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Abstract 

This paper critically reviews evidence from 2023–2025 on scaling laws and foundation models. It also examines claims 
about an AI Singularity. Here, the Singularity means recursive self-improvement that leads to sudden capability jumps, 
not just broad automation. The paper asks what scaling results truly support and what they do not. It also explains how 
technical findings become institutional strategies and long-term commitments. The method used is a narrative synthesis 
of peer-reviewed studies, technical reports, and governance frameworks. The paper follows from concepts and history 
to technical limits, then to evaluation and agents, to narratives and counter-narratives, and finally to governance, 
productivity, and future research. 

The analysis finds that scaling laws can still predict training loss in stable settings. However, real-world capability often 
improves in jumps rather than in smooth gains. These gains also correlate weakly with perplexity. Public benchmarks 
now act like short-lived public goods. They are easily contaminated and shaped by Goodhart pressures. Inference-time 
reasoning can raise accuracy on some tasks. Nevertheless, it does not reliably reduce hallucinations. It can even make 
wrong answers sound more convincing. This weakens the idea that more compute per answer creates trustworthy 
autonomy. Singularity forecasts also face bottlenecks. Software engineering is one, because architecture, verification, 
and maintenance are complex. Trust is another, as synthetic content floods the web and degrades confidence in text. 
Physical limits matter too, especially grid capacity and the slow pace of infrastructure build-out. The paper argues that 
peak hype may come before peak impact. Even if scaling slows, adoption will still take years. Governance should focus 
on measurable precaution, auditability, competition, procurement tools, and plural infrastructures for global equity. 
Future research should prioritise process supervision, human-AI epistemics, and an energy–intelligence exchange rate. 

Keywords:  AI scaling laws; foundation models; evaluation crisis; inference-time reasoning; infrastructure and energy 
constraints; Singularity narratives 

1. Introduction

The core story of recent progress in large language models (LLMs) is no longer “scaling works,” but that the meaning of 
scaling has changed. From 2020 to 2024, frontier advances were dominated by training scale: larger datasets, larger 
models, and larger training compute, with some capability trends partly forecastable from smaller runs under stable 
training regimes (OpenAI, 2023). Over 2024 and 2025, the field increasingly added a second axis, inference scale (also 
called test-time compute): spending more compute at generation time via longer deliberation and search-like strategies 
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to raise problem-solving performance, sometimes more cost-effectively than simply increasing parameters (OpenAI, 
2024a; Wu et al., 2025).  

This bifurcation matters because it reframes what counts as progress and what should be measured. Training-scale 
work continues to refine compute-efficient learning, including how schedules and compute allocation affect the 
reliability of scaling experiments and the development of compute-optimal training practices (Hägele et al., 2024). 
Meanwhile, trend tracking indicates that the compute used to train frontier models rose rapidly through May 2024, 
intensifying competition while raising sustainability and governance stakes (Sevilla & Roldán, 2024).  

As of early 2026, the field increasingly resembles an industrial phase rather than a discovery phase: the question is 
less “does scaling reduce loss?” and more “which scaling metrics translate into durable economic utility?” In practice, 
this is a shift from treating perplexity reductions as the primary proxy for progress to testing whether additional test-
time compute and reasoning-tuned post-training translate into higher task completion rates and reliability on complex 
work (OpenAI, 2024a; Wu et al., 2025). This shift also reflects consolidation of a widely shared “AI stack,” where most 
state-of-the-art systems still rely on a Transformer-based paradigm plus relatively standard components for adaptation, 
alignment, retrieval, and evaluation (Maslej et al., 2025; Zhao et al., 2023).  

At the same time, benchmark narratives can overstate discontinuity and inevitability. Work critiquing “emergent 
abilities” shows that apparent capability “jumps” can be artefacts of metric choice rather than true phase transitions, 
warning against dramatic extrapolation from selective plots (Schaeffer et al., 2023). Reliability limits also remain 
central: LLMs can produce fluent but nonfactual outputs, and recent surveys synthesise hallucination mechanisms, 
taxonomies, detection methods, and mitigation limits in real deployments (Huang et al., 2023).  

Because “the Singularity” is debated under deep uncertainty, the topic is not only empirical but also cultural and 
political. Research on AI imaginaries argues that shared narratives shape technological identity and collective 
expectations about digital futures (Zhong et al., 2025). Governance-focused scholarship similarly shows how competing 
risk imaginaries can steer regulation and institutional choices even when technical evidence remains incomplete 
(Oldenburg & Papyshev, 2025), while policy sociology warns that “promising technology” framings can systematically 
structure which risks become visible in governance agendas (Hirsch-Kreinsen, 2024).  

Against this backdrop, governance initiatives have expanded quickly. The NIST AI Risk Management Framework (AI 
RMF 1.0) positions risk management as a lifecycle practice for organisations designing, deploying, or using AI, and its 
Generative AI Profile extends that guidance to generative systems (National Institute of Standards and Technology 
[NIST], 2023, 2024). International coordination has also accelerated, exemplified by the Bletchley Declaration and 
binding regulations such as the EU AI Act, both of which signal rising institutional pressure for safety, transparency, and 
accountability (European Parliament & Council of the European Union, 2024; UK Government, 2023). 

1.1. Aim and research questions. 

This paper synthesises recent evidence on scaling laws, evaluation limits, and sociotechnical imaginaries to clarify what 
can responsibly be inferred about long-run trajectories. It addresses four guiding questions: 

• What do recent scaling-law results empirically justify about performance predictability, the returns on 
inference-time compute, and compute-efficient progress? 

• Which methodological limitations (metrics, benchmarks, hallucinations) most strongly constrain Singularity-
style extrapolations? 

• How do AI imaginaries and policy narratives shape governance choices under deep uncertainty? 
• What vocabulary and governance posture best balance long-run uncertainty with near-term accountability?  

2. Conceptual and Historical Background  

This chapter clarifies the key terms used throughout the study and situates current debates about scaling and the 
Singularity within a longer trajectory of AI paradigm shifts. The central aim is to reduce ambiguity by separating (a) 
what foundation models are in practice, (b) what “scaling” now refers to across training and inference, and (c) what is 
meant by “the Singularity” in its strongest technical sense. 
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2.1. From Symbolic AI to Foundation Models 

Recent historical syntheses portray AI as a sequence of paradigm shifts shaped by the interaction of data availability, 
compute capacity, and dominant learning methods, moving from symbolic rule-based systems toward statistical 
machine learning and, more recently, transformer-based deep learning (Radanliev, 2024). In this contemporary phase, 
foundation models are commonly defined as large-scale models pre-trained on broad, heterogeneous data that can be 
adapted for downstream tasks through fine-tuning and related post-training methods (Schneider et al., 2024). This “pre-
train then adapt” logic is a conceptual break from symbolic AI’s reliance on explicit rules and hand-built knowledge 
structures, treating general linguistic and world regularities as learned representations rather than engineered 
ontologies. 

However, the foundation model era also marks the practical decline of an older myth: that “general purpose” 
automatically means “widely useful out of the box.” LLMs are general-purpose in theory because a single base model 
can be prompted or adapted across many tasks, but 2025-era deployment experience increasingly shows that broad 
competence is not the same as dependable organisational utility. In real settings, usefulness typically requires 
substantial specialisation through instruction tuning, alignment, domain fine-tuning, and retrieval-augmented 
generation (RAG) to meet requirements for accuracy, currency, traceability, and compliance (Gao et al., 2023; National 
Institute of Standards and Technology [NIST], 2024; Zhao et al., 2023). This shifts “general purpose” from a claim about 
a single model’s universal readiness to a systems view: a base model becomes fit-for-purpose through the surrounding 
stack of data pipelines, retrieval, tools, evaluation protocols, and operational governance (NIST, 2023, 2024). In short, 
foundation models are best understood as adaptable infrastructure rather than finished general intelligence. 

