝑥, 𝑡) = 𝐴 sin (
𝑛𝜋𝑥

𝐿
) exp (−𝛼 (

𝑛𝜋

𝐿
)
2

𝑡) 

with  

𝑛 = 1; 2; 3;… denotes the mode number, corresponding to the number of thermal peaks along the bar; 

𝐴 the initial maximum temperature amplitude; 

sin (
𝑛𝜋𝑥

𝐿
) represents the spatial distribution of the temperature field along the bar; 

exp (−𝛼 (
𝑛𝜋

𝐿
)
2

𝑡) characterizes the temporal decay of each mode, with higher modes (large 𝑛) or shorter bars (smaller 

𝐿) exhibiting faster attenuation. 

This combination of a sine function for the spatial dependence and an exponential function for the temporal evolution 
results from the homogeneous Dirichlet boundary conditions imposed at the ends of the bar. Since the temprature 
vanishes at the boundaries, sine functions naturally satisfy these conditions, as sin(0) = 0. Furthermore, when the 
boundaries are maintained at zero temperature, thermal energy dissipates over time, leading to a gradual decay of the 
temperature field [5]. 

Why 𝑢(𝑥, 𝑡) = 𝐴 sin (
𝑛𝜋𝑥

𝐿
) exp (−𝛼 (

𝑛𝜋

𝐿
)

2

𝑡)  is a synthetic solution of (1.1) ? 

𝜕𝑢

𝜕𝑡
= −𝛼 (

𝑛𝜋

𝐿
)

2

𝐴 sin (
𝑛𝜋𝑥

𝐿
) exp (−𝛼 (

𝑛𝜋

𝐿
)
2

𝑡)  ; 

𝜕𝑢

𝜕𝑥
=

𝑛𝜋

𝐿
𝐴 cos (

𝑛𝜋

𝐿
𝑥) exp (−𝛼 (

𝑛𝜋

𝐿
)

2

𝑡)  ; 

𝜕2𝑢

𝜕𝑥2 = −(
𝑛𝜋

𝐿
)
2

𝐴 sin (
𝑛𝜋𝑥

𝐿
) exp (−𝛼 (

𝑛𝜋

𝐿
)

2

𝑡)  ; 

As a result, 

𝜕𝑢

𝜕𝑡
− 𝛼

𝜕2𝑢

𝜕𝑥2
= −𝛼 (

𝑛𝜋

𝐿
)
2

𝐴 sin (
𝑛𝜋𝑥

𝐿
) exp (−𝛼 (

𝑛𝜋

𝐿
)

2

𝑡) + 𝛼 (
𝑛𝜋

𝐿
)

2

𝐴 sin (
𝑛𝜋𝑥

𝐿
) exp (−𝛼 (

𝑛𝜋

𝐿
)

2

𝑡) = 0 
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1.1.2. Non-classical solution obtained using the complex method 

Here, we assume a semi-infinite rod, that is,  𝑥 > 0. 

We consider the one-dimensional heat equation with an oscillating boundary condition at the origin : 𝑢(0, 𝑡) =
𝐴 cos(𝜔𝑡).  

We seek a steady-state solution in the form of a complex wave, which allows us to use the tools of complex analysis 
[3,6]. It is expressed as : 

𝐮(𝑥, 𝑡) = 𝜑(𝑥) exp(𝑖𝜔𝑡)           (1.2) 

where 𝜑(𝑥) is the complex amplitude depending on position. By substituting (1.2) into (1.1), we obtain; 

𝜕(𝜑(𝑥)exp (𝑖𝜔𝑡))

𝜕𝑡
= 𝛼

𝜕2(𝜑(𝑥)exp (𝑖𝜔𝑡))

𝜕𝑥2
⇒ 𝑖𝜔𝜑(𝑥) exp(𝑖𝜔𝑡) = 𝛼

𝑑2𝜑

𝑑𝑥2
exp(𝑖𝜔𝑡) 

By simplifyting with exp(𝑖𝜔𝑡), we obtain an ordinary differential equation (ODE) for 𝜑(𝑥):  

𝑑2𝜑

𝑑𝑥2
−

𝑖𝜔

𝛼
𝜑(𝑥) = 0        (1.3) 

This last equation is of the form 𝜑′′ − 𝑘2𝜑 = 0 with 𝑘2 =
𝑖𝜔

𝛼
. 

