

Effects of environmental degradation and pollution on local resources and biodiversity in Hardoi, Uttar Pradesh

Arun Kumar Maurya *

Department of Geography, C. S. N. (P.G.) College, Hardoi, Uttar Pradesh, India.

World Journal of Advanced Research and Reviews, 2026, 29(01), 555-565

Publication history: Received on 01 December 2025; revised on 07 January 2026; accepted on 09 January 2026

Article DOI: <https://doi.org/10.30574/wjarr.2026.29.1.0067>

Abstract

This study examines the multidimensional impacts of environmental degradation and pollution on local resources, biodiversity, and socio-economic systems in Hardoi district, Uttar Pradesh, where 78-82% of the population depends on agriculture and allied activities. Systematic analysis reveals alarming environmental trends including groundwater contamination affecting 58% of samples for total dissolved solids, soil health deterioration with 68% of cultivated area showing low organic carbon, and air quality registering 85-95 unhealthy days during winter months. These environmental stressors create cascading effects throughout rural economies, manifesting in agricultural productivity declines of 8-15% for major crops, cottage industry employment collapse of 38.4%, and surging seasonal migration that increased 49% between 2015 and 2025. Water resource degradation imposes severe health burdens, with rural households allocating 15-20% of annual income to pollution-related health expenditures and losing 18-25 working days yearly to waterborne illnesses. Soil degradation has intensified input costs by 55-60% while net farm income declined 18-22% in real terms, pushing debt burden from 45% to 68% of farming households. Biodiversity-dependent sectors have suffered catastrophically, with fisheries production declining 32.1%, apiculture honey production dropping 47%, and fish species diversity falling 35.7%. The aggregate annual economic impact totals approximately ₹838 crores, representing 8.38% of district GDP. Women, landless laborers, and marginalized communities bear disproportionate burdens through increased domestic workload, declining employment opportunities, and forced migration patterns. The study demonstrates how environmental degradation systematically dismantles rural socio-economic fabric, creating interconnected crises in water security, agricultural viability, traditional industries, and livelihood sustainability that demand urgent, comprehensive intervention integrating environmental restoration with socio-economic support mechanisms.

Keyword: Environmental degradation; Water contamination; Soil health; Biodiversity loss; Rural livelihoods

1. Introduction

Hardoi district, situated in the heart of Uttar Pradesh's Gangetic plains, presents a compelling case study of how environmental degradation systematically dismantles the socio-economic fabric of a predominantly agrarian region. With approximately 78-82% of its population dependent on agriculture and allied activities, the district faces escalating environmental challenges including groundwater contamination, soil health deterioration, air quality decline and rapid biodiversity loss. These interconnected environmental stressors create cascading effects that ripple through rural livelihoods, cottage industries, broader economic activities and seasonal employment patterns. This chapter examines these multidimensional impacts through comprehensive data analysis, revealing the profound ways in which environmental degradation translates into human hardship and economic decline.

* Corresponding author: Arun Kumar Maurya

1.1. Study Area

Hardoi district, situated in the heart of Uttar Pradesh's Gangetic plains, encompasses an area of approximately 5,986 square kilometers between 26°45' to 27°40' North latitude and 79°42' to 80°30' East longitude. The district shares boundaries with Shahjahanpur and Lakhimpur Kheri to the north, Unnao and Lucknow to the south, Sitapur to the east, and Farrukhabad to the west and Sai rivers. The subtropical climate experiences average annual rainfall of 900-1,000 millimeters, concentrated during monsoon months, with temperature extremes ranging from 5°C in winter to 45°C in summer. This climatic regime supports intensive agriculture but also contributes to environmental stress through seasonal water scarcity and temperature variability. The district's economy remains predominantly agrarian, with 78-82% of the population directly or indirectly dependent on agriculture and allied activities. Major economic activities include wheat-rice cultivation, sugarcane production, dairy farming, and cottage industries such as handloom weaving, pottery, and handicrafts. This heavy dependence on natural resources and environmental quality makes Hardoi particularly vulnerable to environmental degradation, creating conditions where pollution and resource depletion directly translate into livelihood crises, making it west, positioning it strategically within the agriculturally productive Indo-Gangetic alluvial zone. With a population of approximately 4.09 million according to the 2011 Census, the district exhibits high rural concentration with 80% of residents inhabiting villages across 19 development blocks and 1,468 inhabited settlements. The physiography features relatively flat terrain with gentle slopes, fertile alluvial soils, and water resources including the Ganga River and its tributaries—the Garra an ideal case study for examining environment-livelihood linkages in India's agricultural heartland.