2.2. Scaling Laws as the Critical Pivot 

Scaling laws offer an empirical language for relating performance to resources such as parameters, training data, and 
compute. However, current research emphasises that scaling results are not purely “laws of nature,” but regime-
dependent regularities that can shift with training design choices and measurement conventions (Hägele et al., 2024; Li 
et al., 2025). For example, work on compute-efficient experimental designs shows that careful scheduling and training-
duration choices can make scaling studies more reusable and less wasteful, enabling more rigorous forecasting with 
lower computational barriers (Hägele et al., 2024). At the level of interpretation, recent reconciliation analyses clarify 
that apparent disagreement between Kaplan-style and Chinchilla-style prescriptions can arise from how parameters 
and compute are operationalised and how scaling curves are fitted, meaning that “compute-optimality” is partly 
methodological rather than purely intrinsic (Pearce & Song, 2024). 

 

Figure 1 The Bifurcation of Scale. Pre-2023 progress focused on training-time scaling (horizontal: larger models). The 
2025 frontier occupies the top-right quadrant (large models + heavy deliberation via reasoning chains, sampling, 

search, tools, and verification), constrained by energy/latency costs 

Crucially, the definition of compute-optimal has expanded, because scaling is no longer only about training-time 
compute. The field now increasingly distinguishes between: 
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• Training-time compute, which compresses broad statistical structure into model weights during pre-training. 
• Inference-time compute, allowing for linear gains in reasoning accuracy at the cost of exponential increases 

in latency and energy consumption. 

Inference scaling, sometimes described as test-time compute scaling, reframes progress from “bigger training runs” 
toward “more computation per answer,” often via longer internal reasoning, sampling strategies, or structured search. 
Empirical work on inference scaling laws suggests that, under fixed total compute budgets, allocating more compute to 
inference can improve problem-solving performance and may sometimes compensate for diminishing returns from 
simply increasing training scale (Wu et al., 2024). This is also reflected in the broader “reasoning model” direction, 
where systems are explicitly trained to spend more time thinking before responding, making inference-time compute a 
first-class driver of performance rather than a mere deployment cost (OpenAI, 2024a, 2024b). 

This pivot has practical consequences for resource constraints. Trend tracking indicates that frontier training compute 
continued to grow rapidly through May 2024, intensifying competition and increasing infrastructure burdens (Sevilla 
& Roldán, 2024). However, inference scaling can shift the burden from training clusters to serving infrastructure, 
because higher reasoning budgets per query raise cost, latency, and energy requirements at deployment. This helps 
explain why the scaling conversation in 2024-2025 increasingly merges with efficiency research: energy consumption 
and operational constraints become part of what it means for a scaling pathway to be viable. 

2.3. Singularity Discourse, Imaginaries, and Governance 

In this study, the Singularity is defined narrowly and explicitly as the Recursive Self-Improvement (RSI) variant: a 
scenario in which AI systems materially accelerate the creation of more capable AI systems, producing a feedback loop 
where capability growth is driven by AI-enabled AI R&D. This definition is deliberately separated from broader 
narratives of economic automation, productivity shocks, or labour displacement, which can be large and socially 
disruptive without implying RSI dynamics. 

Singularity discourse typically combines empirical trends (scaling curves, compute growth, and deployment diffusion) 
with speculative claims about discontinuous capability leaps. The empirical side is increasingly nuanced. First, research 
on “emergent abilities” argues that apparent sharp jumps can be artefacts of metric choice, thresholding, and statistical 
framing, cautioning against dramatic extrapolations from selective plots (Schaeffer et al., 2023). Second, reliability 
problems such as hallucination remain a persistent barrier to uncritical claims about scientific reasoning or trustworthy 
autonomy, with surveys mapping mechanisms, detection strategies, and mitigation limits in real deployments (Huang 
et al., 2023). Third, inference scaling complicates simplistic plateau stories because additional test-time compute can 
yield performance gains even when pre-training returns slow, expanding the design space for capability growth without 
guaranteeing RSI. 

The speculative side of Singularity discourse often functions as a sociotechnical imaginary: a coordinating story that 
shapes investment priorities, institutional urgency, and governance preferences under uncertainty. Recent research 
argues that AI imaginaries influence technological identity and collective expectations, affecting which futures feel 
plausible and which policy responses gain support (Zhong et al., 2025). Governance scholarship similarly suggests that 
competing imaginaries shape what counts as “the central risk,” how precaution is justified, and which interventions are 
treated as legitimate even when evidence is incomplete (Oldenburg & Papyshev, 2025). In parallel, monitoring work 
documents rapid growth in policy activity and industrial concentration around frontier systems, raising questions about 
accountability, transparency, and power asymmetries (Maslej et al., 2025). 

These dynamics help explain the rise of structured governance instruments that treat advanced AI as an object of 
lifecycle risk management and compliance. NIST’s AI RMF frames trustworthy AI as an organisational practice across 
design, deployment, and monitoring, while its Generative AI Profile extends that logic to generative systems (NIST, 
2023, 2024). Binding regulation has also advanced, most notably the EU AI Act, which formalises risk-based obligations 
for AI placed on the EU market (European Parliament & Council of the European Union, 2024). International 
coordination signals, such as the Bletchley Declaration, further indicate shared concern about advanced AI risks, even 
when enforcement mechanisms differ (UK Government, 2023). Taken together, Chapter 2's distinctions thus provide 
the analytical foundation for subsequent analysis: scaling trends do not automatically imply RSI, just as 'general 
purpose' capability does not equate to deployment-ready utility absent extensive systems engineering and governance. 
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3. Technical Landscape of Scaling Laws (2020–2025)  

From 2020 to 2025, scaling laws evolved from a useful descriptive pattern into an engineering toolkit for planning 
frontier training runs, forecasting loss, and reasoning about trade-offs in compute, data, and model size. Contemporary 
work increasingly treats “scaling” not as a single universal law, but as a family of empirical regularities that hold only 
under specific regimes, where the training pipeline, data curation, and evaluation protocol remain sufficiently stable 
(Hägele et al., 2024; Wang et al., 2024). This chapter focuses on the technical limitations that became most visible during 
this period: architecture saturation, weak links between perplexity and reasoning, data bottlenecks, and instability risks 
from synthetic feedback loops. 

3.1. Fundamental results: Smooth loss, saturating architectures, and jagged capabilities 

A durable finding is that language-model loss tends to decline smoothly with added resources, often approximated by 
power laws within controlled settings (Hägele et al., 2024). Scaling studies also show that broadly similar power-law 
behaviour can persist across architectural variants, including dense Transformers and Mixture-of-Experts systems, 
although with different efficiency and generalisation profiles (Wang et al., 2024). These results justify careful short-
horizon forecasting for training loss and, under strict controls, for some benchmark trends. 

However, 2020–2025 also clarified a key limitation: architecture saturation. Most frontier progress occurred inside a 
largely standardised Transformer paradigm, with gains increasingly driven by data pipelines, optimisation recipes, and 
post-training rather than radical architectural innovation. In this setting, “smooth loss curves” can coexist with “jagged” 
capability progress. Downstream task performance often improves in steps, shows long plateaus, or depends heavily on 
task prompting and evaluation choices, even while pre-training loss steadily decreases. Empirically, this weakens the 
assumption that better perplexity implies better reasoning. Large-scale analyses explicitly argue that scaling laws are 
unreliable predictors for many downstream tasks, especially when tasks differ from the pre-training objective or 
require robust multi-step reasoning (Lourie et al., 2025). 

