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Abstract

Artificial intelligence (AI) diagnostic systems demonstrate exceptional performance in controlled laboratory settings
yet consistently fail to translate into equitable and reliable clinical tools. This thesis identifies and analyzes the structural
roots of this translation gap, arguing that the pervasive challenges of algorithmic bias and poor generalizability are not
isolated technical failures but predictable outcomes of a development paradigm that prioritizes narrow accuracy
metrics over robust, equitable performance.

Through a systematic analysis of evidence across medical specialties, this research demonstrates how models trained
on geographically concentrated and demographically homogeneous data systematically underperform for marginalized
populations and fail when deployed in new contexts. The compounding of bias (differential performance across groups)
and poor generalizability (performance degradation across settings) creates an "equity paradox" wherein Al tools
perform best for populations with the least need and worst for those who could benefit most from improved diagnostic
access.

This thesis reveals how current regulatory frameworks, economic incentives, and organizational structures actively
reinforce these problematic practices. It moves beyond technical mitigation strategies to propose a fundamental
reorientation of the Al development lifecycle that centres equity and generalizability as non-negotiable requirements.
The proposed framework includes proactive data diversity, mandatory multi-site and intersectional validation, fairness-
aware optimization, and robust governance structures.

The findings necessitate a paradigm shift from accuracy-focused to equity-centred Al development, with implications
for researchers, regulators, healthcare institutions, and policymakers. Ultimately, this thesis contends that the technical
capacity for building equitable Al diagnostics exists; what is required is the collective commitment to treat equity not
as an aspirational goal but as a fundamental criterion for clinical deployment.

Keywords: Medical Artificial Intelligence; Algorithmic Bias; Generalizability; Health Equity; FDA Regulation; Machine
Learning; Diagnostic Systems; Clinical Translation; Healthcare Disparities; Responsible Al

1. Introduction

1.1. The Promise of Al in Medical Diagnostics

The integration of artificial intelligence into medical diagnostics represents one of the most promising advances in
modern healthcare, poised to redefine the standards of accuracy, efficiency, and accessibility in medicine. Deep learning
algorithms now demonstrate exceptional, and at times superhuman, performance in detecting diseases from medical
images, analyzing pathology slides, and identifying subtle patterns in complex clinical data (LeCun et al., 2015; Topol,
2019). This rapid progress is not merely theoretical; it is being rapidly codified into clinical practice. By mid-2024, the
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U.S. Food and Drug Administration (FDA) had cleared nearly 950 Al-enabled medical devices, with approximately 100
new approvals annually, predominantly in high-stakes fields like radiology, cardiology, and neurology (FDA, 2024). The
market trajectory reflects this optimism, with valuations projecting explosive growth from $13.7 billion in 2024 to over
$255 billion by 2033. This rapid proliferation signals a pivotal shift, suggesting that Al diagnostics has transitioned from
an experimental technology to an emerging clinical reality.

1.2. The Paradox: Laboratory Success vs. Clinical Failure

Yet, this compelling narrative of technological triumph obscures a fundamental and deeply troubling paradox: despite
exceptional performance in controlled laboratory settings, Al diagnostic systems consistently struggle to translate into
equitable, robust, and widespread clinical use (Kelly et al., 2019). Models that achieve near-perfect accuracy on curated
test sets frequently fail when deployed in different hospitals, with different patient populations, or across different
geographic regions (Zech et al, 2018). This performance degradation is not random; it follows predictable and
systematic patterns.

More troubling than simple performance drop is the emergence of pervasive algorithmic bias. Evidence increasingly
demonstrates that these systems perform systematically worse for marginalized populations—the very groups who
could benefit most from improved diagnostic access (Seyyed-Kalantari et al., 2021). For instance, a dermatology Al
system may excel at detecting skin cancer in fair-skinned individuals while demonstrating 10-15% lower accuracy for
patients with darker skin tones (Daneshjou et al., 2022). Similarly, cardiovascular risk prediction algorithms trained
predominantly on male patients may systematically underestimate risk for women, who often present with different
symptoms (Larrazabal et al., 2020). A landmark study of a widely used commercial algorithm revealed it assigned lower
risk scores to Black patients than to White patients with the same level of illness, thereby restricting access to care
management programs for Black patients (Obermeyer et al., 2019). This is not a collection of isolated incidents but a
recurring pattern across medical specialties.

1.3. The Core Argument: A Structural Problem

This thesis argues that the translation gap between Al diagnostic systems' laboratory performance and their clinical
utility is not merely a technical challenge but a structural consequence of development practices that prioritize narrow
accuracy metrics over generalizability and equity (Wiens et al.,, 2019; Rajkomar et al., 2018). The failures of bias and
poor generalizability are not bugs in the current system; they are predictable features of a development paradigm that
is fundamentally misaligned with the realities of diverse healthcare ecosystems.

This structural challenge manifests through three interconnected problems

1.3.1. Algorithmic Bias

Al diagnostic systems trained on homogeneous datasets systematically underperform for underrepresented
demographic groups (Obermeyer et al., 2019). This bias is predictable—an inevitable outcome of training data that
reflects and amplifies existing healthcare disparities and access inequities (Gianfrancesco et al, 2018). When a
staggering 71% of Al diagnostic algorithms for U.S. healthcare are trained on data from just three states—California,
Massachusetts, and New York the resulting systems encode geographic and demographic privilege directly into their
algorithmic infrastructure (Larson et al., 2018).

1.3.2. Poor Generalizability

Current Al systems demonstrate a critical inability to maintain performance across different institutions, populations,
and clinical settings (Oakden-Rayner et al., 2020). Models optimized for single-site performance often fail when applied
elsewhere, even within the same country. External validation studies consistently reveal dramatic performance
degradation when algorithms encounter data characteristics not represented in their training sets, such as different
medical equipment, varied clinical protocols, or distinct population demographics (Zech et al., 2018).

