RRRRR

World Journal of Advanced Research and Reviews W,

eISSN: 2581-9615 CODEN (USA): WIARAI R vanced

Cross Ref DOL: 10.30574/wjarr Begews
WJARR Journal homepage: https://wjarr.com/ o
(REVIEW ARTICLE) W) Check for updates

Artificial Intelligence in Radiotherapy: From Technical Automation to Assisted
Clinical Decision-Making. A Literature Review

Jihane Bouziane ® * El Mehdi Sadiki 2, Kaoutar Soussy !, Samia Khalfi 1, Wissal Hassani !, Fatima Zahraa
Farhane 1, Zenab Alami ! and Touria Bouhafa !

1 Department of Radiation Oncology, Hassan II University Hospital, Fez, Morocco.
2 Laboratory of Applied Physics, Computer Science and Statistics, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben
Abdellah University, Fez, Morocco.

World Journal of Advanced Research and Reviews, 2025, 28(03), 2082-2087
Publication history: Received on 22 November 2025; revised on 27 December 2025; accepted on 30 December 2025

Article DOI: https://doi.org/10.30574 /wjarr.2025.28.3.4312

Abstract

Artificial intelligence (Al) is transforming the radiotherapy landscape by addressing challenges related to efficiency,
standardization, and treatment personalization. This literature review critically synthesizes current and emerging
applications of Al across the radiotherapy care continuum. We analyze evidence of its impact on four key areas:
automatic segmentation, treatment planning, radiomics for prediction, and quality control. The data demonstrate
substantial gains in reproducibility and operational efficiency. However, major obstacles to clinical implementation
persist, including the need for robust prospective validation, the lack of transparency in algorithms ("black box" nature),
risks of bias, and ethical-legal issues. We conclude that Al is destined to become an indispensable "co-pilot" for the
radiation oncologist, but its successful integration will require rigorous validation frameworks, ethical governance, and
an evolution of professional skills to prioritize patient safety and benefit.
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1. Introduction

Modern radiotherapy relies on a delicate balance between optimal tumor control and minimizing toxicity to healthy
tissues. Radiotherapy planning is a complex process where the precise delineation of organs at risk (OAR) is crucial for
sparing healthy tissues. This manual contouring step, however, presents significant inter-observer variability [1], a well-
documented limitation that introduces uncertainty into dosimetric optimization.

Simultaneously, pressure on services continues to grow. Artificial intelligence (Al), and particularly deep learning, is
emerging as a powerful set of tools to address these challenges, with demonstrated potential to automate, optimize, and
personalize each link in the treatment chain, as highlighted by recent reviews in the field [2].

The objective of this review is to provide a critical overview of Al applications in radiotherapy, assess the level of
evidence associated with each, and discuss the practical and conceptual challenges posed by its adoption in routine
clinical practice.
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2. Methods

A literature review was conducted to synthesize current evidence on artificial intelligence (AI) applications in
radiotherapy. The aim was to identify key trends, assess the maturity of evidence, and highlight persistent challenges
to clinical adoption. The review process, summarized in Figure 1, followed a structured approach to ensure a
comprehensive and reproducible search.

2.1. Search Strategy

A systematic search was performed across two major biomedical databases: PubMed/MEDLINE and Scopus. The search
timeframe encompassed all literature published up to December 2025. To capture the breadth of the field, the search
strategy combined key terms and their synonyms using Boolean operators (AND/OR). The core search terms
included: “Artificial Intelligence”, “Machine Learning”, “Deep Learning”, “Radiotherapy”, “Radiation
Oncology”, “Treatment Planning”, “Radiomics”, and “Quality Assurance”.

2.2. Study Selection and Eligibility Criteria

The initial pool of records was screened in two stages based on pre-defined eligibility criteria, as detailed below in table
1:

Table 1 Study Selection and Eligibility Criteria

score, dosimetric parameters, model accuracy).

Stage Inclusion Criteria Exclusion Criteria

Title/Abstract . English language publications. | » Studies with no relevance to

Screening e Primary focus on AI/ML in a radiotherapy context. | radiotherapy or AL

Full-Text Review | e Study types: Systematic reviews, meta- | ¢ Editorials, letters, opinion pieces.
analyses, clinical trials, | e Studies with insufficient
and prospective /retrospective cohort  studies. | methodological detail or irrelevant
« Studies reporting quantitative outcomes (e.g., Dice | outcomes.
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Figure 1 Literature Search Strategy and Study Selection Process

3. Results and Discussion

3.1. Automatic Segmentation:

Freeing Time, Standardizing Quality Manual segmentation of organs at risk (OAR) and target volumes represents a
major bottleneck. Deep learning algorithms, particularly U-Net type architectures, have demonstrated exceptional
performance for the delineation of standard OARs. Dice similarity scores (DSC) often exceeding 0.90, frequently
surpassing inter-expert variability, are reported for structures such as the parotid glands, bladder, or rectum [3].

These algorithms also enable a significant reduction in working time and improve contour consistency, as demonstrated
for head and neck OARs where manual contouring time was reduced by 33% and inter-observer variability was

significantly decreased [4].