 

Figure 2 Divergence between training loss and downstream task capability under scaling 

This mismatch is increasingly visible in long-context and reasoning-heavy settings. Perplexity averages prediction error 
across tokens and can underweight the specific dependency-bearing regions that determine whether a model actually 
uses context correctly. As a result, lower perplexity can coexist with failures on long-context retrieval, compositional 
constraints, or multi-hop reasoning, motivating alternative evaluation designs and metrics that target reasoning yield 
rather than token-level fit (Fang et al., 2025). The technical takeaway for scaling interpretation is precise: scaling laws 
are strongest for forecasting optimisation quantities like loss, but much weaker as a proxy for reasoning, robustness, or 
“general intelligence” without task-grounded evaluation. 

A second foundational theme in this period is that “more data” is not a simple scalar. Data engineering became central 
to scaling because the effective information seen by models depends on filtering, deduplication, and quality controls. 
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Work on large curated datasets argues that predictable improvements increasingly require deliberate corpus 
construction that raises informational density per token rather than merely increasing token counts (Penedo et al., 
2024). This shifts “scale” from being purely quantitative to being partially qualitative, where gains depend on the 
marginal informational value of added tokens. 

3.2. The data wall: Finite human text and synthetic data cannibalism 

As model appetite for data accelerated, the “data wall” became a first-order scaling constraint. Forecasting analyses 
argue that high-quality human-generated text is finite relative to projected training demand, and that adequate limits 
appear sooner once repetition and deduplication are accounted for (Villalobos et al., 2024). This matters for scaling 
laws because the functional relationship between compute and performance implicitly assumes access to sufficiently 
diverse, non-redundant, high-signal data. When the marginal token becomes lower quality or more repetitive, the 
effective scaling exponent can change, and “more compute” yields weaker returns. 

The data wall is also not only about quantity. It is about provenance and distributional integrity. A growing share of 
online text is generated or heavily edited with AI, which creates the risk of synthetic data cannibalism, sometimes 
described as model autophagy or self-consuming training. The central worry is that if 2026-era models are substantially 
trained on 2024-era model outputs, variance in the training distribution can collapse, rare modes can disappear, and 
errors and biases can be amplified through recursive feedback. 

Evidence supports this risk. Controlled studies show that training on generated data can lead to degenerative dynamics, 
including “model collapse,” in which distributions lose diversity and fidelity over successive generations (Shumailov et 
al., 2024). Related work finds that self-consuming loops can push models toward increasingly distorted or homogenised 
outputs unless synthetic data is carefully constrained, filtered, and mixed with sufficient high-quality human data 
(Alemohammad et al., 2024). These findings complicate simplistic responses to the data wall that assume synthetic data 
is a drop-in replacement for human text. 

 

Figure 3 The Data Wall and Synthetic Feedback Risk. High-quality human text stocks are finite (Villalobos et al., 
2024). As models consume their own outputs, recursive training risks variance collapse and model autophagy unless 

carefully mitigated through provenance filtering and human data prioritisation 

For scaling-law practice, the implication is that future performance may be bottlenecked less by raw compute and more 
by data governance: provenance tracking, contamination control, deduplication, and methods that preserve 
distributional diversity while improving informational density per token (Penedo et al., 2024; Villalobos et al., 2024). In 
other words, the stability of scaling in the next regime depends on whether the training distribution remains anchored 
to sufficiently rich, human-grounded signal rather than collapsing into recursive artefacts. 

3.3. Emergent capabilities, thresholds, and measurement sensitivity 

The 2023–2025 literature treats “emergent abilities” as a contested interpretation of evaluation curves rather than a 
settled fact. A key critique argues that many reported “sudden” abilities can be produced by evaluation design choices, 
particularly when continuous changes in underlying behaviour are passed through discontinuous or thresholded 
metrics (Schaeffer et al., 2023). This aligns with the broader observation from Section 3.1: capability often looks step-
like even when optimisation is smooth, because tasks, prompts, and scoring rules can create artificial cliffs. 
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Other work further reframes emergence by identifying confounds such as prompting protocols, in-context learning 
effects, and dataset composition, suggesting that “emergence” may reflect interactions between scale and task elicitation 
rather than an inherent phase transition in model competence (Lu et al., 2023). Recent reviews synthesise these 
perspectives and treat emergence as a family of phenomena with multiple causal pathways, rather than a single 
mechanism that would straightforwardly support strong discontinuity claims (Berti et al., 2025). For scaling 
interpretation, the practical conclusion is conservative: sharp benchmark jumps are not reliable evidence of 
discontinuous underlying capability unless measurement validity is demonstrated and alternative explanations are 
ruled out. 

A related threshold-like failure mode appears in alignment and preference optimisation. Scaling reward models and 
optimisation pressure can increase reward over-optimisation, where systems exploit proxy objectives and appear to 
improve on the reward signal without improving the intended task (Gao et al., 2023; Rafailov et al., 2024). This is a form 
of Goodhart-style fragility that becomes more likely as optimisation becomes stronger. It shows that “bigger is better” 
can fail in the alignment layer even when pre-training scaling remains well-behaved. 

3.4. Limits and frictions in scaling 

By 2025, the scaling conversation increasingly included frictions that sit outside classic parameter-data-compute 
triangles: 

• Evaluation of brittleness and contamination. As benchmarks become targets, data contamination and test 
leakage risks rise, weakening the evidential value of headline scores and making generalisation claims harder 
to validate (Chen et al., 2025; Dong et al., 2024). 

• Inference costs and deployment economics. Even when training scaling is feasible, real-world serving 
constraints can dominate, including latency targets, energy budgets, and infrastructure availability. This creates 
pressure to pursue compute allocation strategies that improve reasoning yield per unit cost rather than only 
lowering loss. 

• Data provenance and distributional stability. The data wall and synthetic loop risks turn dataset governance 
into a central technical variable rather than an afterthought (Alemohammad et al., 2024; Shumailov et al., 2024; 
Villalobos et al., 2024). 

Taken together, the technical landscape of 2020–2025 supports a disciplined conclusion. Scaling laws remain valuable 
for forecasting training loss under controlled regimes. However, their limitations became increasingly clear: 
architecture saturation, the weak mapping from perplexity to reasoning, evaluation sensitivity that can create apparent 
discontinuities, and emerging constraints around data quality and synthetic recursion. These constraints do not negate 
progress, but they narrow what can be responsibly inferred from smooth loss curves and headline benchmark 
trajectories. 

4. Analysis: Benchmarks and Agents 

If scaling laws describe how training loss declines with more data and compute, benchmarks and agentic deployments 
shape what those curves are taken to mean. From 2023 to 2025, claims about general-purpose progress increasingly 
hinge on two layers: (1) how foundation models are assembled into tool-using, multimodal systems, and (2) how those 
systems are evaluated under rapidly shifting incentives. This section deconstructs both layers to clarify why headline 
scores have become a less stable proxy for general capability. 

4.1. Foundation models as infrastructural AI 

Foundation models are best understood as infrastructural components rather than standalone applications. They are 
trained at scale and then repeatedly adapted through instruction tuning, retrieval, tool APIs, and platform integration. 
As a result, capability is co-produced by the base model and the surrounding scaffolds, including data pipelines, safety 
filters, monitoring, and user interfaces (NIST, 2024). 

