
 Corresponding author: Jihane Bouziane 

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0. 

Artificial Intelligence in Radiotherapy: From Technical Automation to Assisted 
Clinical Decision-Making. A Literature Review 

Jihane Bouziane 1, *, El Mehdi Sadiki 2, Kaoutar Soussy 1, Samia Khalfi 1, Wissal Hassani 1, Fatima Zahraa 
Farhane 1, Zenab Alami 1 and Touria Bouhafa 1

1 Department of Radiation Oncology, Hassan II University Hospital, Fez, Morocco. 
2 Laboratory of Applied Physics, Computer Science and Statistics, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben 
Abdellah University, Fez, Morocco. 

World Journal of Advanced Research and Reviews, 2025, 28(03), 2082-2087 

Publication history: Received on 22 November 2025; revised on 27 December 2025; accepted on 30 December 2025 

Article DOI: https://doi.org/10.30574/wjarr.2025.28.3.4312 

Abstract 

Artificial intelligence (AI) is transforming the radiotherapy landscape by addressing challenges related to efficiency, 
standardization, and treatment personalization. This literature review critically synthesizes current and emerging 
applications of AI across the radiotherapy care continuum. We analyze evidence of its impact on four key areas: 
automatic segmentation, treatment planning, radiomics for prediction, and quality control. The data demonstrate 
substantial gains in reproducibility and operational efficiency. However, major obstacles to clinical implementation 
persist, including the need for robust prospective validation, the lack of transparency in algorithms ("black box" nature), 
risks of bias, and ethical-legal issues. We conclude that AI is destined to become an indispensable "co-pilot" for the 
radiation oncologist, but its successful integration will require rigorous validation frameworks, ethical governance, and 
an evolution of professional skills to prioritize patient safety and benefit. 
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1. Introduction

Modern radiotherapy relies on a delicate balance between optimal tumor control and minimizing toxicity to healthy 
tissues. Radiotherapy planning is a complex process where the precise delineation of organs at risk (OAR) is crucial for 
sparing healthy tissues. This manual contouring step, however, presents significant inter-observer variability [1], a well-
documented limitation that introduces uncertainty into dosimetric optimization. 

Simultaneously, pressure on services continues to grow. Artificial intelligence (AI), and particularly deep learning, is 
emerging as a powerful set of tools to address these challenges, with demonstrated potential to automate, optimize, and 
personalize each link in the treatment chain, as highlighted by recent reviews in the field [2]. 

The objective of this review is to provide a critical overview of AI applications in radiotherapy, assess the level of 
evidence associated with each, and discuss the practical and conceptual challenges posed by its adoption in routine 
clinical practice. 
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2. Methods 

A literature review was conducted to synthesize current evidence on artificial intelligence (AI) applications in 
radiotherapy. The aim was to identify key trends, assess the maturity of evidence, and highlight persistent challenges 
to clinical adoption. The review process, summarized in Figure 1, followed a structured approach to ensure a 
comprehensive and reproducible search. 

2.1. Search Strategy 

A systematic search was performed across two major biomedical databases: PubMed/MEDLINE and Scopus. The search 
timeframe encompassed all literature published up to December 2025. To capture the breadth of the field, the search 
strategy combined key terms and their synonyms using Boolean operators (AND/OR). The core search terms 
included: “Artificial Intelligence”, “Machine Learning”, “Deep Learning”, “Radiotherapy”, “Radiation 
Oncology”, “Treatment Planning”, “Radiomics”, and “Quality Assurance”. 

2.2. Study Selection and Eligibility Criteria 

The initial pool of records was screened in two stages based on pre-defined eligibility criteria, as detailed below in table 
1: 

Table 1 Study Selection and Eligibility Criteria 

Stage Inclusion Criteria Exclusion Criteria 

Title/Abstract 
Screening 

• English language publications. 
• Primary focus on AI/ML in a radiotherapy context. 

• Studies with no relevance to 
radiotherapy or AI. 

Full-Text Review • Study types: Systematic reviews, meta-
analyses, clinical trials, 
and prospective/retrospective cohort studies. 
• Studies reporting quantitative outcomes (e.g., Dice 
score, dosimetric parameters, model accuracy). 

• Editorials, letters, opinion pieces. 
• Studies with insufficient 
methodological detail or irrelevant 
outcomes. 
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Figure 1 Literature Search Strategy and Study Selection Process 

3. Results and Discussion 

3.1. Automatic Segmentation:  

Freeing Time, Standardizing Quality Manual segmentation of organs at risk (OAR) and target volumes represents a 
major bottleneck. Deep learning algorithms, particularly U-Net type architectures, have demonstrated exceptional 
performance for the delineation of standard OARs. Dice similarity scores (DSC) often exceeding 0.90, frequently 
surpassing inter-expert variability, are reported for structures such as the parotid glands, bladder, or rectum [3]. 

These algorithms also enable a significant reduction in working time and improve contour consistency, as demonstrated 
for head and neck OARs where manual contouring time was reduced by 33% and inter-observer variability was 
significantly decreased [4]. 