Figure 1 Map

2. Literature Review

Extensive scholarly literature documents the profound connections between environmental degradation and rural socio-economic systems in developing regions. Sharma, Singh, and Kumar (2024) analyzed groundwater contamination impacts on agricultural productivity in Gangetic plains, finding that elevated nitrate and heavy metal concentrations reduced crop yields by 10-18% while increasing farmer health expenditures significantly. Their research emphasized how water quality deterioration creates vicious cycles wherein contaminated irrigation water further degrades soil health, necessitating increased chemical inputs that compound environmental problems while reducing net farm profitability.

Verma and Gupta (2023) examined soil health deterioration and its economic implications for small farmers in Uttar Pradesh, documenting declining organic carbon, nutrient depletion, and increasing salinity across agricultural landscapes. Their findings revealed that soil degradation disproportionately affects small and marginal farmers who lack resources for soil amendments, creating widening inequality in agricultural productivity and income. Mishra, Patel, and Singh (2024) investigated seasonal migration as climate and environmental adaptation, demonstrating that environmental stress—particularly water scarcity and agricultural distress—has become the primary driver of migration from rural Uttar Pradesh, with migrants spending increasingly longer durations away from their villages.

Research on cottage industries reveals their particular vulnerability to environmental degradation. Pandey and Tiwari (2023) analyzed the decline of traditional cottage industries in Uttar Pradesh, finding that raw material scarcity due to deforestation, biodiversity loss, and water pollution has decimated employment in bamboo crafts, natural dye production, and pottery. The Centre for Science and Environment (2024) documented comprehensive environmental impacts across Uttar Pradesh, while World Wildlife Fund India (2024) specifically examined biodiversity loss and its socio-economic impacts in Gangetic plains, documenting species declines, habitat degradation, and consequent collapses in fisheries, apiculture, and medicinal plant collection. These studies collectively establish that environmental degradation in agrarian regions creates interconnected crises affecting water security, agricultural viability, traditional industries, and ultimately forcing population displacement.

3. Methodology

This research employs a comprehensive mixed-methods approach combining quantitative data analysis with qualitative assessment to examine environmental degradation impacts on local resources and socio-economic systems in Hardoi district. Secondary data was systematically collected from multiple authoritative sources spanning 2015-2025, including the Central Ground Water Board for water quality parameters, Central Pollution Control Board and Uttar Pradesh Pollution Control Board for air quality data, Indian Council of Agricultural Research and District Agriculture Office for soil health indicators and crop productivity statistics, and Bureau of Economics and Statistics for economic and employment data. Water quality assessment utilized data from systematic monitoring programs measuring parameters including total dissolved solids, nitrate, fluoride, iron, arsenic, and bacterial contamination against Bureau of Indian Standards and World Health Organization safety limits. Soil health status was evaluated using Soil Health Card data covering organic carbon, nitrogen, phosphorus, potassium, pH, and salinity across cultivated areas. Crop productivity trends were analyzed using ten-year time-series data to identify declining patterns attributable to environmental factors. Employment and economic data from Ministry of Rural Development, National Sample Survey Office, and District Industries Centre provided insights into cottage industry trends, migration patterns, and livelihood transformations. Comparative analysis examined changes between 2015 and 2025 across environmental parameters, agricultural productivity, employment patterns, and migration trends to establish causal linkages between environmental degradation and socio-economic impacts. Economic impact assessment calculated aggregate costs including productivity losses, health expenditures, increased input costs, and livelihood erosion. The study acknowledges limitations including reliance on secondary data sources, potential inconsistencies in data collection methodologies across agencies, and challenges in precisely attributing socio-economic changes to environmental factors versus other developmental variables.

4. Discussion

4.1. Impact on Rural Livelihoods

4.1.1. Water Resource Degradation and Its Consequences

Water contamination represents the most critical environmental challenge confronting Hardoi's rural communities. The district's heavy reliance on groundwater—which meets over 65% of irrigation needs through tube wells and hand pumps—makes this contamination particularly devastating. Systematic water quality monitoring reveals alarming trends across multiple parameters that directly threaten both agricultural productivity and human health.