This infrastructural framing matters for Singularity claims because it relocates 'intelligence' from a single artefact to a 
sociotechnical stack. Policy debates, therefore, focus less on parameter counts and more on concentration of control, 
dependency on a small set of providers, and the governance of general-purpose systems embedded across sectors 
(Competition and Markets Authority, 2024; Bertelsmann Stiftung, 2025). 
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4.2. Multimodal systems and early agentic behaviour 

The frontier has shifted from text-only chat models to multimodal systems that interpret and generate across text, 
images, audio, and structured interfaces. Multimodality expands what counts as 'understanding' in practice because 
models must coordinate descriptions, perception-like inputs, and action plans within a single interaction loop (Yin et 
al., 2023). 

Agentic behaviour is more accurately a systems property than an inner homunculus. Planning emerges when models 
are coupled to tools such as browsers and code execution and given long-horizon objectives, memory, and verification 
steps. In other words, 'agents' are assembled by combining a foundation model with external affordances that stabilise 
goals and correct errors, not by discovering a single latent switch for autonomy (OpenAI, 2023; NIST, 2024). 

4.3. The evaluation crisis: benchmarks, Goodhart's law, and contaminated public goods 

Evaluation has entered a credibility crisis. When a benchmark becomes a target, it stops functioning as a reliable 
measure, a dynamic widely discussed under Goodhart's law and now visible across LLM leaderboard culture (Hsia et 
al., 2023). In the 2025 frontier, the useful life of a public benchmark can be short: once a task drives prestige, funding, 
and procurement decisions, developers optimise directly for it and the dataset effectively becomes part of the training 
environment. 

 

Figure 4 The Benchmark Lifecycle Under Goodhart Pressures. Public benchmarks rapidly degrade as competitive 
optimisation accelerates leakage and contamination, creating a treadmill of measurement validity decline 

Benchmarks such as MMLU increasingly resemble public goods that are contaminated. Because they are widely 
mirrored, discussed, and reused, they can leak into training corpora and fine-tuning mixtures, both unintentionally and 
at times deliberately. Contamination-free variants such as MMLU-CF report sizeable score drops relative to MMLU, 
consistent with the claim that some headline gains partly reflect memorised question patterns and familiarised 
reasoning templates rather than portable, domain-robust competence (Zhao et al., 2024). The evaluation community 
has responded with harder domain-focused suites, private or held-out test sets, and multi-signal evaluation that 
combines accuracy with calibration and refusal behaviour, but the core problem remains: optimising for public 
benchmarks is not the same as building systems that generalise under distribution shift (Chen et al., 2025; Dong et al., 
2024; Zheng et al., 2023). 

4.4. Inference-time scaling and System 2 style reasoning models 

Alongside training-time scaling, 2024 to 2025 marks a turn toward inference-time scaling, sometimes framed as System 
2-style deliberation. Reasoning models allocate more compute after training by generating longer traces, exploring 
alternatives, and using verifiers or self-checking loops. In this regime, performance becomes a function of both the 
model and the inference budget, shifting part of the scaling story from pretraining runs to runtime policies (OpenAI, 
2024a, 2024b). 

This is plausibly a new scaling law: for many reasoning tasks, allocating additional test-time compute can improve 
accuracy, sometimes competing with gains that would otherwise require substantially larger pretraining budgets (Snell 
et al., 2025; Wu et al., 2024). Open models have pursued the same direction, for example, by incentivising extended 
reasoning trajectories in systems such as DeepSeek-R1 (Guo et al., 2025). 
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However, thinking longer does not, by itself, solve hallucination. Longer traces can amplify persuasion rather than truth, 
producing detailed, internally coherent explanations that remain grounded in false premises. OpenAI's published 
evaluations of later reasoning models report substantial hallucination rates on fact-seeking evaluations, indicating that 
inference-time scaling can increase the surface plausibility of errors even when it improves performance on some 
reasoning benchmarks (OpenAI, 2025b). Recent research similarly finds that the relationship between post-training 
pipelines, reasoning traces, and factuality is contingent, with some training recipes reducing hallucination. In contrast, 
others introduce more nuanced, harder-to-detect falsehoods (Yao et al., 2025). 

 

Figure 5 Inference-time scaling improves some outcomes but increases operational and epistemic costs 

As Figure 5 shows, increasing inference-time compute yields diminishing returns in accuracy under practical budget 
limits. At the same time, cost and latency rise, and persuasive error risk can remain high because longer traces often 
increase coherence without improving truth. 

Taken together, benchmark fragility and inference-time scaling change what is legible as progress. When public scores 
can be gamed, and longer reasoning traces can make errors sound convincing, technical gains alone cannot settle 
questions about trajectories. The analysis, therefore, turns to the narratives that translate uncertain technical signals 
into commitments of capital, policy attention, and institutional legitimacy. 

5. Singularity Narratives 

Singularity narratives are best analysed as sociological devices that interpret technical signals, especially under 
conditions of evaluation crisis. They provide a vocabulary for turning noisy benchmark scores, impressive 
demonstrations, and shifting inference-time techniques into claims about direction, inevitability, and urgency. In 
practice, these stories coordinate expectations about what counts as progress, who should fund it, and which risks 
deserve attention. 

5.1. Intelligence explosion and runaway scaling: the software engineering bottleneck 

The intelligence explosion thesis assumes a positive feedback loop: an AI system improves its own intelligence, which 
enables faster improvement, producing a runaway curve. In contemporary variants, the loop is framed in terms of 
automated research, rapid algorithmic discovery, and self-directed optimisation across software and hardware. The 
narrative is powerful because it translates smooth training curves into a discontinuity in capability and, by extension, 
into a discontinuity in economic and political power. 

A central counterargument is that software engineering is a bottleneck. Modern capability is not produced by writing 
syntax; it is produced by managing complexity. That includes defining requirements, designing architectures, 
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controlling interfaces, handling edge cases, debugging across distributed systems, enforcing security properties, 
maintaining performance under load, and integrating with human organisations and regulatory constraints. Current 
models can accelerate parts of coding, but they still struggle with full-system architecture, long-horizon maintenance, 
and responsibility for unintended interactions. If a system cannot reliably architect and validate complex socio-technical 
systems, the recursive loop slows or breaks, even as code generation improves. 

This bottleneck is also epistemic. Self-improvement requires trustworthy feedback about what works in real 
deployments, where failures can remain latent and where evaluation tasks are themselves targets of optimisation. As a 
result, claims about runaway scaling can conflate faster local productivity gains with system-level competence. The 
more a project resembles real-world software engineering, the more it depends on disciplined verification, 
coordination, and governance, not just fluent code completion. 

5.2. Industrial discourse: mission language, competitive urgency, and frontier branding 

Industrial narratives commonly fuse acceleration and inevitability. Progress is presented as both rapid and unavoidable, 
while safety is framed as a managerial problem that can be handled in parallel. This style of communication does 
strategic work: it attracts talent, justifies secrecy, and strengthens the case for preferential access to compute, data, and 
regulatory influence. In this discourse, the term frontier functions less as a stable technical threshold and more as a 
signal of leadership and urgency. 

Sociologically, these narratives also stabilise a race frame. If actors believe rivals will deploy first, then cautious 
behaviour becomes harder to sustain even when uncertainty is widely acknowledged. The result is an escalation 
dynamic in which governance proposals are pulled between innovation nationalism, private standard-setting, and 
voluntary commitments that struggle to constrain investment incentives (Competition and Markets Authority, 2024; 
OECD, 2025). 