1.3.3. Inadequate Validation Frameworks

Existing regulatory and clinical validation processes focus primarily on demonstrating technical accuracy in controlled
settings rather than ensuring robust performance across diverse real-world contexts (Wu et al., 2021). FDA approval
processes, while evolving, often lack mandatory requirements for comprehensive multi-site testing or disaggregated
performance reporting across demographic subgroups. This allows systems with limited evidence of equitable
performance to enter clinical practice, conducting what amounts to an uncontrolled experiment on patient populations
(Chen etal,, 2021).
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1.4. Significance and Implications for Health Equity

The implications of this translation gap extend far beyond technical inefficiency or wasted research investment. When
Al diagnostic systems fail to generalize or perform inequitably, they risk creating a two-tier healthcare system where
algorithmic tools enhance care for privileged populations while remaining unavailable—or worse, actively harmful—
for marginalized communities (Vyas et al., 2020). This represents an algorithmic amplification of existing health
inequities, encoded into infrastructure that will shape clinical practice for decades to come.

Moreover, the current trajectory threatens to irrevocably undermine trust in medical Al broadly. Clinicians who
encounter systems performing poorly in their specific contexts, or who observe disparate outcomes across patient
populations, may justifiably resist Al adoption even when specific tools could provide genuine benefit (Char et al., 2018;
Kelly et al,, 2019). Building sustainable, trusted Al diagnostic infrastructure therefore requires addressing these
structural issues proactively, rather than reactively correcting individual failures after harm has occurred.

The implications of this translation gap extend beyond national borders to create global health inequities. When Al
systems developed in high-income countries using Western data are deployed in low- and middle-income countries
(LMICs) without validation or adaptation, they risk perpetuating a form of digital neocolonialism where technological
infrastructure developed for wealthy populations is imposed on resource-constrained settings regardless of suitability.
This dynamic threatens to widen, rather than bridge, global health disparities by creating Al tools that work optimally
only in the contexts where they were developed, while failing precisely in the settings that could benefit most from
improved diagnostic capacity.

1.5. Research Approach and Thesis Structure

This thesis examines these challenges through a critical analysis of existing literature, regulatory frameworks, and
deployment case studies. It places particular emphasis on understanding root causes rather than merely documenting
symptoms. The analysis proceeds systematically

e Section 2: Background and Literature Review provide the essential foundation, reviewing the evolution of
medical Al and existing scholarship on bias, generalizability, and clinical translation, while identifying critical
gaps in current research.

e Section 3: Understanding Algorithmic Bias in Diagnostic Al analyzes how bias manifests across medical
specialties, traces its root causes to data collection and curation practices, and examines its real-world
consequences for healthcare equity.

e Section 4: The Generalizability Crisis investigates why Al diagnostic systems fail to maintain performance
across institutions and populations, with particular attention to geographic data concentration and its profound
implications.

e Section 5: The Intersection: How Bias and Generalizability Compound Each Other demonstrates that
these are not separate problems but interconnected outcomes of the same structural issues, showing how they
combine to create particularly severe equity gaps.

e Section 6: Barriers to Clinical Translation examines the regulatory, economic, and organizational barriers
that actively reinforce problematic development practices and impede the implementation of solutions.

e Section 7: Solutions and Best Practices: Reorienting the Development Pipeline proposes a concrete,
equity-centred framework for restructuring Al development, from proactive data collection through post-
deployment monitoring, drawing on emerging best practices.

e Section 8: Conclusion synthesizes the key findings, articulates the theoretical and practical implications, and
charts a clear path forward for achieving equitable Al diagnostics.

This research contributes to the growing scholarship on responsible Al in healthcare by centring structural analysis
(Char et al.,, 2018). While much existing work documents bias or proposes technical mitigation strategies, this thesis
argues that sustainable solutions require a fundamental reorientation of development priorities—treating diversity,
equity, and generalizability not as constraints on optimization but as non-negotiable core requirements for any Al
system deserving of clinical deployment.
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Figure 1 The Al Diagnostic Development Pipeline: From Lab to Clinic
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2. Background and literature review

2.1. Evolution and Current State of Al in Medical Diagnostics

Artificial intelligence in healthcare traces its origins to expert systems of the 1970s, such as MYCIN for infection
diagnosis and antibiotic recommendations (Shortliffe, 1976), and CADUCEUS in the 1980s, which emulated diagnostic
reasoning (Szolovits et al,, 1988). These rule-based systems, while innovative, remained limited by their reliance on
explicitly programmed medical knowledge and narrow domain applicability.

The contemporary era of medical Al began with the deep learning revolution of the 2010s, particularly following
breakthroughs in computer vision and the availability of large medical imaging datasets (LeCun et al., 2015). Deep
convolutional neural networks demonstrated superhuman performance in specific tasks: detecting diabetic retinopathy
from retinal images (Gulshan et al., 2016), identifying malignancies in chest radiographs, and segmenting tumours in
CT scans. These successes generated substantial enthusiasm about Al's transformative potential for healthcare delivery
(Topol, 2019).

By 2025, Al diagnostic applications span diverse medical specialties. In radiology, algorithms assist with interpretation
of chest X-rays, CT scans, MRIs, and other imaging modalities, with 76% of FDA-approved Al medical devices focused
on this specialty (FDA, 2024). Cardiology applications include ECG interpretation, echocardiogram analysis, and
cardiovascular risk prediction. Dermatology systems classify skin lesions and detect melanoma (Esteva et al., 2017).
Pathology Al analyzes tissue samples for cancer detection and molecular marker prediction. Multi-modal systems
increasingly integrate diverse data types—combining medical imaging with electronic health records, genetic
information, and clinical notes—to provide comprehensive diagnostic assessment (Yu et al., 2018).

This technical progress has translated into impressive performance metrics. IDx-DR, the first FDA-cleared autonomous
Al diagnostic device (2018), achieved 87% sensitivity and 90% specificity for detecting diabetic retinopathy in a
multicentre trial. Numerous published studies report Al performance meeting or exceeding that of expert clinicians for
specific diagnostic tasks (Liu et al., 2019). Industry valuations reflect this optimism: the Al-enabled medical device
market was valued at $13.7 billion in 2024, with projections exceeding $255 billion by 2033.

