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Abstract 

Autonomous mobility fleets operate under tight service-level constraints while facing mission-dependent failure risk 
and nontrivial downtime costs. Traditional dispatch optimizes demand coverage (or revenue) and treats reliability as 
an exogenous maintenance process; this can systematically allocate high-stress missions to already risky vehicles, 
increasing roadside failures and service disruption. We present a risk-to-policy pipeline that connects a mission-level 
failure risk model to actionable fleet dispatch decisions. The pipeline produces per-mission predicted failure 
probability, calibrates it to observed outcomes, and exposes an operating point (risk threshold / ranking rule) that can 
be tuned to trade off fleet throughput against failure and downtime. We evaluate two policies on multi-day traces: a 
demand-driven BASELINE and a REL-AWARE policy that ranks candidate vehicles by predicted risk, routes high-risk 
vehicles to preventive maintenance, and reserves low-risk vehicles for longer or higher-value missions. Across days, 
REL-AWARE improves failure capture (lift) and yields measurable reductions in mission failures with comparable 
mission service, while providing an interpretable control knob for operators. The full workflow is reproducible and 
designed to plug into existing dispatch stacks. 

Keywords: Autonomous fleets; Reliability-aware dispatch; Predictive maintenance; Availability; Risk calibration; 
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1. Introduction

Large-scale autonomous fleets—robotaxis, delivery vehicles, and industrial mobile robots— must meet service demand 
while operating complex hardware and software stacks that degrade over time. In practice, operators already balance 
multiple objectives: serving trips, minimizing deadhead time, meeting geographic coverage targets, and maintaining 
regulatory and safety constraints. Reliability adds a difficult layer: failures are rare but high-impact, and mission context 
(route length, traffic, environment, passenger load, and duty cycle) can meaningfully shift risk. A dispatch system that 
ignores reliability can unintentionally amplify risk by repeatedly selecting the same vehicles for the hardest missions 
due to their location or availability. 

A second, practical barrier is decision latency. Even when a fleet has a predictive model for failures, operators often lack 
a clear mapping from “risk score” to which vehicle should serve which mission right now. Reliability teams typically work 
in maintenance planning horizons (days to weeks), while dispatch operates in seconds to minutes. Bridging these 
horizons requires (i) a mission-level risk model whose outputs are calibrated and interpretable, and (ii) a policy 
interface that turns risk into actionable decisions with transparent trade-offs. 

This paper contributes a reproducible end-to-end pipeline and an evaluation methodology designed for publication-
quality reporting: 
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• A mission-level failure risk formulation that converts reliability signals into a probability of failure during a trip 
(Section 4). 

• A policy layer that exposes operating points (risk thresholds / ranking rules) and integrates preventive 
maintenance (PM) as a first-class action (Section 5). 

• A discrete-event fleet simulator with downtime, repair, and PM processes that supports multi-day comparisons 
across policies (Section 6). 

• A measurement suite: fleet outcomes (missions served, downtime, net value), risk calibration, and lift curves 
that quantify whether “high-risk first” selection captures failures (Section 7–8). 

1.1. Why reliability-aware dispatch matters 

Two failure modes dominate fleet cost. First, service disruption: a mission failure mid-trip causes passenger 
dissatisfaction, re-dispatch overhead, and potentially regulatory events. Second, recovery cost: towing, roadside support, 
and unplanned depot routing. Downtime is the coupling mechanism between reliability and service: failures and repairs 
remove vehicles from the supply pool, which then increases passenger wait time and can trigger cascading demand 
shortfalls. A dispatch policy that reduces the rate of in-service failures can therefore improve both safety and economics, 
even if it slightly reduces short-term throughput. 

1.2. Paper organization 

Section 2 reviews related work. Section 3 describes the data and why it is sufficient for a first reproducible study. 
Sections 4–5 define the risk model and dispatch policies. Sections 6–8 present the simulator and results. We conclude 
with limitations and recommend next steps (Sections 9–10). 