5.3. Imaginaries, stock prices, and capital coordination 

The Singularity narrative is functionally a capital coordination mechanism. By promising a step-change in general 
capability, it helps align investors, boards, suppliers, and governments behind unusually large, front-loaded 
infrastructure commitments. In this sense, the narrative does not only describe a possible future, it helps organise the 
material conditions needed to pursue that future. 

This coordination becomes visible in market pricing. When investors treat frontier AI as a platform shift, stock 
valuations, supplier contracts, and fundraising rounds can incorporate a premium for perceived proximity to 
breakthroughs. When bottlenecks become salient, for example power constraints, data constraints, regulatory risk, or 
reliability failures, narratives can flip from inevitability to scepticism and markets can reprice accordingly. The sociology 
of belief thus includes financial feedback loops that amplify both optimism and fear (Maslej et al., 2025; Zhong et al., 
2025). 

 

Figure 6 Feedback loops between Singularity narratives, investor coordination, and infrastructure constraints. 
Bottlenecks (power, data, evaluation) trigger repricing; successes accelerate commitments 
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The scale of capital expenditure illustrates why imaginaries matter. Microsoft reported that it was on track to invest 
approximately $80 billion in FY2025 to build AI-enabled datacenters, and OpenAI announced an infrastructure venture 
that intends to invest hundreds of billions of dollars, with $100 billion targeted for initial deployment. These figures are 
not incidental; they are part of how frontier labs attempt to convert an uncertain technical trajectory into a credible 
industrial programme (Microsoft, 2025; OpenAI, 2025a). 

5.4. Policy discourse: from speculative futures to enforceable categories 

Policy institutions increasingly translate narrative claims into enforceable categories. This can be seen in the rise of the 
term frontier model and in the emphasis on systemic risk, critical infrastructure dependency, and concentration of 
compute resources. The UK AI Safety Summit process and the International AI Safety Report exemplify a governance 
style that treats advanced AI as a cross-border safety issue requiring shared evaluation, incident reporting, and 
institutional coordination (UK Government, 2023; Bengio et al., 2025). 

In the EU, the AI Act formalises a tiered risk approach and introduces obligations relevant to general-purpose AI, 
including transparency and documentation duties. In the United States, executive and standards-led approaches have 
leaned on procurement, voluntary commitments, and frameworks for risk management rather than a single 
comprehensive statute. Across jurisdictions, policy language often borrows from Singularity debates while still needing 
to address near-term harms such as discrimination, privacy, and disinformation (European Union, 2024; NIST, 2024). 

The practical consequence is that discontinuity narratives can shape the present. They influence which risks are treated 
as urgent, which actors are seen as legitimate partners in regulation, and how responsibility is allocated between 
developers and deployers. A sociological reading therefore asks not only whether the Singularity will happen, but how 
the belief in it reorganises power, institutions, and accountability in the meantime. 

Those narratives interact with capital markets through valuation, fundraising, and infrastructure commitments, which 
then shape policy agendas. Policy responses in turn influence evaluation standards, reporting obligations, and 
deployment constraints that feed back into the technical and industrial cycle (Bengio et al., 2025; NIST, 2024). 

Because these narratives coordinate capital, legitimacy, and policy attention, they also become targets of critique. The 
next chapter gathers counter-narratives that introduce friction into the story of smooth, inevitable progress, 
highlighting where scaling meets organisational limits, contested knowledge, and physical constraints. 

6. Counter Narratives and Critical Perspectives 

After examining how Singularity narratives translate technical performance into expectations, investment, and policy 
frames, a growing body of work in 2023–2025 argues that these stories overlook friction that is material, organisational, 
and epistemic. These counter-narratives do not deny rapid capability growth. Rather, they emphasise that what scaling 
can deliver is co-determined by infrastructure, institutions, labour, and legitimacy, so trajectories are shaped as much 
by constraints and governance as by model size (Narayanan & Kapoor, 2025; Maslej et al., 2025). 

6.1. STS and critical theory of technology 

Science and Technology Studies (STS) approaches treat AI systems as sociotechnical artefacts. They are built within 
particular political economies, policy regimes, and cultural stories that make some futures feel inevitable and others 
unthinkable. From this perspective, Singularity talk functions as a governing narrative that can naturalise centralisation, 
concentrate expertise, and justify exceptional measures, including deregulation or secrecy, while presenting these 
choices as technical necessities (Oldenburg & Papyshev, 2025; Competition and Markets Authority, 2024). 

Critical perspectives also foreground the human and institutional work required to keep systems operating: data labour, 
annotation, red-teaming, safety operations, procurement, and organisational change. Even when models appear 
general, their impacts depend on where they are deployed, who is accountable for errors, and which groups bear the 
risks. This shifts the analytic focus from speculative end-states to near-term power relations and distributional harms 
(Massey et al., 2025; NIST, 2024). 

6.2. Technical scepticism and the limits of performance 

Technical scepticism questions whether benchmark and demo improvements translate into robust competence under 
distribution shift, adversarial pressure, or long-horizon tasks. A recurring finding is that performance can look smooth 
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in aggregate metrics while remaining brittle at the margins that matter for safety and reliability, such as tool use, 
planning, and error recovery in open environments (Zheng et al., 2023; Dong et al., 2024). 

Reliability concerns are sharpened by the rise of reasoning-style models that generate lengthy intermediate traces. 
Inference-time deliberation can improve accuracy on some tasks, but it can also produce confident, richly detailed 
explanations that remain factually wrong. In practical settings, this creates a distinctive failure mode: errors that are 
harder to detect because they are more persuasive (Shojaee et al., 2025; OpenAI, 2025b). 

6.3.  “Stochastic parrots” and epistemic limits 

The “stochastic parrots” critique highlights a core epistemic limit: next-token prediction can yield fluent outputs without 
grounded understanding, stable world models, or reliable truth tracking (Borji, 2023). Subsequent work refines this 
point by focusing on how evaluation regimes and interaction design can encourage anthropomorphic interpretations of 
competence, especially when users experience conversational coherence as evidence of understanding (Musi et al., 
2025). 

 

Figure 7 Counter‑narrative dynamics—rising synthetic content erodes trust, increasing policy burdens and 
verification demands. Partial restoration via provenance tools and standards 

A newer sociological extension of the epistemic critique is the risk of trust collapse. As synthetic text, images, and audio 
scale across the web, the baseline credibility of digital content can degrade, raising the cost of verification for 
individuals, media organisations, schools, and public agencies. This introduces an adoption friction that is not primarily 
technical: when audiences cannot easily distinguish authentic sources from automated fabrications, they may discount 
text as a whole, reducing the value of AI-generated outputs and increasing demand for provenance and authentication 
infrastructures (Bontcheva et al., 2023; Reuters Institute for the Study of Journalism, 2025). 

6.4. Environmental and resource critiques 

Environmental critiques increasingly move from general discussions of carbon footprint to the harder bottleneck of 
power system capacity. The constraint is often not only cost, but availability: delivering large, reliable blocks of 
electricity to specific sites on timelines that match model release cycles. Forecasts through 2026 and 2030 highlight 
rapid growth in electricity demand from data centres and AI workloads, but meeting this demand depends on 
generation, transmission, and distribution upgrades that face permitting, supply chain, and siting constraints 
(International Energy Agency, 2024; International Energy Agency, 2025). 
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Figure 8 Misaligned timelines between model scaling and grid infrastructure build-out 

As Figure 8 shows, model release cycles operate on monthly timescales, while grid and transmission expansion unfolds 
over years, converting exponential scaling ambitions into a linear construction problem. 