However, this narrative of success requires critical examination. Most reported performance figures come from
carefully controlled research settings with curated datasets. The gap between laboratory performance and real-world
clinical utility remains substantial, driven by challenges this thesis explores in depth (Kelly et al., 2019; Wiens et al,,
2019).

2.2. The Translation Gap: From Bench to Bedside

Despite impressive laboratory results, clinical adoption of Al diagnostic systems remains limited relative to the
technology's apparent capabilities (Shaw et al., 2019). Multiple factors contribute to this translation gap, but two
interconnected challenges stand out: algorithmic bias and poor generalizability.

Studies examining Al deployment reveal consistent patterns of performance degradation when systems encounter real-
world variability. Models optimized for specific institutional datasets frequently fail to maintain accuracy when applied
elsewhere (Zech et al, 2018). Geographic and demographic characteristics unrepresented in training data lead to
systematically worse outcomes (Oakden-Rayner et al., 2020). The very features that enable high performance in
development settings deep specialization to available data characteristics become liabilities when systems encounter
the heterogeneity of actual clinical practice.

Current literature extensively documents these challenges but less frequently examines their root causes or structural
origins. Much existing scholarship focuses on technical mitigation strategies algorithmic approaches to reduce bias or
improve generalization without questioning whether the fundamental development paradigm itself requires
restructuring (Mehrabi et al., 2021). This thesis contributes by centring that structural analysis, arguing that sustainable
solutions require rethinking how we prioritize objectives throughout the Al development lifecycle.

2.3. Algorithmic Bias in Healthcare Al: Scope and Mechanisms

Algorithmic bias in medical Al refers to systematic errors producing differential performance across demographic
groups, with particularly poor outcomes for marginalized populations (Chen et al,, 2021). Recent comprehensive
reviews document the pervasiveness and severity of this challenge across medical specialties (Mehrabi et al., 2021).
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2.3.1. Manifestations Across Medical Specialties

Bias manifests differently across diagnostic domains but with consistent patterns. In dermatology, multiple studies have
demonstrated that Al systems trained predominantly on images of fair-skinned individuals show significantly reduced
accuracy when evaluating darker skin tones (Daneshjou et al,, 2022). Convolutional neural networks trained on large
chest X-ray datasets have been shown to under detect disease in females, Black patients, Hispanic patients, and those of
low socioeconomic status (Seyyed-Kalantari et al., 2021). Cardiovascular risk prediction algorithms, historically trained
predominantly on male patient data, demonstrate reduced accuracy for women who often present with different
symptoms and risk factors (Larrazabal et al., 2020).

These disparities extend beyond imaging applications. The widely cited study by Obermeyer et al. (2019) revealed that
a commercial algorithm used to manage health populations systematically assigned lower risk scores to Black patients
compared to white patients with equivalent health conditions. This occurred because the algorithm used healthcare
costs as a proxy for health needs, failing to account for systemic inequities in healthcare access and spending that result
in Black patients receiving less care for equivalent illness severity.

2.4. Root Causes and Mechanisms

Understanding bias requires examining its origins throughout the Al lifecycle. Representation bias—the lack of
sufficient diversity in training data represents the most fundamental challenge limiting generalizability of healthcare Al
models into unique environments or populations (Zech et al., 2018). This bias can arise from multiple sources:

2.4.1. Historical healthcare disparities

Training datasets reflect existing patterns of healthcare access and utilization. Populations facing barriers to care—due
to geographic isolation, economic constraints, discrimination, or systemic marginalization—are systematically
underrepresented in medical data (Gianfrancesco et al,, 2018). When 73% of clinical text datasets used for Al training
come from the Americas and Europe (regions representing only 22% of global population), and more than half are in
English, the resulting geographic concentration inevitably produces systems optimized for specific populations while
failing others.

2.4.2. Sampling and selection bias

Decisions about which data to collect, from which institutions, and which patients to include shape training datasets.
When Al developers rely on readily available data from well-resourced academic medical centres, they systematically
exclude the diverse clinical contexts and patient populations characteristic of community hospitals, rural facilities, and
under-resourced settings (Larson et al., 2018). Research reveals that among U.S. Al diagnostic studies with identifiable
geographic origins, 71% used patient data exclusively from California, Massachusetts, or New York, with 60% relying
solely on these three states. This concentration leaves 34 U.S. states completely unrepresented.

2.4.3. Data aggregation and preprocessing choices

Converting diverse patient data into uniform model inputs requires decisions about handling missing values, selecting
features, and standardizing formats. These preprocessing steps can introduce additional bias. For instance, managing
missing data such as patient weight which may be unavailable for wheelchair users or under representative for
individuals with limb amputations through imputation or exclusion creates systematic differences in how models learn
about different patient populations.

2.4.4. Measurement and labelling bias

Training data reflects not objective reality but human measurements and classifications, which themselves may embody
bias. Diagnostic labels assigned by clinicians carry forward any biases present in clinical decision-making (Adamson &
Smith, 2018). Equipment calibration, imaging protocols, and interpretation standards vary across institutions and
populations, creating systematic differences in the ground truth labels used for training.

2.4.5. Algorithmic design choices

Even with diverse data, algorithmic decisions during model development can introduce or amplify bias. Optimizing for
overall accuracy incentivizes models to perform well on majority populations while accepting worse performance on
minorities (Hardt et al., 2016). Loss functions, evaluation metrics, and optimization strategies that fail to account for
group fairness will naturally produce systems that minimize average error at the expense of equitable performance.

2139



World Journal of Advanced Research and Reviews, 2025, 28(03), 2134-2179

The VBAC (Vaginal Birth After Caesarean) calculator provides an illustrative example of how bias can be explicitly
encoded through algorithmic design. This tool included race-based correction factors systematically assigning lower
success probabilities to African American and Hispanic women, discouraging VBAC attempts for these groups without
robust scientific justification. This exemplifies how algorithmic bias can influence critical medical decisions, in this case
exacerbating existing disparities in maternal healthcare.