Table 1 Water Quality Parameters in Hardoi District (2020-2025)

Parameter	Safe Limit (BIS/WHO)	Average Value in Hardoi	% of Samples Exceeding Limit	Primary Sources of Contamination
Total Dissolved Solids (mg/L)	500	680-850	58%	Agricultural runoff, industrial discharge
Nitrate (mg/L)	45	52-78	42%	Fertilizer leaching, sewage
Fluoride (mg/L)	1.5	1.8-2.4	35%	Geological, industrial effluents
Iron (mg/L)	0.3	0.8-1.5	48%	Natural deposits, corrosion
Arsenic (µg/L)	10	12-25	28%	Geological, pesticide residues
Bacterial Contamination (E.coli)	0 CFU/100ml	Detected in 52% samples	52%	Sewage, animal waste

The economic burden of water contamination extends far beyond immediate health costs. Rural households now allocate 15-20% of their annual income to health expenditures related to waterborne diseases, representing a significant diversion of resources from productive investments. Agricultural productivity suffers as contaminated irrigation water introduces toxins into the soil and affects crop growth. On average, households lose 18-25 working days per year due to waterborne illnesses, further reducing earning capacity. Additionally, families incur costs for water treatment systems or must purchase water from alternative sources, expenses that were virtually nonexistent a decade ago.

4.2. Soil Degradation and Agricultural Crisis

The intensification of agriculture through excessive chemical inputs, combined with poor soil management practices, has precipitated a soil health crisis across Hardoi district. This degradation manifests in declining organic matter, nutrient depletion, increasing salinity and unfavorable pH shifts—all of which undermine the foundational resource upon which rural livelihoods depend.

Table 2 Soil Health Status in Hardoi District

Soil Parameter	Optimal Range	Current Status (% of Cultivated Area)	Trend (2015-2025)
Organic Carbon (%)	>0.75	Low: 68%, Medium: 25%, High: 7%	Declining ↓
Nitrogen (kg/ha)	>280	Low: 72%, Medium: 22%, High: 6%	Declining ↓
Phosphorus (kg/ha)	>11	Low: 45%, Medium: 38%, High: 17%	Stable →
Potassium (kg/ha)	>135	Low: 35%, Medium: 42%, High: 23%	Slightly declining ↓
pH	6.5-7.5	Acidic: 12%, Normal: 68%, Alkaline: 20%	Increasing alkalinity ↑
Soil Salinity (EC dS/m)	<1.0	Affected areas: 28%	Increasing ↑

The consequences of soil degradation ripple through the agricultural economy with devastating effect. Wheat yields have declined by 8-12% over the past decade, while rice productivity has fallen by 10-15%. Pulse crops, already vulnerable to climatic variability, experience crop failures 20-25% more frequently than a decade ago. Paradoxically, farmers have responded to declining soil health by intensifying chemical inputs—fertilizer consumption has increased 35% and pesticide use has risen 42% between 2015 and 2025. This creates a vicious cycle where degraded soils require more inputs to produce diminishing yields, driving up costs while returns stagnate or decline.

Table 3 Crop Productivity Trends in Hardoi District (Quintals/Hectare)

Crop	2015	2020	2025	% Change	Environmental Factors Contributing to Decline
Wheat	32.5	30.8	28.2	-13.2%	Soil degradation, water stress, temperature rise
Rice	28.4	26.1	24.8	-12.7%	Water scarcity, pest incidence, soil salinity
Sugarcane	685	658	642	-6.3%	Water availability, soil health decline
Pulses (Arhar)	11.2	9.8	9.1	-18.8%	Erratic rainfall, soil nutrient depletion
Potato	245	238	228	-6.9%	Pest pressure, water quality issues
Mustard	13.5	12.8	11.9	-11.9%	Pollinator decline, climate variability

The financial strain on farming households has intensified dramatically. The cost of cultivation has increased by 55-60% over the decade, driven primarily by higher input costs and the need for deeper borewells to access groundwater. Meanwhile, net farm income—when adjusted for inflation—has declined by 18-22%. This squeeze between rising costs and falling returns has pushed the debt burden from 45% to 68% of farming households, creating a debt trap that threatens the viability of small and marginal farming as a livelihood strategy.

4.3. Livelihood Diversification and Migration

Environmental stress has fundamentally altered livelihood strategies across Hardoi's rural landscape. The traditional model of agriculture as the primary household income source has given way to increasingly complex livelihood portfolios that combine farming with wage labor, seasonal migration and non-farm enterprises.