This introduces what can be described as a thermodynamic wall. Compute ultimately scales with watts, cooling, and 
land, and grids expand on construction schedules rather than software iteration cycles. Interconnection backlogs and 
long lead times for new substations, transformers, and transmission lines mean that even ambitious capital expenditure 
is mediated by linear infrastructure build-out. The implication for Singularity narratives is straightforward: 
“exponential” performance curves are increasingly paced by civil engineering and grid governance (Rand et al., 2024; 
Deloitte, 2025; Grid Strategies, 2025). 

STS and critical theory emphasise imaginaries, power, and infrastructure. Technical scepticism highlights brittleness, 
evaluation artefacts, and reliability limits. Epistemic critiques foreground groundedness and the risk of trust collapse. 
Environmental and physical perspectives foreground energy, grid capacity, and the build-out timelines that constrain 
scaling (Bontcheva et al., 2023; International Energy Agency, 2024; Narayanan & Kapoor, 2025; Rand et al., 2024). 

Together, these counter-perspectives reframe scaling as a socio-technical trajectory rather than a purely technical 
curve. They identify where performance claims collide with trust, labour, infrastructure, and resource limits, and where 
governance choices shape what gets built, who benefits, and what risks accumulate. With this friction in view, the 
analysis can now move from narratives and critiques to the concrete implications of scaling for power, labour, risk 
management, and global equity. 

7. Societal, Economic, and Governance Implications of Scaling Toward Singularity Futures 

Scaling laws and foundation models are often narrated as technical pathways toward "Singularity-style" futures, but 
their impacts already operate through institutions, infrastructure, labour markets, and regulation. In this section, 
Singularity-style futures refers to scenarios that emphasise recursive self-improvement and discontinuous capability 
jumps, as distinct from broad automation in which general-purpose models diffuse as a productivity technology across 
sectors. Either way, scaling becomes consequential through control over compute, data, deployment channels, and 
evaluation regimes, as well as through the capacity to manage risks and distribute benefits. 

This section proceeds in four steps. Section 7.1 analyses how rising compute intensity concentrates infrastructural 
power and translates it into governance leverage. Section 7.2 examines labour and knowledge production, emphasising 
workflow reorganisation and the often hidden supply chains that enable scaling. Section 7.3 distinguishes frontier 
catastrophic risks, high-frequency societal harms, and systemic infrastructure risks, and argues for operational 
precaution grounded in measurable governance capacity. Section 7.4 turns to global equity, outlining capability 
pathways for the Global South and the conditions required for genuinely plural futures. 
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7.1. Power and infrastructure 

Foundation models increasingly function as general-purpose infrastructure across sectors, and control over training 
compute, model weights, and deployment platforms is therefore a major source of power (Competition and Markets 
Authority [CMA], 2024; Maslej et al., 2025). Trend evidence suggests that frontier training compute has grown rapidly 
over time, reinforcing barriers to entry for smaller labs and public institutions (Sevilla & Roldán, 2024). Concentration 
then becomes governance power through several mechanisms: dominant actors can set de facto evaluation norms, 
shape standards and interfaces that others must follow, retain privileged access to deployment telemetry, and absorb 
compliance and audit costs that would be prohibitive for new entrants. Over time, these advantages influence what gets 
built, what is measured, and what is treated as "safe enough" to deploy. 

This concentration is not only financial or organisational. It is infrastructural. Large-scale models require data centres, 
specialised hardware supply chains, and sustained energy provision. As a result, AI governance increasingly intersects 
with chip supply and export controls, cloud credits and hyperscaler contracting, long-term energy agreements, and 
data-centre siting decisions that shape local planning and grid load (CMA, 2024; International Energy Agency, 2024). 
Infrastructural power is exercised as much through access and logistics as through model quality. 

Policy responses, therefore, need to combine market oversight with public-interest capacity building. Competition tools 
include merger scrutiny, remedies that prevent foreclosure of key inputs, and interoperability requirements where 
platform control can create choke points (CMA, 2024). Procurement is another lever: public-sector purchasing rules can 
require transparency, minimum safety documentation, and avoidance of lock-in. For systemically important models, 
transparency and audit access can be treated as a condition of deployment at scale, particularly where models underpin 
critical services or essential public functions (NIST, 2023; Regulation (EU) 2024/1689, 2024). These instruments do not 
eliminate concentration, but they can limit its conversion into unaccountable agenda-setting. 

7.2. Labour, expertise, and knowledge production 

Scaling reshapes labour through task reallocation, productivity shifts, and changing demand for skills. Occupational 
exposure analyses suggest that a substantial share of tasks in many jobs could be affected by large language models, 
with impacts spanning wage levels rather than targeting only routine work (Eloundou et al., 2023). Field evidence also 
indicates that generative AI tools can raise productivity in specific settings, but benefits may be uneven across workers, 
sometimes helping novices more than experts (Brynjolfsson et al., 2023). 

These distributional patterns matter for governance because "novices benefit more than experts" is not only a 
productivity claim, it is also an organisational power claim. If baseline competence becomes easier to obtain, managers 
can standardise outputs through templates, monitoring, and quality thresholds, and can shift bargaining power toward 
those who control tool access, performance metrics, and review pipelines. In practice, many deployments reorganise 
workflows by moving drafting, summarising, translation, and first-pass decision support into AI-mediated pipelines, 
while reserving escalation and final judgement for roles that set evaluation criteria and accountability boundaries (NIST, 
2024). This can produce a two-tier dynamic: wider access to routine assistance alongside tighter concentration of high-
stakes judgement in fewer hands. 

The same stratification logic carries into knowledge production inside AI research. As compute-intensive approaches 
define what counts as "state of the art," they privilege organisations that can afford frontier training runs, large 
evaluation teams, and extensive post-deployment feedback loops (Maslej et al., 2025). Labour-market stratification and 
research stratification therefore reinforce each other: organisations that control infrastructure can also set the pace, 
priorities, and benchmarks that structure downstream work. 

Scaling also depends on supply chains of human work, including data preparation, annotation, content moderation, and 
multilingual dataset production. Mapping of "data work" emphasises that these roles are essential yet often obscured, 
raising concerns about labour conditions, transparency, and accountability in AI supply chains (Massey et al., 2025). A 
practical governance handle is minimum disclosure and due diligence: requirements for dataset provenance, 
documentation of collection and licensing, and supplier transparency for annotation and moderation conditions can 
shift data work from an externalised cost to a governed input (NIST, 2024; Regulation (EU) 2024/1689, 2024). Without 
such instruments, scaling can widen informational asymmetries even as it advertises productivity gains. 

7.3. Risk, catastrophic threats, and precaution 

Scaling trajectories raise multiple categories of risk that are often conflated in public debate. A useful taxonomy 
separates: (1) frontier catastrophic risks, such as misuse at scale, loss of control in tightly coupled systems, or rapid 
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capability jumps under competitive pressure; (2) high-frequency societal harms, including disinformation, 
discrimination, privacy violations, and workplace exploitation; and (3) systemic infrastructure risks, such as energy 
demand, critical dependency on concentrated providers, and fragility created by common-model monocultures (Bengio 
et al., 2025; Bontcheva et al., 2023; CMA, 2024; International Energy Agency, 2024). This schema matters because each 
category implies different evaluation methods, oversight institutions, and enforcement tools. 