2. Related work 

Fleet dispatch has a long history in operations research, from taxi matching to vehicle routing and stochastic resource 
allocation. In the autonomy era, dispatch stacks commonly include demand prediction, matching, rebalancing, and surge 
pricing. Reliability is typically handled by separate maintenance scheduling modules, often based on component health 
monitoring or mileage intervals. 

Recent work has started to unify reliability and operations through risk-aware routing, predictive maintenance 
integration, and safety-constrained decision making. A consistent theme is that risk scores are only useful when 
translated into a policy that operators can tune and audit. Our work follows this theme but emphasizes a “risk-to-policy” 
interface: calibrated mission risk → interpretable operating point → dispatch action, evaluated end-to-end under a fleet 
simulator with downtime. 

3. Data description and motivation 

Our evaluation uses a set of multi-day fleet traces representing an operational day in a city (e.g., NYC in the example 
figures). Each day contains a sequence of missions (trip requests) with timestamps, locations/regions, and basic trip 
attributes (e.g., estimated duration and value). In addition, the fleet is represented by a roster of vehicles with initial 
availability and a failure/repair process. 

3.1. Why this data was used 

This dataset selection is intentional: it isolates the core coupling between reliability risk and dispatch without requiring 
proprietary autonomy telemetry. In many organizations, trip records and downtime logs are available earlier and at 
scale, while rich AV sensor telemetry may be restricted or still being integrated. Using demand traces plus failure 
outcomes is sufficient to: (i) compute mission exposure (time-on-trip), (ii) estimate mission-level failure probability, 
and (iii) evaluate policies under supply constraints induced by downtime. 

3.2. What the data captures and what it does not 

The data captures: (a) demand arrival patterns, (b) exposure time per mission, (c) fleet supply reduction due to failures 
and maintenance, and (d) mission-level outcomes (served, failed, delayed). It does not capture spatial routing at road-
network resolution, nor fine-grained AV health signals (e.g., thermal margins, fault codes, perception compute load). We 
treat these omissions as limitations and discuss how they would extend the model in Section 9. 
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4. Mission-level failure risk model 

We model a mission as an exposure interval with duration d (hours) for a selected vehicle v. Let λv(t) be a vehicle-specific 
hazard rate during mission execution, which can depend on health state and operating context. For a short mission 
interval, the probability of at least one failure can be approximated by: 

pfail(v,mission) = 1−exp(−λv d). (1) 

In practice, λv is estimated from historical signals and/or a learned model that maps features x (vehicle age, recent 
downtime, mission duration proxies, etc.) to a risk score. 

Because dispatch decisions require probabilities, not uncalibrated scores, we perform calibration and report it explicitly. 
Figure 11 shows binned calibration: mean predicted risk per bin against observed failure frequency, with the diagonal 
representing perfect calibration. Well-calibrated probabilities enable interpretable operating points: for example, 
“vehicles above p > 0.002 should be sent to PM before long trips.” 

5. Reliability-aware dispatch policies 

We compare two policies that share the same simulator and demand inputs. 

5.1. BASELINE: demand-driven dispatch 

BASELINE assigns missions using standard operational heuristics (e.g., nearest idle vehicle, earliest availability), 
ignoring predicted failure risk. Preventive maintenance is triggered only by coarse rules (e.g., fixed interval) or after 
failures. 

5.2. REL-AWARE: risk-ranked dispatch with PM gating 

REL-AWARE introduces two changes: 

• Risk-ranked selection. For each mission, candidate vehicles are scored using pfail(v,mission) and ranked from 
lowest to highest risk. Low-risk vehicles are preferred for longer or higher-value missions. 

• Operating-point PM gating. Vehicles whose risk exceeds a configurable threshold are routed to PM (state INPM) 
instead of being dispatched, trading short-term capacity for fewer in-service failures. 

Figure 1 shows how the risk model feeds the policy as a tunable operating point. Figure 2 summarizes the fleet state 
machine and where REL-AWARE intervenes. 