To extract 𝑘, we use the square root of the number 𝑖 , so 𝑘 = ±(1 + 𝑖)√
𝜔

2𝛼
. 

Therefore, 𝜑(𝑥) = 𝑐1 exp(−(𝛾 + 𝑖𝛾)𝑥) + 𝑐2 exp((𝛾 + 𝑖𝛾) 𝑥)  with 𝛾 = √
𝜔

2𝛼
 . 

Since the temperature must remain finite when 𝑥 tends toward + ∞; we must impose𝑐2 = 0, otherwise the term would 
diverge.  

And to obtain this, we use the boundary condition : 𝜑(0) = 𝐴 ⇒ 𝑐1 = 𝐴. 

The complex amplitude is therefore :               𝜑(𝑥) = 𝐴𝑒𝑥𝑝(−𝛾𝑥)exp (−𝑖𝛾𝑥). 

Consequently, the real solution 𝑢(𝑥, 𝑡) is the real part of the complex solution 𝐮(𝑥, 𝑡): 

𝑢(𝑥, 𝑡) = 𝑅𝑒(𝐴 exp(−𝛾𝑥)exp (−𝑖𝛾𝑥) exp(𝑖𝜔𝑡) ) = 𝐴exp(−𝛾𝑥)𝑅𝑒(exp(𝑖(𝜔𝑡 − 𝛾𝑥))) 

However, according to Euler's identity [6], exp(𝑖𝜃) = cos 𝜃 + 𝑖 sin 𝜃, so we obtain the final analytical solution :  

 𝑢(𝑥, 𝑡) = 𝐴 exp(−𝛾𝑥) cos(𝜔𝑡 − 𝛾𝑥) = 𝐴 exp (−𝑥√
𝜔

2𝛼
) cos (𝜔𝑡 − 𝑥√

𝜔

2𝛼
) . 

1.2. Saint-Venant equation  

To find a simple solution using trigonometric functions, we imagine that the water is almost calm with a constant depth 
𝐻, and that we add a very small wave to it. 

When disturbances are small, Saint-Venant's equations can be linearized to describe wave propagation in shallow water 
[7,8]. 

 We obtain two equations that relate the small wave ℎ (the change in height) and the velocity 𝑢 : 
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{

𝝏𝒉

𝝏𝒕
+ 𝑯

𝝏𝒖

𝝏𝒙
= 𝟎

𝝏𝒖

𝝏𝒕
+ 𝒈

𝝏𝒉

𝝏𝒙
= 𝟎

              (2.1) 

Where 𝑔 is the force of gravity that pulls water downward. 

We consider {
𝑢(𝑥, 𝑡) = 𝐴√

𝑔

𝐻
cos(𝑘𝑥 − 𝜔𝑡)

ℎ(𝑥, 𝑡) = 𝐻 + 𝐴 cos(𝑘𝑥 − 𝜔𝑡)

                  (2.2) 

as a synthetic solution of (2.1), with 

𝑨 : amplitude, i.e., the maximum height of the peak ; 

𝒌 : represents the number of waves; 

𝝎 : is the frequency. 

The choice of the cosine function is explained by the fact that we are looking for a solution that resembles a wave, i.e., a 
moving bump. But for this solution to work, the wave must move at a specific speed, denoted by 𝑐. This speed depends 
on the depth 𝐻 and gravity 𝑔 [9], so 

𝑐 =
𝜔

𝑘
= √𝑔𝐻 

This means that the deeper the wate (𝐻 is large), the faster the wave travels.. 

Furthermore, with (2.2), we obtain a perfect wave that moves to the right without ever changing shape. The cosine 
function creates the repetitive shape of the waves we see when we throw a stone into the water. 