The current challenge is no longer raw performance, but the seamless integration of these tools into the hospital
information system (PACS, TPS) for a hybrid workflow where the expert validates and edits the Al's proposals.
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3.2. Automated Treatment Planning:

Towards Standardized Dosimetric Excellence Inverse planning for intensity-modulated radiotherapy (IMRT/VMAT) is
a complex iterative process. Al, via Knowledge-Based Planning (KBP) or reinforcement learning, now enables the near-
instantaneous generation of high-quality plans. Validation studies have confirmed that automated plans were
dosimetrically non-inferior, and often superior, to manual plans, with a measurable improvement in target volume dose
homogeneity and organ-at-risk sparing, as demonstrated for head and neck cancer [5]. This allows for more advanced
optimization of dose constraints, standardization of quality between centers, and redistribution of medical physicists'
time towards higher value-added tasks.

3.3. Radiomics and Prediction

The Promise of Personalized Medicine Radiomics extracts hundreds of quantitative features from medical images (CT,
MRI, PET). Coupled with Al for analysis, it aims to identify prognostic or predictive signatures. Promising models have
been developed to predict complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer
[6], survival in glioblastoma [7], or the risk of xerostomia and sticky saliva after radiotherapy [8]. However, the
"translational gap" remains significant. Issues with feature reproducibility, standardization of image acquisition
protocols, and external validation on independent multi-center cohorts are major barriers to routine adoption [9].

3.4. Quality Control and Adaptive Radiotherapy:

Al in Real Time The integration of artificial intelligence (AI) into the radiotherapy workflow is revolutionizing two
fundamental aspects: quality assurance and dynamic treatment personalization. For automated quality control (QC),
deep learning algorithms aim not only to detect but also to assist and automate the correction of positioning errors. A
recent study explored the feasibility of a neural network designed to analyze portal images (PFlIs) and digitally
reconstructed radiographs (DRRs) to assist this process [10]. This approach illustrates the path towards fully automated
assisted correction, reducing the cognitive load on technicians. The impact of Al is even more transformative in the field
of real-time adaptive radiotherapy. Here, Al actively participates in dosimetric correction by analyzing the daily
anatomy (visualized by CBCT or MRI) via automatic segmentation models, enabling the recalculation of an optimized
treatment plan within minutes and its immediate delivery. This capability, validated in demanding clinical settings such
as MR-guided stereotactic abdominal radiotherapy, allows for dose adjustment to the changing anatomy at each session,
ensuring constant millimeter precision [11, 12]. Al thus operates as the central nervous system of a new generation of
radiotherapy, making treatment both smarter, safer, and truly personalized.

The key applications, benefits, and current limitations of Al in radiotherapy are summarized in Table 2.

Table 2 Key Applications of Artificial Intelligence in Modern Radiotherapy: Principles, Benefits, and Current Challenges

Application Key Principle / | Main Benefits Current Challenges / Limits
Technology
Automatic Deep neural networks | ¢ Time savings (233%) | ¢ Seamless integration into
Segmentation (e.g., U-Net) ¢ Quality standardization (DSC | clinical workflow (PACS, TPS)
>0.90) . Need for expert
e Reduction of inter-expert | validation/editing
variability
Automated Knowledge-Based e Rapid generation of high- | « Adaptation to complex/atypical
Treatment Planning (KBP), | quality plans | cases
Planning Reinforcement e Inter-center standardization | ¢ Redefining the medical
Learning e Dosimetric improvement | physicist's role

(homogeneity, OAR sparing)

Radiomics and | Quantitative  feature | » Promise of personalized | e Translational gap:
Prediction extraction + ML/AI medicine reproducibility, standardization
. Prognostic/predictive | of acquisition protocols, external
signatures (response, toxicity, | validation
survival)
Quality Control and | Al for image analysis | o Automated error | « Real-time validation for safety
Adaptive (PFI, DRR, CBCT, MRI) detection/correction e Complexity of technological and
Radiotherapy e Real-time plan recalculation | decisional integration
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(millimetric precision)
¢ Reduction of cognitive load

3.5. Challenges and Perspectives:

Beyond Technology The clinical adoption of Al faces substantial challenges:

Transparency and Trust: The "black box" nature of many deep learning models undermines clinical trust. The
development of Explainable Al (XAI) is a research priority [13].

Bias and Fairness: Algorithms trained on non-representative data can perpetuate or amplify existing biases, as
demonstrated by their ability to identify patients' racial origin from standard medical images with high
accuracy, a capability even expert clinicians lack. This represents a major risk for any model deployment [14].
Integration and Medico-Legal Responsibility: Integration into existing clinical workflows is complex. Who is
responsible in case of an error? The algorithm developer, the clinician who validated it, or the institution? A
clear regulatory framework is needed.

Impact on the Profession: It is imperative to view Al not as a replacement, but as an amplifier of human
expertise. It should free clinicians from repetitive tasks to focus on therapeutic strategy, empathy, and complex
decision-making in a multidisciplinary context.

4., Conclusion

Artificial intelligence is no longer a futuristic prospect in radiotherapy; it is a transformational reality in the process of
implementation. Its benefits in terms of efficiency, reproducibility, and standardization are demonstrated. The next
decade will be decisive for moving beyond technical proofs and establishing robust clinical evidence of its impact on
patient outcomes. Success will hinge on a human-centered approach, integrating rigorous validation, ethical
governance, and continuous professional training. The ultimate goal is to forge a symbiotic alliance between clinical
intuition and computational power to deliver the safest, most precise, and most personalized radiotherapy possible.
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