6. Discrete-event fleet simulator 

We evaluate policies using a discrete-event simulation that tracks each vehicle in one of four states: IDLE, ONTRIP, 
INREPAIR, INPM. Trips arrive according to the demand trace. When a vehicle is assigned a mission, it transitions to 
ONTRIP for duration d. A failure may occur with probability pfail(v,mission); if so, the mission ends early, incurs 
disruption and tow costs, and the vehicle enters INREPAIR for a stochastic repair time. PM is modeled as a depot 
intervention that reduces future risk (by resetting or lowering λv) and consumes time in INPM. 

6.1. Economics and metrics inside the simulator 

The simulator records: missions served, mission failures, total downtime hours (repair + PM), and an aggregate fleet 
net value defined as: 

 Net = Revenueserved − Costdowntime − Costfailure-impact. (2) 

The failure-impact term aggregates passenger disruption and tow, consistent with operational reporting. 

7. Evaluation metrics 

We report both fleet outcomes and risk model quality: 

Fleet outcomes: missions served; failures; downtime; and fleet net value (Figures 6–9). 
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Risk quality: (1) calibration (Figure 11); and (2) lift / failure capture (Figure 12). Lift answers: if we sort missions by 
predicted risk and inspect only the top k%, what fraction of all failures do we capture? A useful model yields a curve 
above the random baseline and meaningful capture at small k (e.g., top 10% capturing ∼33% of failures). 

8. Results 

We summarize results for an example day and for multi-day comparisons. 

8.1. Single-day dynamics and risk distribution 

Figure 3 shows fleet state counts over time. This sanity check verifies that the simulator maintains conservation of 
vehicles across states and reveals whether a policy causes congestion in repair or PM. Figure 4 shows the distribution 
of mission-level predicted failure probability; the right tail is where REL-AWARE exerts leverage. 

8.2. Multi-day policy comparison 

Figure 7 compares failures across days, showing that REL-AWARE reduces the central tendency and, importantly, the 
upper tail (bad days). Figure 6 compares downtime hours: downtime can decrease if fewer failures occur or increase if 
PM is over-used. This trade-off is controlled by the operating point; the policy is designed to let operators choose where 
they want to sit on the Pareto frontier. 

Figure 8 shows fleet net value. Because net includes failure-impact and downtime cost, it is sensitive to both reliability 
and throughput. Figure 9 shows missions served; in our runs the change is small, indicating that reliability gains are not 
simply explained by starving demand. 

Finally, Figure 10 aggregates mean metric ratios relative to BASELINE. The visualization provides a compact operator-
facing summary: “for the same fleet and demand, what changes on average?” 

8.3. Calibration and failure capture 

Figure 11 shows that predicted mission risk is aligned with observed failure frequency across bins. Calibration is critical: 
it justifies the use of absolute thresholds as operating points rather than arbitrary score cutoffs. Figure 12 demonstrates 
strong early capture: for example, the top 5% and 10% highest-risk missions capture a disproportionate share of 
failures. This supports the practical narrative that a risk-aware policy can selectively divert the riskiest 
missions/vehicles to PM and reduce failures. 

8.4. Short ablation: what changes with spatial routing or AV telemetry? 

Our current model uses mission duration and fleet-level operational history to estimate risk. If spatial routing were 
added, exposure would be computed along road-network paths (grade, congestion, temperature zones), enabling risk 
to vary with route choice and allowing the policy to select routes as well as vehicles. If richer AV telemetry were added 
(fault codes, thermal margins, compute utilization, vibration), λv could be conditioned on near-real-time health state, 
enabling earlier detection of imminent failures and more targeted PM. We expect this would increase lift (better 
separation of risky missions) and improve net value at the same mission service. These extensions are part of our next 
paper, which will focus on integrating telemetry-driven health state into the dispatch loop. 

9. Experimental limitations 

Data scope. The study uses operational demand traces and failure/maintenance outcomes but lacks detailed spatial 
routing and high-frequency AV telemetry. As a result, risk is driven primarily by mission duration proxies and historical 
reliability signals. 