Let's verify that the system (2.2) does indeed form an analytical solution to (2.1) 

.
𝜕ℎ

𝜕𝑡
= 𝐴𝑘√𝑔𝐻 sin(𝑘𝑥 − 𝜔𝑡) and  

𝜕ℎ

𝜕𝑥
= −𝑘𝐴 sin(𝑘𝑥 − 𝜔𝑡)  ; 

𝜕𝑢

𝜕𝑡
= 𝐴𝑘𝑔 sin(𝑘𝑥 − 𝜔𝑡) and  

𝜕𝑢

𝜕𝑥
= −𝐴𝑘

√𝑔𝐻

𝐻
sin(𝑘𝑥 − 𝜔𝑡)  ; 

As a result,  
𝜕ℎ

𝜕𝑡
+ 𝐻

𝜕𝑢

𝜕𝑥
=  𝐴𝑘√𝑔𝐻 sin(𝑘𝑥 − 𝜔𝑡) − 𝐻 𝐴𝑘

√𝑔𝐻

𝐻
sin(𝑘𝑥 − 𝜔𝑡) = 0 

And also,  
𝜕𝑢

𝜕𝑡
+ 𝑔

𝜕ℎ

𝜕𝑥
= 𝐴𝑘𝑔 sin(𝑘𝑥 − 𝜔𝑡) − 𝑔𝑘𝐴 sin(𝑘𝑥 − 𝜔𝑡) = 0.  

1.3. Burgers equation  

The Burgers equations are mathematical equations used to describe how waves or fluids move [10]. They are used to 
model nonlinear flows, understand wave and shock formation, and test numerical methods used for more complex 
models such as the Navier-Stokes model or the Saint-Venant model. 

1.3.1. One-dimensional Burgers equation without viscosity 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 0  (3.1) 

This equation describes the formation of discontinuities, i.e., shocks [11].  It is used as a simple model to describe 
idealized shallow flows.   

By imposing a sinusoidal initial condition𝑢(𝑥, 0) = 𝐴 sin(𝑘𝑥), The exact solution to (3.2) is given by : 

𝑢(𝑥, 𝑡) = 𝐴 sin(𝑘(𝑥 − 𝑢𝑡)) 
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Where  
𝐴 denotes the amplitude; 
𝑘 is the wave number; 
𝑢 is the propagation velocity. 

Indeed,         
𝜕𝑢

𝜕𝑡
= −𝑘𝐴𝑢 cos(𝑘(𝑥 − 𝑢𝑡)) and 

𝜕𝑢

𝜕𝑥
= 𝑘𝐴 cos(𝑘(𝑥 − 𝑢𝑡)),  therefore 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= −𝑘𝐴𝑢 cos(𝑘(𝑥 − 𝑢𝑡)) + 𝑢𝑘𝐴 cos(𝑘(𝑥 − 𝑢𝑡)) = 0. 

Hence the result. 

1.3.2. One-dimensional Burgers equation with viscosity 

We consider the following viscous Burgers equation 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 𝜈

𝜕2𝑢

𝜕𝑥2   ……. (3.3) 

Where 𝜈 > 0 is the viscosity. 

To solve this equation, mathematicians use a method called the Cole-Hopf transformation [12,13]. This involves 
replacing 𝑢 with another function 𝜙 such that 

𝑢(𝑥, 𝑡) = −2𝜈
1

𝜙

𝜕𝜙

𝜕𝑥
             ……….         (3.4) 

to arrive at the heat equation as a function of 𝜙 and  𝜈 [1,3]. However, the latter can be solved using trigonometric 
functions.   

By choosing 𝜙(𝑥, 𝑡) = 𝑎0 + 𝑎1exp (−𝜐𝑘2𝑡) cos(𝑘𝑥) and substituting it into (3.4), we obtain an analytical solution to 
(3.3) given by :  

𝑢(𝑥, 𝑡) =
2𝜈𝑎1𝑘𝑒𝑥𝑝(−𝜈𝑘2𝑡) sin(𝑘𝑥)

𝑎0 + 𝑎1𝑒𝑥𝑝(−𝜈𝑘2𝑡) cos(𝑘𝑥)
 

With 
𝑎0 and 𝑎1 are real numbers; 
𝑘 is the wave frequency (a parameter that controls the distance between waves); 

The exponential 𝑒𝑥𝑝(−𝜈𝑘2𝑡) shows that the wave flattens out over time due to viscosity. 