2.4.6. Consequences for Healthcare Equity

The implications of algorithmic bias extend well beyond technical performance metrics. When diagnostic Al systems
perform poorly for specific populations, they risk exacerbating existing health disparities through multiple mechanisms

e Delayed or missed diagnoses: Lower sensitivity for underrepresented groups means diseases are detected
later, at more advanced stages, when treatment is more difficult and outcomes worse (Seyyed-Kalantari et al.,
2021).

e Inappropriate clinical recommendations: Biased risk predictions lead to under-treatment of high-risk patients
in marginalized groups or over-treatment of low-risk patients in majority populations (Obermeyer et al., 2019).

e Erosion of trust: Patients and clinicians who experience or observe biased system performance may justifiably
resist Al adoption, denying potential benefits even from well-designed tools (Char et al., 2018).

e Reinforcement of stereotypes: Algorithmic decisions that systematically differ across demographic groups can
reinforce harmful assumptions about inherent differences between populations rather than recognizing bias
as a technical artifact (Vyas et al.,, 2020).

e Resource allocation inequities: When Al systems guide decisions about where to deploy diagnostic resources,
screening programs, or specialist referrals, biased predictions lead to systematic under-serving of marginalized
communities.

2.5. The Generalizability Crisis

While bias specifically concerns differential performance across demographic groups, poor generalizability describes
Al systems' inability to maintain performance when encountering data characteristics different from training conditions
(Zech et al.,, 2018). These challenges are interconnected lack of diversity in training data is a key cause of poor
generalizability but merit separate examination.

2.5.1. External Validation and Performance Degradation

Medical Al systems commonly demonstrate excellent performance on held-out test sets from the same distribution as
training data but exhibit substantial degradation when evaluated on truly external datasets. This phenomenon, known
as dataset shift or domain shift, occurs when the statistical properties of real-world deployment data differ from training
data distributions (Wiens et al., 2019).

Research on Al diagnostic systems reveals consistent patterns of poor external validation. Models trained at one
institution frequently demonstrate reduced accuracy when applied at independent centres, even within the same
country (Oakden-Rayner et al., 2020). A study examining COVID-19 diagnostic algorithms found that models developed
in UK NHS Trusts showed marked performance degradation when applied to Vietnamese hospital datasets, despite the
apparent universality of the diagnostic task (Wynants et al, 2020). Similarly, a ResNet18-based model trained on
colorectal cancer samples from The Cancer Genome Atlas achieved a patient-level AUC of 0.84 on an external validation
set from similar populations, but performance dropped to 0.69 when applied to gastric cancer samples from Asian
populations with different histological characteristics.

The scope of this validation gap is striking. A 2025 cross-sectional analysis of 903 FDA-approved Al-enabled medical
devices found that clinical performance studies were reported at the time of approval for only approximately half of
these devices, while one-quarter explicitly stated that no such studies had been conducted (Wu et al., 2021). Among
those with clinical evaluations, less than one-third provided sex-specific performance data, and only one-fourth
addressed age-related subgroups. This lack of rigorous external validation means most deployed Al diagnostic systems
have limited evidence of generalizability.

2.5.2. Sources of Distribution Shift

Multiple factors contribute to dataset shift between development and deployment settings
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e Population demographics: Patient populations differ across geographic regions, healthcare systems, and
institutional types. Genetic variations, environmental exposures, disease prevalences, comorbidity patterns,
and socioeconomic factors all vary, creating different statistical distributions in clinical data.

e C(linical practice variations: Diagnostic protocols, treatment guidelines, referral patterns, and documentation
practices differ across institutions and regions. These variations create systematic differences in how medical
data is generated and recorded.

e Equipment and technical factors: Medical imaging equipment varies in manufacturer, model, calibration, and
settings. Even seemingly standardized modalities like chest X-rays show substantial variability in image
acquisition parameters, preprocessing, and quality across different facilities. Pathology slide preparation and
staining protocols differ between laboratories. These technical variations create domain shift even when
examining the same anatomical structures or tissue types.

e Temporal evolution: Medical practice, disease patterns, and equipment evolve over time. Models trained on
historical data may encounter changing disease presentations, emerging pathogens, new clinical protocols, or
updated equipment in deployment, leading to temporal distribution shift.

o Healthcare system structure: Differences in healthcare financing, insurance coverage, care access, and health
system organization create systematic variations in which patients seek care, what services they receive, and
how their data appears in medical records.

2.5.3. Geographic and Institutional Concentration

The geographic concentration of training data represents a particularly concerning manifestation of limited
generalizability. Stanford researchers examining five years of peer-reviewed articles training deep learning algorithms
for U.S. diagnostic tasks found that 71% of studies used patient data from only California, Massachusetts, or New York
(Larson et al., 2018). Some 60% relied exclusively on these three states. Thirty-four states had no representation
whatsoever in the training datasets, while the remaining 13 states contributed limited data.

This concentration reflects pragmatic realities of Al development: leading academic medical centres with advanced
informatics infrastructure, research programs, and large patient volumes tend to generate and share datasets. Stanford
University alone has led the field in making diagnostic datasets freely available. However, the result is an Al ecosystem
where algorithms are systematically optimized for healthcare contexts in specific, well-resourced regions while
potentially failing elsewhere.

The implications extend beyond technical performance. Healthcare challenges, disease patterns, environmental
exposures, and population demographics differ substantially across U.S. regions. Rural healthcare contexts differ
fundamentally from urban academic medical centres. Community hospitals operate under different constraints than
teaching hospitals. When Al diagnostic systems are developed exclusively for specific contexts, they risk being irrelevant
or harmful when deployed more broadly.

International disparities amplify these concerns. The vast majority of medical Al research and development occurs in
high-income countries, particularly the United States, United Kingdom, and other Western nations. When these systems
are deployed in low- and middle-income countries (LMICs), they frequently fail due to different disease presentations,
varying healthcare infrastructure, alternative clinical protocols, and different patient demographics (Wynants et al,,
2020). A study evaluating UK-developed COVID-19 diagnostic models in Vietnamese hospitals exemplifies this
challenge, demonstrating the difficulty of transferring Al systems across contexts with different socioeconomic
characteristics and healthcare resources.