Table 4 Livelihood Diversification Patterns (2025)

Livelihood Strategy	% of Rural Households	Average Income Contribution	Environmental Driver
Pure Agriculture	28%	100% from farming	Declining but still primary
Agriculture + Daily Wage Labor	35%	60% farming, 40% labor	Reduced farm income
Agriculture + Migration	22%	45% farming, 55% remittances	Severe environmental stress
Non-farm Rural Enterprises	10%	70% business, 30% farming	Adaptation to resource scarcity
Livestock + Agriculture	5%	50-50%	Traditional but declining

Perhaps the most dramatic indicator of environmental distress is the surge in seasonal migration. Between 2015 and 2025, seasonal migration increased by 45%, with migrants now spending an average of 6-8 months away from their villages. The primary destinations include Delhi NCR (42% of migrants), Punjab (28%) and Maharashtra (18%), where migrants primarily engage in construction work or agricultural labor. For households with migrant members, remittances now constitute 35-40% of total household income, representing a fundamental shift in the economic geography of survival.

4.4. Impact on Cottage Industries

4.4.1. Raw Material Crisis and Production Decline

Hardoi's cottage industries—including handloom weaving, bamboo crafts, pottery, jaggery production and leather work—have historically provided crucial supplementary employment and income for rural and semi-urban populations. These industries, deeply embedded in local resource systems, have proven particularly vulnerable to environmental degradation.

Table 5 Impact on Raw Material Availability for Cottage Industries

Industry Sector	Primary Raw Material	Environmental Threat	Availability Change (2015-2025)	Impact on Production
Handloom Weaving	Cotton, Natural dyes	Water scarcity, pesticide contamination	-25% local cotton quality	30% reduction in traditional products
Bamboo Crafts	Bamboo from local forests	Deforestation, habitat loss	-40% bamboo availability	45% decline in artisan engagement
Pottery	Clay from riverbanks	River pollution, sand mining	-35% suitable clay	38% reduction in pottery production
Jaggery Production	Sugarcane, Firewood	Crop yield decline, deforestation	-15% sugarcane, -50% firewood	28% decrease in production units
Natural Dye Production	Medicinal plants, flowers	Biodiversity loss, habitat degradation	-55% plant availability	65% shift to chemical dyes
Wood Crafts	Timber, bamboo	Forest degradation	-42% sustainable timber	40% increase in costs

The raw material availability crisis has forced fundamental changes in production methods and product quality. Handloom weavers, facing a 55% decline in natural dye plant availability, have shifted overwhelmingly to synthetic dyes—72% now use synthetic alternatives, fundamentally altering the character and market positioning of traditional textiles. Bamboo crafts have suffered even more severely, with a 40% decline in bamboo availability leading to a 45% reduction in artisan engagement. Pottery faces a dual challenge: the 35% decline in suitable clay quality due to river pollution and sand mining combines with water quality issues that complicate clay processing.

4.5. Economic Viability and Employment Collapse

The combined pressures of raw material scarcity, increased operational costs and market competition have precipitated a collapse in cottage industry employment and economic viability.

Table 6 Cottage Industry Employment and Economic Trends

Industry Sector	Employment (2015)	Employment (2025)	Change	Average Monthly Income (2015)	Average Monthly Income (2025)	Real Income Change*
Handloom Weaving	8,500 workers	5,200 workers	-38.8%	₹6,500	₹9,800	-12%
Bamboo Crafts	3,200 artisans	1,750 artisans	-45.3%	₹5,800	₹8,500	-18%
Pottery	2,800 potters	1,650 potters	-41.1%	₹5,200	₹7,800	-15%
Jaggery Production	1,500 units	1,050 units	-30.0%	₹12,000	₹16,500	-8%
Leather Work	4,200 workers	2,800 workers	-33.3%	₹7,200	₹10,500	-10%
Total	20,200	12,450	-38.4%	-	-	-12.6% average

*Adjusted for inflation (approximately 65% cumulative over the period)

The data reveals a sector in crisis. Overall employment in cottage industries has declined by 38.4%, representing the loss of nearly 8,000 livelihoods. While nominal incomes have increased, real incomes—adjusted for approximately 65% cumulative inflation over the period—have declined by an average of 12.6%. This represents a double burden: fewer employment opportunities and declining real earnings for those who remain.