Indeed, 

𝜕𝑢

𝜕𝑡
=

−2𝜈2𝑎1𝑘
3 exp(−𝜐𝑘2𝑡) 𝑠𝑖𝑛 𝑘𝑥    (𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) cos 𝑘𝑥)

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)2
 

−2𝜈𝑎1𝑘 exp(−𝜐𝑘2𝑡) 𝑠𝑖𝑛 𝑘𝑥 (−𝜈𝑎1𝑘
2 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)2
 

           =
−2𝜈2𝑎0𝑎1𝑘

3 exp(−𝜐𝑘2𝑡) 𝑠𝑖𝑛 𝑘𝑥 − 2𝜈2𝑎1
2𝑘3 exp(−2𝜐𝑘2𝑡) cos 𝑘𝑥 𝑠𝑖𝑛 𝑘𝑥

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)2
 

+
2𝜈2𝑎1

2𝑘3 exp(−2𝜐𝑘2𝑡) cos 𝑘𝑥 𝑠𝑖𝑛 𝑘𝑥

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)2
 

=
−2𝜈2𝑎0𝑎1𝑘

3 exp(−𝜐𝑘2𝑡) 𝑠𝑖𝑛 𝑘𝑥

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)2
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𝜕𝑢

𝜕𝑥
=

2𝜈𝑎1𝑘
2 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥 (𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) cos 𝑘𝑥)

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)2
 

−
2𝜈𝑘𝑎1 exp(−𝜐𝑘2𝑡) sin 𝑘𝑥(−𝑘𝑎1 exp(−𝜐𝑘2𝑡) sin 𝑘𝑥)

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)2
 

=
2𝜈𝑎0𝑎1𝑘

2 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥 + 2𝜈𝑎1
2𝑘2 exp(−2𝜐𝑘2𝑡)(cos 𝑘𝑥)2 + 2𝜈𝑎1

2𝑘2 exp(−2𝜐𝑘2𝑡)(sin 𝑘𝑥)2

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)2
 

=
2𝜈𝑎0𝑎1𝑘

2 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥 + 2𝜈𝑎1
2𝑘2 exp(−2𝜐𝑘2𝑡)((cos 𝑘𝑥)2 + (sin 𝑘𝑥)2)

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)2
 

=
2𝜈𝑎0𝑎1𝑘

2 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥 + 2𝜈𝑎1
2𝑘2 exp(−2𝜐𝑘2𝑡)

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)2
 

𝑢
𝜕𝑢

𝜕𝑥
=

2𝜈𝑎1𝑘𝑒𝑥𝑝(−𝜈𝑘2𝑡) sin(𝑘𝑥)

𝑎0 + 𝑎1𝑒𝑥𝑝(−𝜈𝑘2𝑡) cos(𝑘𝑥)
×

2𝜈𝑎0𝑎1𝑘
2 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥 + 2𝜈𝑎1

2𝑘2 exp(−2𝜐𝑘2𝑡)

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)2
 

=
4𝜈2𝑎0𝑎1

2𝑘3𝑒𝑥𝑝(−2𝜈𝑘2𝑡) sin(𝑘𝑥) cos(𝑘𝑥) +4𝜈2𝑎1
3𝑘3𝑒𝑥𝑝(−2𝜈𝑘2𝑡) sin(𝑘𝑥)

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)3
 

𝜕2𝑢

𝜕𝑥2
=

−2𝜈𝑎0𝑎1𝑘
3 exp(−𝜐𝑘2𝑡) 𝑠𝑖𝑛 𝑘𝑥(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)2

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)4
 

−
2(2𝜈𝑎0𝑎1𝑘

2 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥 + 2𝜈𝑎1
2𝑘2 exp(−2𝜐𝑘2𝑡))

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)4
× 

(−𝑘𝑎1 exp(−𝜐𝑘2𝑡) sin 𝑘𝑥)(𝑎0 + 𝑎1𝑒𝑥𝑝(−𝜈𝑘2𝑡) cos(𝑘𝑥)) 

=
−2𝜈𝑎0𝑎1𝑘

3 exp(−𝜐𝑘2𝑡) 𝑠𝑖𝑛 𝑘𝑥(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)3
 

−
2(2𝜈𝑎0𝑎1𝑘

2 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥 + 2𝜈𝑎1
2𝑘2 exp(−2𝜐𝑘2𝑡))(−𝑘𝑎1 exp(−𝜐𝑘2𝑡) sin 𝑘𝑥)