The current challenge is no longer raw performance, but the seamless integration of these tools into the hospital 
information system (PACS, TPS) for a hybrid workflow where the expert validates and edits the AI's proposals. 
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3.2. Automated Treatment Planning:  

Towards Standardized Dosimetric Excellence Inverse planning for intensity-modulated radiotherapy (IMRT/VMAT) is 
a complex iterative process. AI, via Knowledge-Based Planning (KBP) or reinforcement learning, now enables the near-
instantaneous generation of high-quality plans. Validation studies have confirmed that automated plans were 
dosimetrically non-inferior, and often superior, to manual plans, with a measurable improvement in target volume dose 
homogeneity and organ-at-risk sparing, as demonstrated for head and neck cancer [5]. This allows for more advanced 
optimization of dose constraints, standardization of quality between centers, and redistribution of medical physicists' 
time towards higher value-added tasks. 

3.3. Radiomics and Prediction 

The Promise of Personalized Medicine Radiomics extracts hundreds of quantitative features from medical images (CT, 
MRI, PET). Coupled with AI for analysis, it aims to identify prognostic or predictive signatures. Promising models have 
been developed to predict complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer 
[6], survival in glioblastoma [7], or the risk of xerostomia and sticky saliva after radiotherapy [8]. However, the 
"translational gap" remains significant. Issues with feature reproducibility, standardization of image acquisition 
protocols, and external validation on independent multi-center cohorts are major barriers to routine adoption [9]. 

3.4. Quality Control and Adaptive Radiotherapy:  

AI in Real Time The integration of artificial intelligence (AI) into the radiotherapy workflow is revolutionizing two 
fundamental aspects: quality assurance and dynamic treatment personalization. For automated quality control (QC), 
deep learning algorithms aim not only to detect but also to assist and automate the correction of positioning errors. A 
recent study explored the feasibility of a neural network designed to analyze portal images (PFIs) and digitally 
reconstructed radiographs (DRRs) to assist this process [10]. This approach illustrates the path towards fully automated 
assisted correction, reducing the cognitive load on technicians. The impact of AI is even more transformative in the field 
of real-time adaptive radiotherapy. Here, AI actively participates in dosimetric correction by analyzing the daily 
anatomy (visualized by CBCT or MRI) via automatic segmentation models, enabling the recalculation of an optimized 
treatment plan within minutes and its immediate delivery. This capability, validated in demanding clinical settings such 
as MR-guided stereotactic abdominal radiotherapy, allows for dose adjustment to the changing anatomy at each session, 
ensuring constant millimeter precision [11, 12]. AI thus operates as the central nervous system of a new generation of 
radiotherapy, making treatment both smarter, safer, and truly personalized. 

The key applications, benefits, and current limitations of AI in radiotherapy are summarized in Table 2. 

Table 2 Key Applications of Artificial Intelligence in Modern Radiotherapy: Principles, Benefits, and Current Challenges 

Application Key Principle / 
Technology 

Main Benefits Current Challenges / Limits 

Automatic 
Segmentation 

Deep neural networks 
(e.g., U-Net) 

• Time savings (≥33%) 
• Quality standardization (DSC 
>0.90) 
• Reduction of inter-expert 
variability 

• Seamless integration into 
clinical workflow (PACS, TPS) 
• Need for expert 
validation/editing 

Automated 
Treatment 
Planning 

Knowledge-Based 
Planning (KBP), 
Reinforcement 
Learning 

• Rapid generation of high-
quality plans 
• Inter-center standardization 
• Dosimetric improvement 
(homogeneity, OAR sparing) 

• Adaptation to complex/atypical 
cases 
• Redefining the medical 
physicist's role 

Radiomics and 
Prediction 

Quantitative feature 
extraction + ML/AI 

• Promise of personalized 
medicine 
• Prognostic/predictive 
signatures (response, toxicity, 
survival) 

• Translational gap: 
reproducibility, standardization 
of acquisition protocols, external 
validation 

Quality Control and 
Adaptive 
Radiotherapy 

AI for image analysis 
(PFI, DRR, CBCT, MRI) 

• Automated error 
detection/correction 
• Real-time plan recalculation 

• Real-time validation for safety 
• Complexity of technological and 
decisional integration 
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(millimetric precision) 
• Reduction of cognitive load 

3.5. Challenges and Perspectives:  

Beyond Technology The clinical adoption of AI faces substantial challenges: 

• Transparency and Trust: The "black box" nature of many deep learning models undermines clinical trust. The 
development of Explainable AI (XAI) is a research priority [13]. 

• Bias and Fairness: Algorithms trained on non-representative data can perpetuate or amplify existing biases, as 
demonstrated by their ability to identify patients' racial origin from standard medical images with high 
accuracy, a capability even expert clinicians lack. This represents a major risk for any model deployment [14]. 

• Integration and Medico-Legal Responsibility: Integration into existing clinical workflows is complex. Who is 
responsible in case of an error? The algorithm developer, the clinician who validated it, or the institution? A 
clear regulatory framework is needed. 

• Impact on the Profession: It is imperative to view AI not as a replacement, but as an amplifier of human 
expertise. It should free clinicians from repetitive tasks to focus on therapeutic strategy, empathy, and complex 
decision-making in a multidisciplinary context. 

4. Conclusion 

Artificial intelligence is no longer a futuristic prospect in radiotherapy; it is a transformational reality in the process of 
implementation. Its benefits in terms of efficiency, reproducibility, and standardization are demonstrated. The next 
decade will be decisive for moving beyond technical proofs and establishing robust clinical evidence of its impact on 
patient outcomes. Success will hinge on a human-centered approach, integrating rigorous validation, ethical 
governance, and continuous professional training. The ultimate goal is to forge a symbiotic alliance between clinical 
intuition and computational power to deliver the safest, most precise, and most personalized radiotherapy possible. 
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