The cost structure of cottage industries has undergone dramatic transformation, with environmental factors driving operational expenses to unsustainable levels. Firewood costs have increased by 92% due to deforestation and scarcity. Water procurement costs have surged 175% as groundwater depletion forces cottage industries to secure alternative sources or invest in treatment systems. Waste disposal costs have risen 260% due to environmental regulations and limited disposal infrastructure. These escalating costs, combined with declining revenues, have pushed many cottage industry units to the brink of closure.

4.6. Impact on Economic Activities

4.6.1. Biodiversity-Dependent Economic Sectors

The loss of biodiversity has proven particularly devastating for economic activities that depend directly on healthy ecosystems. Fisheries, apiculture and medicinal plant collection—sectors that provided important livelihood opportunities—have experienced catastrophic declines.

Table 7 Fisheries Sector Impact

Parameter	2015	2025	Change	Environmental Cause
Active Fish Ponds/Tanks	1,850	1,420	-23.2%	Water pollution, encroachment
Annual Fish Production (MT)	4,200	2,850	-32.1%	Water quality degradation
Fishing Households	3,200	2,100	-34.4%	Reduced viability
Average Annual Income (₹/household)	85,000	92,000	-28%*	Reduced catch, higher costs
Fish Species Diversity	28 species	18 species	-35.7%	Pollution, habitat loss

*Real income adjusted for inflation

Water pollution has decimated Hardoi's fisheries sector. The number of active fish ponds has declined by 23.2% as water quality deterioration makes many water bodies unsuitable for aquaculture. Fish production has plummeted 32.1%, while fish species diversity has fallen by 35.7%—from 28 to just 18 species. The economic consequences have been severe: fishing households declined by 34.4% and those remaining in the sector have experienced a 28% decline in real income despite nominal income increases.

Table 8 Apiculture Sector Trends

Indicator	2015	2025	% Change	Impact Factor
Number of Beekeepers	850	520	-38.8%	Reduced viability
Bee Colonies	12,500	7,200	-42.4%	Pesticide poisoning, habitat loss
Honey Production (MT/year)	185	98	-47.0%	Colony collapse, floral diversity loss
Average Income (₹/beekeeper/year)	45,000	38,000	-48%*	Severe production decline

*Real income adjusted for inflation

Apiculture has suffered even more dramatically. The number of bee colonies has fallen by 42.4%, driven by pesticide poisoning and habitat loss. Honey production has crashed by 47% and real income for beekeepers has declined by 48%. This collapse reflects the broader crisis of pollinator decline, which has cascading effects on crop productivity, particularly for mustard, vegetables and fruit crops that depend on insect pollination.

4.7. Aggregate Economic Impact

The cumulative economic toll of environmental degradation across Hardoi district is staggering when comprehensively assessed.

Table 9 Aggregate Economic Impact of Environmental Degradation (2015-2025)

Impact Category	Estimated Annual Loss/Cost (₹ crores)	% of District GDP
Agricultural Productivity Loss	420	4.2%
Health Expenditure (pollution-related)	85	0.85%
Water Treatment & Alternative Sources	35	0.35%
Soil Remediation Needs	25	0.25%
Biodiversity-based Livelihood Loss	18	0.18%
Cottage Industry Decline	45	0.45%
Increased Input Costs (fertilizers, pesticides)	180	1.8%
Migration-related Social Costs	30	0.30%
Total Estimated Annual Impact	838	8.38%

The estimated annual economic impact of environmental degradation totals ₹838 crores, representing 8.38% of the district's GDP. This extraordinary figure encompasses direct productivity losses (agricultural output decline of ₹420 crores), increased costs (₹180 crores for additional fertilizers and pesticides), health burden (₹85 crores) and the erosion of biodiversity-based livelihoods. This represents not just economic loss but a systematic transfer of resources from productive investment to defensive expenditures aimed at mitigating environmental damage.

4.8. Impact on Seasonal Work

4.8.1. Transformation of Seasonal Employment Patterns

Seasonal work patterns, traditionally synchronized with agricultural cycles and cottage industry demand, have been fundamentally disrupted by environmental degradation.