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)3
 

=
−2𝜈𝑎0

2𝑎1𝑘
3 exp(−𝜐𝑘2𝑡) 𝑠𝑖𝑛 𝑘𝑥 + 2𝜈𝑎0𝑎1

2𝑘3 exp(−2𝜐𝑘2𝑡) sin 𝑘𝑥 𝑐𝑜𝑠 𝑘𝑥 + 4𝜈𝑎1
3𝑘3 exp(−3𝜐𝑘2𝑡) sin 𝑘𝑥

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)3
 

𝜈
𝜕2𝑢

𝜕𝑥2
=

−2𝜈2𝑎0
2𝑎1𝑘

3 exp(−𝜐𝑘2𝑡) 𝑠𝑖𝑛 𝑘𝑥 + 2𝜈2𝑎0𝑎1
2𝑘3 exp(−2𝜐𝑘2𝑡) sin 𝑘𝑥 𝑐𝑜𝑠 𝑘𝑥

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)3
 

+
4𝜈2𝑎1

3
𝑘3 exp(−3𝜐𝑘2𝑡) sin 𝑘𝑥

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)3
 

𝜕𝑢

𝜕𝑡
+  𝑢

𝜕𝑢

𝜕𝑥
=

−2𝜈2𝑎0𝑎1𝑘
3 exp(−𝜐𝑘2𝑡) 𝑠𝑖𝑛 𝑘𝑥

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)2
+ 

4𝜈2𝑎0𝑎1
2𝑘3𝑒𝑥𝑝(−2𝜈𝑘2𝑡) sin(𝑘𝑥) cos(𝑘𝑥) +4𝜈2𝑎1

3𝑘3𝑒𝑥𝑝(−2𝜈𝑘2𝑡) sin(𝑘𝑥)

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)3
 

=
−2𝜈2𝑎0𝑎1𝑘

3 exp(−𝜐𝑘2𝑡) 𝑠𝑖𝑛 𝑘𝑥 (𝑎0 + 𝑎1𝑒𝑥𝑝(−𝜈𝑘2𝑡) cos(𝑘𝑥))

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)3
+ 
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4𝜈2𝑎0𝑎1
2𝑘3 exp(−2𝜈𝑘2𝑡) sin(𝑘𝑥) cos(𝑘𝑥) +4𝜈2𝑎1

3𝑘3 exp(−2𝜈𝑘2𝑡) sin(𝑘𝑥)

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)3
 

=
−2𝜈2𝑎0

2𝑎1𝑘
3 exp(−𝜐𝑘2𝑡) 𝑠𝑖𝑛 𝑘𝑥 + 2𝜈2𝑎0𝑎1

2𝑘3 exp(−2𝜐𝑘2𝑡) sin 𝑘𝑥 𝑐𝑜𝑠 𝑘𝑥

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)3
+

4𝜈2𝑎1
3
𝑘3 exp(−3𝜐𝑘2𝑡) sin 𝑘𝑥

(𝑎0 + 𝑎1 exp(−𝜐𝑘2𝑡) 𝑐𝑜𝑠 𝑘𝑥)3
 

From result, 

𝜕𝑢

𝜕𝑡
+  𝑢

𝜕𝑢

𝜕𝑥
= 𝜈

𝜕2𝑢

𝜕𝑥2
 

1.4. Korteweg-de Vrie (KdV) equation 

This equation is widely used in studies of tidal waves and waves in channels. It describes how a water bump can travel 
long distances without changing shape [14]. However, the Kortewerg-de Vrie equation admits a very special solution 
called a soliton. 

A soliton is a single wave (a single crest) that travels at a constant speed without ever changing shape, even after 
encountering another wave [15].  

It is generally given by :  

𝜕ℎ

𝜕𝑡
+ 6ℎ

𝜕ℎ

𝜕𝑥
+

𝜕3ℎ

𝜕𝑥3 = 0 (4.1) 

Given the characteristics of a soliton, to construct an analytical solution for (4.1), we imagine a wave moving to the right 
at a constant speed c and use the hyperbolic secant function, which resembles a bell curve. 