The International AI Safety Report synthesises evidence on risks associated with advanced general-purpose systems, 
including misuse, emergent capabilities, and control challenges, while emphasising uncertainty and the need for 
sustained evaluation and governance capacity (Bengio et al., 2025). In parallel, syntheses on generative AI and 
disinformation document how low-cost content generation can intensify manipulation, complicate verification, and 
strain the information environment (Bontcheva et al., 2023). Infrastructure risks link these domains to material 
constraints: energy provisioning, grid planning, and data-centre build-out can become binding conditions on 
deployment velocity and therefore on how quickly new capabilities translate into societal effects (International Energy 
Agency, 2024). 

In this context, precaution should be distinguished from a generic "pause". Precaution is operational when it is 
expressed as measurable governance capacity: pre-deployment evaluation, red-teaming, incident reporting, third-party 
audits, and post-deployment monitoring that can trigger remediation, restriction, or withdrawal (NIST, 2023; NIST, 
2024; Regulation (EU) 2024/1689, 2024). Voluntary commitments are insufficient not only as a matter of principle, but 
also as a matter of incentives. Race dynamics, reputational arbitrage, and market pressure predict under-compliance 
when failures are cheaper than delays, particularly without penalties and enforceable duties. A realistic precautionary 
posture therefore combines standards, enforcement, and transparency with institutional readiness to learn from 
incidents and update requirements over time. 

7.4. Global South and plural futures 

Scaling-centred imaginaries are often authored and operationalised in a small set of countries and firms, yet their 
impacts are global. The UN High-level Advisory Body stresses that governance must address global inequities in access 
to compute, data, and institutional capacity, warning that uneven diffusion risks widening existing development gaps 
(United Nations, 2024). UNESCO similarly frames capacity building, equity, and policy readiness as central requirements 
for responsible adoption, particularly in education and public-sector contexts where resource disparities are 
pronounced (UNESCO, 2023). 

A concrete capability pathway clarifies what is at stake: compute access enables local model development and 
adaptation; local development improves local-language coverage and domain alignment; stronger coverage supports 
institutional adoption in education, health, and government; and sustained adoption increases regulatory voice, shifting 
countries from rule-takers toward rule-shapers (United Nations, 2024). Without this pathway, scaling economies can 
reproduce dependency, with value concentrated in model ownership and distribution while costs and data work are 
dispersed (Massey et al., 2025). 

Imported model mismatch should therefore be treated as both a technical and governance issue. Misalignment can arise 
from language coverage gaps, cultural and legal norms, public-sector constraints, and procurement lock-in that limits 
switching costs and local oversight. Addressing mismatch requires evaluation capacity in local contexts, procurement 
autonomy, and data governance that supports public-interest adaptation rather than passive importation (UNESCO, 
2023; United Nations, 2024). 

If scaling is a socio-technical trajectory, plural futures require plural infrastructures, including compute access, data 
governance, evaluation capacity, and procurement autonomy, not just plural narratives. This shifts the policy question 
from whether scaling might deliver an abstract endpoint to whether institutions can build the capacity to steer scaling 
toward legitimate, locally grounded public goals. 

8. Discussion: The Plateau of Productivity 

The 2023 to 2025 scaling literature shows that capability can increase rapidly on curated evaluations, yet measured 
economic impact often moves more slowly. This paper frames that gap as a plateau of productivity: not a claim that 
models have stopped improving, but that translation from technical capability to durable value is increasingly 
constrained by organisational change, infrastructure, trust, and governance. 
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A useful way to summarise the moment is that we may have reached “Peak Hype” but not “Peak Impact”. Even if training-
time scaling slowed sharply today, the diffusion of current systems into workflows, procurement regimes, and public 
institutions would still unfold over many years. The world can change profoundly without any intelligence explosion, 
yet Singularity talk often distracts attention from the practical integration work that makes benefits real and harms 
governable. 

 

Figure 9 The plateau of productivity: Peak hype precedes peak impact 

8.1. Peak hype versus peak impact 

Headline progress is easiest to observe where tasks are cleanly defined, data are plentiful, and success is a score. 
Productivity is harder. It depends on complementary investments such as process redesign, domain data integration, 
training, and quality control, plus the ability to absorb errors and compliance costs (Brynjolfsson et al., 2023; NIST, 
2024). 

Exposure studies suggest large shares of work contain tasks that are technically addressable by language models, but 
addressability is not the same as adoption. Firms still have to decide where automation is acceptable, how outputs are 
verified, and who bears liability when systems fail (Eloundou et al., 2023; European Parliament & Council of the 
European Union, 2024). 

This helps explain why public discourse can look discontinuous while economic impact looks incremental. Model 
releases can generate visible performance jumps on well-known suites, while value creation emerges through slower 
cycles of experimentation, institutional learning, and reorganisation of roles and responsibilities. 

8.2. The integration decade 

Economic integration is likely to be measured in years because it requires rebuilding the surrounding production stack. 
Organisations need evaluation and monitoring pipelines, incident response procedures, access controls, and 
procurement rules that specify acceptable uses and verification thresholds (NIST, 2024; European Parliament & Council 
of the European Union, 2024). 

Reliability and trust are central constraints. As argued earlier, more inference-time “thinking” can make errors more 
persuasive, which increases the burden on human review and raises the cost of safe deployment in high-stakes settings. 
The outcome is often partial adoption, where models assist with drafts, search, or triage, while humans retain decision 
authority and accountability. 

Physical infrastructure adds another layer of friction. Data centre and grid build-out follow permitting, construction, 
and interconnection timelines that are typically linear, not exponential. In 2025 to 2026 analysis, the binding constraint 
is frequently availability of power and transmission capacity, not only the price of compute (Deloitte, 2025; Grid 
Strategies, 2025; International Energy Agency, 2024, 2025). 
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8.3. Why Singularity talk mismeasures value 

Singularity narratives emphasise recursive self-improvement and discontinuous capability jumps. That framing can be 
analytically useful for certain risk discussions, but it is a poor guide to where economic and social change is currently 
being produced. Most near-term transformation comes from broad automation and augmentation across existing 
institutions, not from the sudden arrival of an autonomous superintelligence. 

There is also a sociological reason the narrative persists: it offers a simple story of inevitability that can legitimise 
aggressive investment and compress debate about trade-offs. When attention centres on hypothetical discontinuities, 
mundane questions about procurement lock-in, audit access, labour standards, and error accountability can be treated 
as secondary, even though they determine real-world outcomes (Hirsch-Kreinsen, 2024; NIST, 2024). 

Reframing the problem as a plateau of productivity changes the emphasis. The core challenge is not whether a 
singularity arrives, but whether institutions can translate general-purpose models into reliable services without 
concentrating power, degrading trust, or shifting risk onto less protected groups. 

8.4. A practical agenda for productivity and governance 

If impact is gated by integration rather than raw capability, then governance should prioritise capacity-building as much 
as restriction. This includes shared evaluation infrastructure, reporting and incident databases, red-teaming norms, and 
audit access for systemically important models (Bengio et al., 2025; NIST, 2024). 

Competition and public-interest tools matter in this framing because they shape who can participate in integration. 
Merger scrutiny, interoperability requirements, and procurement standards can prevent a narrow set of actors from 
defining de facto standards through market dominance, while also lowering adoption barriers for public services and 
smaller firms (Competition and Markets Authority, 2024; Bertelsmann Stiftung, 2025). 

Finally, the research agenda should treat productivity as an empirical target, not an assumed outcome. That implies 
measuring gains and harms in the field, identifying where verification costs erase benefits, and investing in the practical 
work of data governance, training, and workflow design. On this view, the post-2025 decade is likely to be defined less 
by a sudden jump in intelligence and more by a contested, uneven integration of existing capabilities into economic and 
political life. 