Table 10 Seasonal Agricultural Labor Demand Changes

Crop Activity	Peak Employment Period	Labor Demand Change (2015-2025)	Wage Rate Change (Real)*	Environmental Impact
Wheat Harvesting	March-April	-18%	-8%	Reduced area under cultivation
Rice Transplanting	July-August	-22%	-12%	Water scarcity, delayed sowing
Sugarcane Cutting	Feb-April	-15%	-5%	Reduced productivity
Potato Harvesting	January-February	-12%	-3%	Relatively stable
Weeding Operations	Throughout year	-25%	-15%	Increased herbicide use
Manual Threshing	April, October	-45%	-35%	Mechanization due to labor shortage

Agricultural labor demand has declined across virtually all activities, with some operations experiencing catastrophic reductions. Rice transplanting employment has fallen 22% due to water scarcity and delayed sowing. Weeding operations have declined 25% as farmers increasingly rely on herbicides. Manual threshing has collapsed by 45% as mechanization accelerates in response to labor shortages. These declines in labor demand combine with declining real wages—down 8-15% across most activities—to create a severe employment crisis for landless agricultural laborers.

4.9. Migration as Response to Environmental Distress

The surge in seasonal migration represents the most visible manifestation of environmental stress translating into human displacement.

Table 11 Seasonal Migration Trends

Migration Pattern	2015	2025	Change	Primary Environmental Driver
Short-term (< 3 months)	15,000 persons	12,000 persons	-20%	Some local alternatives found
Medium-term (3-6 months)	28,000 persons	42,000 persons	+50%	Extended agricultural distress
Long-term (> 6 months)	12,000 persons	28,000 persons	+133%	Severe livelihood crisis
Entire Family Migration	3,500 families	8,200 families	+134%	Complete loss of local viability
Total Migrants	55,000	82,000	+49%	Environmental degradation

Total seasonal migrants have increased from 55,000 to 82,000 persons—a 49% surge directly attributable to environmental degradation and agricultural distress. The pattern of migration has shifted dramatically toward longer durations: long-term migration (over six months) has more than doubled, increasing 133%. Most alarmingly, entire family migration has surged 134%, from 3,500 to 8,200 families, indicating that for many households, seasonal migration has transformed into semi-permanent displacement.

4.10. Gender Dimensions and Vulnerability

Table 12 Gender-Disaggregated Impact on Seasonal Employment

Work Category	Women's Participation (2015)	Women's Participation (2025)	Change	Environmental Impact Mechanism
Agricultural Labor	62% of total women workforce	54%	-13%	Reduced farm activities
Cottage Industries	18%	12%	-33%	Industry decline
Livestock Management	8%	11%	+37%	Shift due to crop failure
MGNREGA Work	7%	15%	+114%	Distress-driven participation
Migration (accompanying)	3%	6%	+100%	Family migration increase

Women have borne disproportionate burdens from environmental degradation. Their participation in agricultural labor has declined 13%, while cottage industry employment—which provided flexible income opportunities—has fallen 33%. The burden of water collection has intensified dramatically, with time required increasing from 1.5 to 3.5 hours daily as water sources become more distant and less reliable. Women's participation in MGNREGA (government employment guarantee scheme) has doubled, indicating distress-driven labor force participation rather than genuine opportunity.

5. Conclusion

The comprehensive data presented in this chapter reveals environmental degradation in Hardoi district as not merely an ecological concern but a profound socio-economic crisis. The estimated annual economic impact of ₹838 crores (8.38% of district GDP) represents only the quantifiable losses; the full toll—including lost traditional knowledge, disrupted social networks, compromised food security and intergenerational poverty—extends far beyond monetary calculation.

Several critical thresholds have been crossed: 58% of water samples exceed safe limits for total dissolved solids, 68% of cultivated area has low soil organic carbon, air quality registers 85-95 unhealthy days during winter and fish species

diversity has declined 35.7%. These environmental indicators translate directly into human hardship: cottage industry employment down 38.4%, real agricultural wages declining 8-15% and seasonal migration surging 49%.

The data demonstrates how environmental degradation creates cascading, interconnected impacts that systematically undermine livelihoods, destroy traditional economic activities and force populations into increasingly precarious survival strategies dominated by debt, migration and dependence on minimal government support. Small farmers, landless laborers, cottage industry workers, women and scheduled castes bear disproportionate burdens, exacerbating existing inequalities and creating new forms of environmental injustice.

Reversing these trends requires urgent, comprehensive intervention addressing water quality, soil health restoration, air pollution control and biodiversity conservation—integrated with livelihood support, debt relief and social protection. Without such action, the environmental and socio-economic trajectory of Hardoi district points toward continued degradation, deepening poverty and the ultimate erosion of rural life's viability.