Thus, an analytical solution for (4.1) is given by : 

ℎ(𝑥, 𝑡) =
𝑐

2
sech2 (

√𝑐

2
(𝑥 − 𝑐𝑡)) 

Indeed,   
𝜕ℎ

𝜕𝑡
= 2 ×

𝑐

2
(

𝑐√𝑐

2
tanh(

√𝑐

2
(𝑥 − 𝑐𝑡)) sech(

√𝑐

2
(𝑥 − 𝑐𝑡))) sech(

√𝑐

2
(𝑥 − 𝑐𝑡)) 

=
𝑐2√𝑐

2
tanh(

√𝑐

2
(𝑥 − 𝑐𝑡)) sech2 (

√𝑐

2
(𝑥 − 𝑐𝑡)) 

 

𝜕ℎ

𝜕𝑥
= −

𝑐√𝑐

2
tanh(

√𝑐

2
(𝑥 − 𝑐𝑡)) sech2 (

√𝑐

2
(𝑥 − 𝑐𝑡)) 

6ℎ
𝜕ℎ

𝜕𝑥
= 6

𝑐

2
sech2 (

√𝑐

2
(𝑥 − 𝑐𝑡))(−

𝑐√𝑐

2
tanh(

√𝑐

2
(𝑥 − 𝑐𝑡)) sech2 (

√𝑐

2
(𝑥 − 𝑐𝑡))) 

= −
3𝑐2√𝑐

2
tanh(

√𝑐

2
(𝑥 − 𝑐𝑡)) sech4 (

√𝑐

2
(𝑥 − 𝑐𝑡)) 
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𝜕2ℎ

𝜕𝑥2
= −

𝑐√𝑐

2
[
√𝑐

2
(1 − tanh2 (

√𝑐

2
(𝑥 − 𝑐𝑡))) sech2 (

√𝑐

2
(𝑥 − 𝑐𝑡)) + √𝑐tanh2 (

√𝑐

2
(𝑥 − 𝑐𝑡)) sech2 (

√𝑐

2
(𝑥 − 𝑐𝑡))] 

= −
𝑐2

2
(

1

2
sech4 (

√𝑐

2
(𝑥 − 𝑐𝑡)) − tanh2 (

√𝑐

2
(𝑥 − 𝑐𝑡)) sech2 (

√𝑐

2
(𝑥 − 𝑐𝑡))) 

= −
𝑐2

4
(sech4 (

√𝑐

2
(𝑥 − 𝑐𝑡)) − 2tanh2 (

√𝑐

2
(𝑥 − 𝑐𝑡)) sech2 (

√𝑐

2
(𝑥 − 𝑐𝑡))) 

𝜕3ℎ

𝜕𝑥3
= −

𝑐2

4

[
 
 
 
 

4
√𝑐

2
(− tanh(

√𝑐

2
(𝑥 − 𝑐𝑡)) sech4 (

√𝑐

2
(𝑥 − 𝑐𝑡)))

− 2

(

 
 

√𝑐 (1 − tanh2 (
√𝑐

2
(𝑥 − 𝑐𝑡))) tanh(

√𝑐

2
(𝑥 − 𝑐𝑡)) sech2 (

√𝑐

2
(𝑥 − 𝑐𝑡))

− √𝑐 tanh3 (
√𝑐

2
(𝑥 − 𝑐𝑡)) sech2 (

√𝑐

2
(𝑥 − 𝑐𝑡))

)

 
 

]
 
 
 
 

 

= −
𝑐2√𝑐

2
(− tanh(

√𝑐

2
(𝑥 − 𝑐𝑡)) sech4 (

√𝑐

2
(𝑥 − 𝑐𝑡)) − tanh(

√𝑐

2
(𝑥 − 𝑐𝑡)) sech2 (

√𝑐

2
(𝑥 − 𝑐𝑡))

+ 2 tanh3 (
√𝑐

2
(𝑥 − 𝑐𝑡)) sech2 (

√𝑐

2
(𝑥 − 𝑐𝑡))) 

= −
𝑐2√𝑐

2

(

 
 