2.6. Intersection of Bias and Generalizability

While analytically distinct, bias and poor generalizability are deeply intertwined challenges stemming from common
root causes. Both fundamentally arise from training data that fails to represent the full diversity of populations and
contexts where Al diagnostic systems will be deployed (Chen et al., 2021).

Limited demographic diversity in training datasets produces both phenomena simultaneously. When marginalized
populations are underrepresented, models perform worse for those groups (bias) and fail to maintain performance
when encountering higher proportions of underrepresented populations in deployment settings (poor generalizability).
Geographic concentration of training data creates algorithms optimized for specific regional contexts (poor
generalizability) while systematically disadvantaging populations from unrepresented regions (bias).

This intersection creates compounding equity challenges. Populations already facing healthcare access barriers and
health disparities—rural communities, low-income populations, racial and ethnic minorities—are both less likely to be
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represented in training data and more likely to be served by healthcare facilities with different characteristics than
those where models were developed. The result is Al systems that perform worst precisely where they are most needed.

Recent scholarship increasingly recognizes these interconnections, calling for holistic approaches addressing both
challenges simultaneously. Federated learning, where models train on distributed datasets without centralizing patient
data, offers one promising approach for incorporating diverse populations and institutions (Rieke et al., 2020). Multi-
site validation protocols that require demonstrated performance across varied contexts before deployment represent
another crucial safeguard. However, these technical solutions alone are insufficient without fundamental reorientation
of development priorities.

2.7. Current Mitigation Strategies and Their Limitations

Substantial research has proposed technical strategies for mitigating bias and improving generalizability in medical Al.
These approaches operate at different stages of the Al lifecycle

Preprocessing approaches focus on modifying training data to reduce bias. Re-sampling and re-weighting techniques
adjust class distributions to balance representation across demographic groups. Data augmentation generates synthetic
samples to increase diversity. Causal inference methods attempt to identify and remove discriminatory effects from
datasets. While these techniques can improve fairness metrics, they often require unrealistic assumptions about
training distributions or result in loss of information implicit in original data.

In-processing methods modify the training process itself. Fairness-aware loss functions incorporate equity constraints
during optimization (Hardt et al., 2016). Adversarial debiasing uses adversarial training to remove demographic
information from model representations while preserving predictive power. Distributionally robust optimization trains
models to perform well across worst-case data distributions. Invariant risk minimization seeks model features that
maintain predictive relationships across diverse environments.

Post-processing techniques adjust model predictions after training to satisfy fairness constraints. Calibrated equalized
odds modify decision thresholds to achieve equal error rates across groups. These approaches can improve fairness
metrics without retraining models but often involve trade-offs between overall performance and equity.

Domain adaptation and transfer learning methods explicitly address generalizability by training models to handle
distribution shift. These techniques attempt to learn representations that transfer across domains or adapt models to
new target distributions with limited data.

While each approach offers value, they share fundamental limitations as strategies for addressing structural problems:

e Post-hocnature: Most mitigation techniques treat bias and poor generalizability as problems to fix after models
are developed rather than issues to prevent through different development practices. This reactive approach
is inherently limited compared to proactive strategies ensuring diversity and generalizability from the outset.

e Technical focus: Algorithmic solutions address symptoms (biased predictions, poor transfer) rather than root
causes (unrepresentative data, optimization for narrow metrics). Technical fixes cannot fully compensate for
fundamentally inadequate training data.

e Trade-off framing: Much fairness research frames equity as requiring sacrifices in overall performance, creating
false dichotomies between accuracy and fairness. This framing obscures how poor generalizability itself limits
real-world utility regardless of laboratory performance metrics.

e Validation challenges: Many mitigation strategies improve performance on specific fairness metrics or
validation datasets but lack evidence of sustained benefits in actual clinical deployment across diverse contexts.

2.8. Regulatory and Clinical Validation Frameworks

Understanding translation challenges requires examining how Al diagnostic systems are evaluated and approved for
clinical use. Current frameworks focus primarily on technical performance validation rather than comprehensive
assessment of generalizability and equitable performance.

2.8.1. FDA Approval Process

The U.S. Food and Drug Administration regulate Al-enabled medical devices through established pathways for medical
device approval, modified to address Al-specific considerations (FDA, 2024). As of mid-2024, the FDA listed
approximately 950 cleared Al/ML-enabled medical devices, with roughly 100 new approvals annually. The vast
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majority fall into Class II (moderate risk) or Class III (high risk) categories requiring premarket notification (510(k)) or
premarket approval (PMA).

The approval process evaluates device safety and effectiveness based on clinical performance studies. However, several
limitations affect these assessments:

e Limited external validation requirements: FDA approval does not necessarily require multi-site testing or
validation across diverse populations and healthcare settings. Many devices are cleared based on performance
in single-site studies or curated research datasets (Wu et al., 2021).

e Focus on technical over clinical performance: Approval emphasizes analytical validity (does the algorithm
correctly measure what it claims to measure?) rather than clinical utility (does the device improve patient
outcomes in actual practice?).

o Insufficient disaggregated reporting: Current requirements do not consistently mandate reporting
performance broken down by demographic subgroups, age categories, or other patient characteristics relevant
to equity and generalizability.

o Post-market surveillance gaps: While FDA has proposed frameworks for monitoring Al devices that continue
learning after deployment, systematic post-market surveillance of performance degradation or biased
outcomes remains limited.

2.8.2. European Union Regulatory Framework

The European Union regulates Al medical devices through two overlapping frameworks: the Medical Device Regulation
(MDR) and In Vitro Diagnostic Regulation (IVDR), alongside the newly enacted Al Act. The Al Act represents the world's
first comprehensive Al legislation, classifying Al systems by risk category and explicitly designating medical Al as high-
risk, requiring strict requirements for quality management, transparency, human oversight, and bias monitoring
(European Commission, 2024).

This dual regulatory structure creates more comprehensive requirements than U.S. frameworks but faces
implementation challenges. Ensuring datasets used for training, validation, testing, and monitoring represent intended
populations adequately remains difficult in practice. Notified bodies conducting conformity assessments have limited
experience with Al-specific validation challenges.