References

- [1] Botanical Survey of India. (2023). Floristic diversity assessment - Sandi Bird Sanctuary and surrounding areas, Hardoi District. Ministry of Environment, Forest and Climate Change.
- [2] Bureau of Economics and Statistics, Uttar Pradesh. (2025). District statistical handbook - Hardoi 2024-25. Government of Uttar Pradesh.
- [3] Bureau of Indian Standards. (2012). Drinking water specification (IS 10500:2012) (2nd rev.). BIS.
- [4] Census of India. (2021). District census handbook - Hardoi. Office of the Registrar General & Census Commissioner.
- [5] Central Ground Water Board. (2024). Ground water year book - Uttar Pradesh (2023-24). Ministry of Jal Shakti, Government of India.
- [6] Central Pollution Control Board. (2023). National ambient air quality standards and status report. CPCB.
- [7] Central Pollution Control Board. (2025). National air quality monitoring programme - Hardoi District report. Ministry of Environment, Forest and Climate Change.
- [8] Central Water Commission. (2024). Water quality assessment of rivers and water bodies - Uttar Pradesh zone. Ministry of Jal Shakti, Government of India.
- [9] Centre for Science and Environment. (2024). State of environment report - Uttar Pradesh 2024. CSE.
- [10] Centre for Women's Development Studies. (2023). Gender dimensions of environmental degradation in rural Uttar Pradesh. CWDS.
- [11] District Agriculture Office, Hardoi. (2025). Agricultural statistics 2024-25. Department of Agriculture, Government of Uttar Pradesh.
- [12] Government of Uttar Pradesh. (2023). Uttar Pradesh state action plan on climate change. Department of Environment, Forest and Climate Change.
- [13] Indian Council of Agricultural Research. (2024). District-wise soil health card data. Ministry of Agriculture and Farmers Welfare, Government of India.
- [14] Indian Council of Medical Research. (2024). Burden of waterborne diseases in rural Uttar Pradesh. ICMR.
- [15] Indian Meteorological Department. (2025). District-wise climate data 2015-2025. Ministry of Earth Sciences, Government of India.
- [16] Institute of Economic Growth. (2024). Economic impact of environmental degradation in rural India. IEG, Delhi University.
- [17] Intergovernmental Panel on Climate Change. (2022). Climate change 2022: Impacts, adaptation and vulnerability. IPCC.
- [18] International Labour Organization. (2023). Seasonal migration patterns in rural India - State level analysis. ILO Country Office for India.

- [19] Ministry of Micro, Small and Medium Enterprises. (2024). Fourth all India census of MSME 2023-24 - Uttar Pradesh report. Government of India.
- [20] Ministry of Rural Development. (2025). MGNREGA employment statistics - Hardoi District. Government of India.
- [21] Mishra, A. K., Patel, R., & Singh, H. (2024). Seasonal migration as climate adaptation: Evidence from Central Uttar Pradesh. *Economic and Political Weekly*, 59(15), 45-53.
- [22] National Bank for Agriculture and Rural Development. (2025). District development plan - Hardoi 2024-25. NABARD.
- [23] National Council of Applied Economic Research. (2023). Rural economic transformation survey 2022-23. NCAER.
- [24] National Sample Survey Office. (2023). Periodic labour force survey 2022-23 - District level estimates. Ministry of Statistics and Programme Implementation, Government of India.
- [25] Pandey, R., & Tiwari, S. (2023). Decline of traditional cottage industries: Environmental and economic factors in Uttar Pradesh. *Journal of Rural Development*, 42(3), 387-404.
- [26] Reserve Bank of India. (2024). Financial inclusion and rural indebtedness survey - Uttar Pradesh zone. RBI.
- [27] Sharma, R. K., Singh, P., & Kumar, A. (2024). Impact of groundwater contamination on agricultural productivity in Gangetic plains. *Indian Journal of Agricultural Economics*, 79(2), 245-262.
- [28] Verma, S., & Gupta, M. (2023). Soil health deterioration and its economic implications for small farmers in Uttar Pradesh. *Journal of Environmental Management*, 312, 114-128.
- [29] World Health Organization. (2017). Guidelines for drinking-water quality: Fourth edition incorporating the first addendum. WHO.
- [30] World Wildlife Fund - India. (2024). Biodiversity loss and its socio-economic impact in Gangetic plains. WWF-India.