− tanh(
√𝑐

2
(𝑥 − 𝑐𝑡)) sech4 (

√𝑐

2
(𝑥 − 𝑐𝑡)) − tanh(

√𝑐

2
(𝑥 − 𝑐𝑡)) sech2 (

√𝑐

2
(𝑥 − 𝑐𝑡))

+ 2(1 − sech2 (
√𝑐

2
(𝑥 − 𝑐𝑡))) tanh(

√𝑐

2
(𝑥 − 𝑐𝑡)) sech2 (

√𝑐

2
(𝑥 − 𝑐𝑡))

)

 
 

 

 = −
𝑐2√𝑐

2
(tanh(

√𝑐

2
(𝑥 − 𝑐𝑡)) sech2 (

√𝑐

2
(𝑥 − 𝑐𝑡)) − 3 tanh(

√𝑐

2
(𝑥 − 𝑐𝑡)) sech4 (

√𝑐

2
(𝑥 − 𝑐𝑡))) 
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𝜕ℎ

𝜕𝑡
+ 6ℎ

𝜕ℎ

𝜕𝑥
+

𝜕3ℎ

𝜕𝑥3

=
𝑐2√𝑐

2
tanh(

√𝑐

2
(𝑥 − 𝑐𝑡)) sech2 (

√𝑐

2
(𝑥 − 𝑐𝑡)) −

3𝑐2√𝑐

2
tanh(

√𝑐

2
(𝑥 − 𝑐𝑡)) sech4 (

√𝑐

2
(𝑥 − 𝑐𝑡))

−
𝑐2√𝑐

2
(tanh(

√𝑐

2
(𝑥 − 𝑐𝑡)) sech2 (

√𝑐

2
(𝑥 − 𝑐𝑡)) − 3 tanh(

√𝑐

2
(𝑥 − 𝑐𝑡)) sech4 (

√𝑐

2
(𝑥 − 𝑐𝑡))) 

=
𝑐2√𝑐

2
tanh(

√𝑐

2
(𝑥 − 𝑐𝑡)) sech2 (

√𝑐

2
(𝑥 − 𝑐𝑡)) −

3𝑐2√𝑐

2
tanh(

√𝑐

2
(𝑥 − 𝑐𝑡)) sech4 (

√𝑐

2
(𝑥 − 𝑐𝑡))

−
𝑐2√𝑐

2
tanh(

√𝑐

2
(𝑥 − 𝑐𝑡)) sech2 (

√𝑐

2
(𝑥 − 𝑐𝑡)) +

3𝑐2√𝑐

2
tanh(

√𝑐

2
(𝑥 − 𝑐𝑡)) sech4 (

√𝑐

2
(𝑥 − 𝑐𝑡)) 

From where,    

ℎ(𝑥, 𝑡) =
𝑐

2
sech2 (

√𝑐

2
(𝑥 − 𝑐𝑡))   verifies the equation     

𝜕ℎ

𝜕𝑡
+ 6ℎ

𝜕ℎ

𝜕𝑥
+

𝜕3ℎ

𝜕𝑥3 = 0 . 

2. Conclusion 

This work has highlighted the fundamental role of trigonometric functions in the construction of analytical solutions to 
several classical partial differential equations. Through the study of the heat equation, we have shown how Fourier 
series can be used to describe thermal diffusion and the gradual cooling of a medium subjected to simple boundary 
condtitions. The approach based on complex functions has also illustrated the contribution of complex analysis to the 
treatment of oscillatory regimes. 

The analysis of the Saint-Venant equations has made it possible to gain a deeper understanding of shallow water wave 
propagation and to relate wave speed to essential physical parameters such as gravity and the mean flow depth. These 
results provide an important theoretical basis for the modeling of free-surface flows and the study of flood phenomena. 

The Burgers equation has then been used as a simplified model to illustrate the effects of nonlinearity and viscosity, 
particular shock formation and wave damping. Finally, the Korteweg-de Vrie equation introduced the concept of 
solitons, highlighting the balance between nonlinearity and dispersion that allows a wave to propagate without 
deformation. 

In coclusion, this study demonstrates that trigonometric and related function constitute powerful mathematical tools 
for understanding and modeling real physical phenomena. It provides a solid theoretical foundation dor the study of 
more complex models and for the further development of numerical methods applied to thermal and hydraulic 
problems. 
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