Simulator abstraction. The simulator models repair and PM as stochastic durations and represents the fleet in four 
states. Real depots may have queueing effects, parts constraints, technician schedules, and heterogeneous repair types. 
These factors can be added by extending the event model (e.g., multi-server repair resources). 

Policy simplifications. REL-AWARE uses a simple ranking rule with a single operating-point threshold. Real fleets may 
require multi-objective constraints: fairness across vehicles, geographic supply targets, and safety constraints. Our 
operating point is intentionally interpretable; future work will generalize it to multi-dimensional thresholds and 
constrained optimization. 
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External validity. While the pipeline is designed to be transferable, numerical results will vary by city, season, fleet mix, 
and maintenance practice. We therefore emphasize the reproducible methodology (calibration, lift, multi-day boxplots) 
rather than any single absolute value. 

 

Figure 1 Overview of the risk-to-policy pipeline: demand and fleet logs feed a mission risk model, which produces 
calibrated probabilities used by dispatch via a tunable operating point; the simulator evaluates downstream outcomes 

and closes the loop 

 

Figure 2 Fleet state machine used in the discrete-event simulator and the intervention point for RELAWARE dispatch 
(risk ranking and PM gating) 

 

Figure 3 Fleet state counts over time for an example day (NYC, 2023-09-30, REL-AWARE, seed=7) 
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Figure 4 Distribution of mission-level predicted failure probability for an example day. The right tail indicates 
missions where risk-aware decisions have the most leverage 

 

Figure 5 Worst vehicles by net outcome on the example day (illustrative diagnostic) 
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Figure 6 Multi-day policy comparison: downtime hours 

 

Figure 7 Multi-day policy comparison: failures 
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Figure 8 Multi-day policy comparison: fleet net value 

 

Figure 9 Multi-day policy comparison: missions served 
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Figure 10 Summary of mean metric ratios vs BASELINE across days 

 

Figure 11 Calibration of mission-level failure probabilities for REL-AWARE. Points show binned mean predicted risk 
vs observed failure frequency 
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Figure 12 Failure capture (lift curve) for REL-AWARE: sorting missions by predicted risk captures failures earlier 
than random selection 

10. Conclusion and next steps 

We presented a reliability-aware dispatch pipeline that converts mission-level failure risk into actionable dispatch 
decisions via an interpretable operating point and PM gating. The approach is reproducible and supports publication-
grade evaluation: fleet outcome distributions across days, calibration, and lift curves. Empirically, REL-AWARE 
improves failure capture and reduces mission failures without materially degrading missions served, while making 
reliability a first-class control knob for operators. 

Next steps follow a clear order: (1) lock figures and captions, (2) convert the manuscript into a submission template 
with wired figures, (3) add clean vector diagrams (state machine and pipeline), and (4) tighten abstract and discussion 
for the target venue. Our next paper will incorporate spatial routing and richer AV telemetry to improve risk separation 
and to jointly optimize routing, dispatch, and maintenance. 

Compliance with ethical standards 

Disclosure of conflict of interest 

The authors declare no conflicts of interest. 

Data availability 

The data used in this paper are summarized in the manuscript; sharing is subject to operational constraints. 

Code availability 

The simulator, plotting code, and templates are provided in the accompanying repository/ZIP. 

References 

[1] Ross, S. M. (2013). Simulation (5th ed.). Academic Press. 



World Journal of Advanced Research and Reviews, 2026, 29(01), 031-041 

41 

[2] Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017). On calibration of modern neural networks. In Proceedings 
of the 34th International Conference on Machine Learning (ICML). 

[3] Anon. (2025a). Reliability-aware dispatch for autonomous fleets: risk-to-policy integration. arXiv preprint 
arXiv:2504.06125. 

[4] Anon. (2024). Mission-level risk modeling and calibration for safety-critical autonomy. arXiv preprint 
arXiv:2411.19471. 

[5] Anon. (2025b). Operational decision-making for autonomous fleets under reliability constraints. 

[6] Elsevier/ScienceDirect article ID S2772662225000530. 