9. Future Research Directions 

By 2027, the most consequential research questions may be less about whether pre-training loss continues to fall and 
more about whether societies can evaluate, trust, and afford advanced reasoning systems at scale. This chapter proposes 
three priorities aimed at that shift: process supervision (evaluating how models reason), human-AI epistemics 
(maintaining shared truth in synthetic information environments), and the energy-intelligence exchange rate 
(formalising the physical cost of a unit of reasoning). 

9.1. Process supervision: Evaluating how models think 

Inference-time scaling and ‘reasoning models’ change what it means to evaluate capability. When a system can ‘think 
longer’ via sampling, search, or self-critique, the final answer may look correct, but the underlying trajectory can be 
brittle, circular, or quietly wrong. Process supervision addresses this by providing feedback on intermediate steps, not 
only on end results. Step-by-step verification has already shown that dense supervision can materially improve multi-
step reasoning performance relative to outcome-only training regimes (Lightman et al., 2023). 

The next research frontier is to generalise process supervision beyond mathematics into agentic work: tool use, 
planning, and long-horizon task management. This requires process signals that are grounded in external constraints, 
such as tool logs, executable tests, proofs, or environment transitions, rather than in the superficial plausibility of a 
natural-language trace. Recent work in process reward modelling highlights that even within ‘step-level’ evaluation, the 
design of the signal matters, for example when a model must estimate both the correctness of previous steps and the 
likelihood of eventual success from a partial solution (Chen et al., 2025). 

A second open problem is governance-relevant: process supervision is also a monitoring technology. If reasoning traces 
become central to evaluation, then incentives may emerge to hide, obfuscate, or strategically reshape those traces. Work 
on monitoring reasoning models cautions that pushing too hard on one monitoring channel can lead to adaptations that 
reduce transparency, rather than increasing it (Baker et al., 2025). A 2027 agenda should therefore include selective 
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disclosure protocols, auditor-access mechanisms, and empirical studies of ‘monitoring robustness’ under competitive 
pressure. 

9.2. Human-AI epistemics: Maintaining truth when content becomes cheap 

As synthetic text, images, and video become increasingly abundant, societies face a practical epistemic question: how 
do we preserve shared standards of evidence when content is cheap to generate, easy to personalise, and often hard to 
authenticate. This is not only a detection problem. It is a problem of institutional design, because trust depends on 
provenance, incentives, and verification practices. In this context, ‘human-AI epistemics’ refers to the coupled system of 
people, tools, and institutions that produces and validates knowledge in a world where machine-generated material is 
normal rather than exceptional. 

One promising direction is to treat provenance as infrastructure. NIST’s guidance on synthetic content outlines technical 
approaches such as watermarking, provenance, detection, and auditing, while emphasising the need for standards and 
governance that make these methods usable at scale (Chandra et al., 2024). The Coalition for Content Provenance and 
Authenticity (C2PA) similarly provides a technical standard for cryptographically binding origin and edit history to 
media, enabling downstream verification where the ecosystem supports it (Coalition for Content Provenance and 
Authenticity [C2PA], 2025). However, the key research gap is not only building standards, but measuring adoption, 
compliance, and failure modes across platforms and sectors. 

A 2027 research programme should prioritise: (i) provenance coverage metrics (what proportion of high-reach content 
carries verifiable credentials), (ii) ‘trust calibration’ studies that measure how users respond to provenance signals and 
uncertainty, and (iii) institutional protocols for high-stakes domains, such as education and health, where epistemic 
trust can be mistakenly transferred from interfaces to underlying systems (Sedlakova et al., 2025). Complementary 
work is needed on maintaining ‘clean’ evaluation and training corpora, including methods that resist synthetic feedback 
loops and preserve diverse, human-grounded data sources. 

9.3. The energy-intelligence exchange rate: Formalising the cost of reasoning 

Scaling debates often treat intelligence as if it were primarily a software outcome, but by 2027 the binding constraints 
may be physical: electricity supply, grid capacity, and the capital required to build and operate data centres. The field 
needs an explicit ‘energy-intelligence exchange rate’, meaning a standard way to quantify how much energy is required 
to produce a defined amount of useful reasoning. Without this, claims about efficiency, ‘green AI’, and scalability remain 
difficult to compare and hard to govern. 

Recent policy analysis from the International Energy Agency (IEA) stresses that there is no AI without electricity, and 
that the interaction between AI deployment and electricity systems is becoming strategically significant in parts of the 
world (IEA, 2025). At the same time, measurement practices remain inconsistent and often opaque. Initiatives such as 
the AI Energy Score attempt to make energy use legible by proposing comparable, public-facing efficiency ratings for 
models (Salesforce, 2025). The research challenge is to operationalise ‘a unit of reasoning’ in ways that connect energy 
to value, for example, joules per correct solution on reasoning-heavy tasks, or kilowatt-hours per completed workflow 
when tool use and retrieval are included. 

A concrete 2027 agenda includes: (i) energy-adjusted benchmarks that report accuracy and energy jointly, (ii) reporting 
standards that separate training energy from inference energy and include system-level components such as retrieval, 
orchestration, and cooling, and (iii) independent auditing methods for energy claims, analogous to other high-impact 
technology reporting regimes. If capability evaluation is entering an ‘evaluation crisis’, then energy measurement is part 
of the same institutional problem: governance cannot manage what it cannot measure. 

Across all three priorities, the common theme is that frontier AI research must expand its unit of analysis. The next 
phase of work is less about extrapolating curves and more about building evaluative, epistemic, and physical 
infrastructure that keeps advanced systems legible and governable as they diffuse through economies and institutions. 

10. Conclusion 

This review examined whether contemporary scaling laws and foundation model progress justify Singularity-style 
claims, and how these claims shape industrial strategy and governance. The core conclusion is that scaling delivers 
meaningful, often predictable capability gains within defined training regimes, but the evidence does not support 
deterministic narratives of an inevitable intelligence explosion. What scaling research most reliably provides is 
conditional forecasting for performance under stable pipelines. Once training objectives, evaluation setups, data 
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conditions, or system scaffolding change, “law-like” certainty weakens and extrapolation becomes increasingly 
speculative. Future research directions are developed in Chapter 9. 

Foundation models and multimodal systems strengthen the case that general-purpose AI will continue to reshape 
knowledge work and institutions. Yet their limitations are equally instructive. High benchmark scores can coexist with 
brittleness, failure under distribution shift, and reliability problems in open-ended generation. Agent-like behaviour 
often arises from system design, tool use, memory, and deployment scaffolding rather than from the base model alone. 
This makes it misleading to equate parameter scaling with autonomy or to treat lower loss as direct evidence of stable, 
safe general intelligence. 

A second conclusion concerns discourse. Singularity narratives function as more than hypotheses about technical 
trajectories. They are also sociotechnical imaginaries that coordinate investment, urgency, and regulatory attention. 
Whether or not a Singularity occurs, the narratives already have real effects by shaping what gets funded, what gets 
regulated, and which risks or social goals are treated as central. The practical governance challenge is therefore not only 
preparing for extreme possibilities, but also preventing speculative end-states from overshadowing near-term harms, 
power concentration, labour impacts, and infrastructure constraints. 

Overall, the most defensible position is neither complacency nor fatalism. Scaling trends justify serious attention and 
strong governance, but they do not compel a single future. The task ahead is to build technical and institutional systems 
that can capture benefits, reduce harms, and remain adaptable as evidence evolves. 
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