2.8.3. Clinical Validation Methodologies

Beyond regulatory approval, rigorous clinical validation is essential for demonstrating Al diagnostic utility. Current
validation approaches include

e Diagnostic case-control studies evaluate technical performance by comparing Al predictions against
reference standards for selected positive and negative cases. These assess analytical validity but often lack
representativeness of real clinical populations.

o Diagnostic cohort studies test clinical performance in samples representing target patients in realistic clinical
scenarios. These provide stronger evidence of clinical utility but remain uncommon for many approved Al
devices.

e Randomized controlled trials offer the gold standard for demonstrating clinical utility by measuring whether
Al actually improves patient outcomes. However, very few Al diagnostic systems have undergone RCT
evaluation before clinical deployment.

o External validation studies assess performance on data from institutions not involved in model development.
These are crucial for evaluating generalizability but are reported for only approximately half of FDA-approved
Al devices at the time of approval (Wu et al,, 2021).

2.9. Barriers to Clinical Adoption
Even when Al diagnostic systems receive regulatory approval, multiple barriers impede broad clinical adoption and
equitable deployment (Shaw et al.,, 2019; Kelly et al., 2019):

e Trustand explainability: Clinicians must trust Al recommendations to incorporate them into clinical decision-
making. Black-box models that provide predictions without explanation face adoption resistance. Experiences
with biased or inaccurate predictions erode trust (Char et al., 2018).
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o Workflow integration: Effective Al deployment requires seamless integration into existing clinical workflows.
Clunky interfaces, additional documentation requirements, or disrupted processes create friction inhibiting
adoption.

e Liability and responsibility: Ambiguity about responsibility for Al-assisted diagnostic errors—whether
liability rests with clinicians, Al developers, or healthcare institutions—creates hesitancy about deployment.

e Economic considerations: Implementing Al systems requires upfront costs for software, integration, training,
and ongoing monitoring. Without clear evidence of improved outcomes or efficiency, healthcare systems may
prioritize other investments.

e Validation burden: Healthcare institutions deploying Al face challenges validating system performance in
their specific contexts, particularly for smaller facilities lacking informatics expertise (Reddy et al., 2020).

e Health equity concerns: Awareness of bias in Al systems makes healthcare leaders appropriately cautious
about deployment, particularly in settings serving vulnerable populations.

2.10. Gaps in Current Literature
While existing scholarship extensively documents algorithmic bias, poor generalizability, and clinical translation
challenges, several important gaps limit understanding of root causes and effective solutions:

2.10.1. Limited structural analysis

Most literature focuses on documenting specific instances of bias or proposing technical mitigation strategies rather
than examining how fundamental development practices create these problems systematically. Few studies critically
analyze the development paradigm itself.

2.10.2. Separation of bias and generalizability

Bias and poor generalizability are often treated as distinct problems requiring separate solutions rather than as
interconnected manifestations of the same structural issues. Research examining their interaction and common root
causes remains limited.

2.10.3. Focus on symptoms over causes

Extensive literature proposes algorithmic techniques for reducing bias or improving transfer, but less attention is paid
to preventive strategies addressing why training data lacks diversity in the first place.

2.10.4. Post-hoc rather than proactive approaches

Most proposed solutions involve fixing problems after models are developed rather than restructuring development
pipelines to prevent problems from arising.

2.10.5. Limited equity-centred frameworks

While fairness in machine learning has emerged as a major research area, much work remains narrowly technical,
lacking integration with health equity scholarship, critical race theory, and other frameworks for understanding
structural inequality.

2.10.6. Insufficient real-world evidence

Most studies evaluate Al systems in research settings using curated datasets. Evidence from actual clinical deployment,
particularly examining long-term outcomes across diverse populations and contexts, remains scarce.

2.10.7. Developer practice examination

Limited research examines the incentives, constraints, and decision-making processes of Al developers to understand

why current practices persist despite known problems.

This thesis addresses these gaps by focusing on structural analysis of development practices, examining the
interconnection between bias and generalizability, proposing proactive rather than reactive solutions, and integrating
technical analysis with health equity frameworks.
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3. Understanding algorithmic bias in diagnostic ai

3.1. Defining Algorithmic Bias in Medical Context

Algorithmic bias in medical Al refers to systematic errors that produce differential performance across demographic
groups, resulting in disproportionately poor outcomes for marginalized populations (Mehrabi et al., 2021; Chen et al,,
2021). Unlike random errors that affect all groups equally, bias creates patterns where specific populations—defined
by race, gender, age, socioeconomic status, or other characteristics—consistently experience worse algorithmic
performance.

This bias operates at multiple levels, each with distinct clinical implications:

o Technical Bias manifests as measurably different accuracy, sensitivity, or specificity across demographic
groups.

o Diagnostic Bias occurs when algorithms systematically miss diseases in certain populations or produce false
positives at different rates.

o Allocative Bias emerges when biased performance affects resource distribution, systematically excluding
marginalized groups from beneficial interventions (Obermeyer et al., 2019).

Crucially, algorithmic bias in healthcare is not merely a theoretical fairness concern—it actively harms patients. When
diagnostic Al systems fail to detect disease in underrepresented populations, patients experience delayed diagnoses,
later-stage disease presentation, worse treatment outcomes, and increased mortality (Seyyed-Kalantari et al., 2021).
When risk prediction algorithms systematically underestimate severity for specific groups, those patients are denied
access to care management programs and specialized resources. These are not abstract equity concerns but concrete
harms with measurable health consequences (Vyas et al.,, 2020).

3.2. Dermatology: A Case Study in Training Data Bias

Dermatology Al provides perhaps the clearest illustration of how training data composition directly determines
algorithmic bias. Multiple studies have documented that Al systems for skin lesion classification and melanoma
detection demonstrate substantially worse performance on darker skin tones compared to lighter skin (Adamson &
Smith, 2018; Daneshjou et al.,, 2022).

3.2.1. The mechanism is straightforward

Dermatology Al models are trained predominantly on images of fair-skinned individuals. Analysis of publicly available
datasets reveals a severe underrepresentation of darker skin tones. One study found that of 2,436 images with stated
skin colour, only 10 depicted brown skin and merely one showed dark brown or black skin. Another analysis examining
thousands of Al-generated dermatology images found that only a small percentage reflected dark skin across leading Al
platforms.

The consequences are severe and clinically significant. Research using the Diverse Dermatology Images (DDI) dataset—
created specifically to include biopsy-proven malignancies across skin tones—demonstrated that state-of-the-art
dermatology Al algorithms show markedly worse performance on lesions appearing on dark skin compared to light
skin (Daneshjou et al., 2022). This performance disparity has real clinical implications. Melanoma, while less common
in darker-skinned populations, presents at later stages and with worse outcomes in these groups—partly because of
delayed diagnosis. When Al diagnostic tools systematically underperform for dark skin, they risk exacerbating existing
disparities by further delaying detection in populations already facing worse outcomes.

Importantly, research demonstrates that fine-tuning Al models on diverse datasets can close performance gaps between
skin tones, proving that the problem is solvable through better data practices rather than being an inherent limitation
of the technology (Tschandl et al., 2020). However, this requires proactive commitment to diversity in dataset curation
rather than treating it as an afterthought.

3.3. Radiology: The Insidious Nature of Embedded Bias

Chest radiography represents another domain where extensive research has documented systematic bias, revealing
mechanisms more subtle than simple representation disparities. Al algorithms trained to interpret chest X-rays have
been shown to underdiagnose pulmonary abnormalities in historically underserved patient populations, with classifiers
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consistently and selectively underdiagnosing conditions in female patients, Black patients, and patients of low
socioeconomic status (Seyyed-Kalantari et al.,, 2021; Larrazabal et al., 2020).

What makes this bias particularly concerning is that chest X-rays appear to be standardized, objective medical images
without obvious demographic markers. Yet research has demonstrated that Al models can predict self-reported race
from chest X-rays with high accuracy—even when images are highly degraded or cropped despite human experts being
unable to make such predictions (Gichoya et al., 2022). This finding reveals that subtle patterns in medical images
encode demographic information in ways not apparent to human observers but readily learned by Al systems.

The implications are profound. If Al diagnostic algorithms can detect demographic characteristics from medical images,
they can use those characteristics as shortcuts in making diagnostic predictions. Research from MIT found that Al
models most accurate at predicting race and gender from X-ray images also show the biggest fairness gaps, with
discrepancies in their ability to accurately diagnose images of people of different races or genders. This suggests models
may be using demographic categorizations as shortcuts rather than learning disease-specific features.

The mechanisms producing these shortcuts are complex. Technical parameters related to image acquisition and
processing influence Al models trained to predict patient race, partly reflecting underlying biases in the original clinical
datasets. Different equipment, protocols, and settings across institutions create systematic variations that correlate
with patient demographics. Equipment calibration differences, varied imaging parameters, and institutional practices
all introduce patterns that algorithms can learn and exploit.

Chest radiography foundation models—large-scale Al models trained on massive datasets and then adapted for specific
diagnostic tasks—demonstrate significant racial and sex bias leading to uneven performance across patient subgroups.
Analysis of a chest radiography foundation model found that classification performance on detecting normal findings
decreased between 6.8% and 7.8% for female patients, and performance in detecting pleural effusion decreased
between 10.7% and 11.6% for Black patients compared to average model performance. These performance disparities
translate directly to clinical harms, where underdiagnosis bias labels sick individuals as healthy, potentially delaying
access to care (Seyyed-Kalantari et al., 2021).

3.4. Beyond Imaging: Algorithmic Bias in Risk Prediction

While medical imaging provides vivid examples of algorithmic bias, the problem extends to all forms of diagnostic and
predictive Al in healthcare. A landmark 2019 study by Obermeyer and colleagues examined a widely used commercial
algorithm affecting millions of patients and revealed how bias can be encoded through seemingly neutral design choices.

The algorithm in question helped identify patients for enrolment in high-risk care management programs—
interventions providing additional resources and attention to patients with complex medical needs. The algorithm
exhibited significant racial bias, with Black patients at a given risk score being considerably sicker than White patients,
as evidenced by signs of uncontrolled illnesses. At the 97th percentile risk score, Black patients had on average 26
percent more chronic illnesses than White patients, and remedying this disparity would increase the percentage of Black
patients receiving additional help from 17.7% to 46.5%.

The bias arose not from explicit racial targeting but from a common design decision: using healthcare costs as a proxy
for health needs. The algorithm predicted healthcare costs rather than illness, but unequal access to care meant less
money was spent caring for Black patients than for White patients with equivalent health needs. Even when Black and
White patients have the same health needs, systemic barriers—including discrimination, mistrust of healthcare
systems, geographic access limitations, and insurance disparities—result in Black patients receiving less care and
generating lower costs (Obermeyer et al., 2019).

This case exemplifies how convenient proxies can introduce bias. Healthcare costs are readily available in
administrative datasets, require minimal data cleaning, and correlate strongly with health needs for many purposes.
For algorithm developers optimizing for predictive accuracy on average, costs appear to be an efficient, effective target
variable. However, this overlooks how costs systematically diverge from needs across demographic groups due to
structural inequities in healthcare access and utilization.

Importantly, when the bias was identified and the algorithm reformulated to use health predictions alongside cost

predictions, racial bias was reduced by 84 to 86 percent. This demonstrates that the problem was not insurmountable
but stemmed from development choices that prioritized convenience and overall accuracy over equitable performance.
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Table 1 Documented Cases of Algorithmic Bias Across Medical Specialties

prediction algorithms

underestimation of risk
for women and Black
patients

management programs,
delayed interventions

Medical Specialty | Al Application Nature of Bias Impact Key Reference

Dermatology Skin lesion | 10-15% lower accuracy |Delayed cancer diagnosis, | Daneshjou et al,
classification, for darker skin tones vs.|worse outcomes for|2022
melanoma detection |lighter skin patients of color

Radiology Chest X-ray | Underdiagnosis in female, | Missed critical diagnoses|Seyyed-Kalantari
interpretation Black, Hispanic, and low-|in already underserved|etal, 2021
(pneumonia, SES patients populations
tuberculosis)

Cardiology Cardiovascular risk|Systematic Denied access to care|Obermeyer et al,

2019; Larrazabal
etal, 2020

from tissue slides

minority populations due

treatment planning

Ophthalmology Diabetic retinopathy | Performance degradation |Failed deployment in|Kelly etal., 2019
screening in low-resource settings | communities needing
with different equipment |screening most
Pathology Cancer detection | Reduced accuracy for|Potential for incorrect|Zechetal, 2018

to training data gaps

3.5. Root Causes: How Development Practices Create Bias

Understanding why algorithmic bias is so pervasive requires examining the entire Al development lifecycle rather than
focusing solely on algorithms or datasets in isolation. Bias enters at multiple stages through choices that seem
reasonable or necessary in individual contexts but systematically disadvantage certain populations when compounded.

3.5.1. Data Collection and Sampling Decisions

Training datasets overwhelmingly come from well-resourced academic medical centres in specific geographic regions.
The geographic concentration means most U.S. patient data for Al training comes from just three states—California,
Massachusetts, and New York (Larson et al., 2018). This convenience sampling systematically excludes diverse clinical
contexts and patient populations, optimizing for the populations and contexts those datasets represent while failing to
capture diversity essential for generalization.

3.5.2. Dataset Curation and Preprocessing

Decisions about which variables to include, how to handle missing data, how to balance classes, and which quality
thresholds to apply all shape what patterns models learn. Missing data is often handled through imputation or exclusion,
but missingness itself may be informative and differ systematically across populations (Gianfrancesco et al., 2018).

3.5.3. Labeling Practices

Diagnostic labels reflect human judgments that themselves may embody bias. If clinicians are less likely to order
confirmatory tests for certain populations, those diagnoses will be underrepresented in training data regardless of true
disease prevalence. If imaging interpretation differs across populations due to unfamiliarity or implicit bias, training
labels will be systematically noisier for underrepresented groups (Adamson & Smith, 2018).

3.5.4. Algorithmic Design Choices

Optimizing for overall accuracy incentivizes models to perform well on majority populations while accepting worse
performance on minorities a mathematically rational choice when minority populations constitute small fractions of
training data (Hardt et al., 2016). Standard loss functions minimize average error without regard for how that error
distributes across subgroups.
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3.5.5. Evaluation and Validation Practices

Bias remains invisible when studies focus on aggregate performance metrics. Reporting overall accuracy, sensitivity, or
AUC obscures differential performance across demographic groups. A 2025 analysis found that clinical performance
data were reported at approval for only approximately half of FDA-approved Al devices, with less than one-third
providing sex-specific performance data and only one-fourth addressing age-related subgroups (Wu et al,, 2021).

3.5.6. Economic and Organizational Incentives

Collecting diverse, representative datasets is expensive and time-consuming. Addressing bias requires additional
validation studies, disaggregated analyses, and potentially accepting lower overall performance to achieve equitable
outcomes. In competitive commercial environments, these equity considerations become deprioritized as costs rather
than requirements (Kelly et al.,, 2019).

3.6. Mechanisms of Harm: From Technical Bias to Health Inequity

Algorithmic bias in diagnostic Al does not remain confined to performance metrics but translates directly into tangible
harms affecting patient health and healthcare equity.

Delayed or Missed Diagnoses occur when lower sensitivity for underrepresented groups means diseases are not
detected until later stages. For conditions where early detection dramatically improves outcomes cancer, cardiovascular
disease, diabetic complications delays measured in months can determine survival (Seyyed-Kalantari et al., 2021).

Inappropriate Clinical Decision-Making results from biased risk predictions. When algorithms systematically assign
lower risk scores to Black patients with equivalent or greater health needs, those patients are denied access to care
management programs, specialist referrals, preventive interventions, and enhanced monitoring (Obermeyer et al.,
2019).

Reinforcement of Existing Disparities occurs when Al systems encode and perpetuate patterns from biased training
data. Healthcare data reflects existing inequities in access, utilization, quality, and outcomes. When Al models learn from
this data without explicit correction, they reproduce and may amplify those inequities (Vyas et al., 2020).

Erosion of Trust emerges when patients and clinicians experience or observe biased system performance. Communities
already facing healthcare discrimination and medical mistrust have well-founded skepticism about technological
solutions that demonstrate similar patterns (Char et al., 2018).

Resource Allocation Inequities compound when biased algorithms guide deployment decisions. If Al screening tools
direct resources toward populations where they perform best—typically well-represented groups in training data—
they systematically under-serve marginalized communities most lacking in healthcare access.

3.7. Structural Analysis: Bias as Predictable Outcome

The critical insight from examining algorithmic bias across specialties and contexts is that bias is not an aberration
requiring explanation but a predictable, systematic outcome of current development practices (Rajkomar et al., 2018).
This reframes the challenge from "how do we fix bias in AI?" to "how do we restructure Al development to prevent
bias?"

Current practices prioritize metrics that make bias inevitable:

e Narrow accuracy over robust generalization rewards models that specialize to training data characteristics

e Overall performance over equitable outcomes allows sacrificing minority group performance to optimize
averages

o Convenient proxies over direct measurement introduces systematic errors when proxies diverge from targets
across groups

e Aggregate validation over disaggregated assessment makes bias invisible in reported metrics

These priorities reflect reasonable choices in isolated contexts but systematically disadvantage specific populations
when applied at scale. A developer maximizing accuracy on available data behaves rationally; a regulator focusing on
overall performance follows established precedent; a researcher using convenient datasets works within resource
constraints. Yet the cumulative effect is an Al ecosystem producing tools that fail precisely where they are most needed.
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Addressing this requires recognizing that technical solutions bias mitigation algorithms, fairness constraints, post-hoc
corrections cannot fully compensate for fundamentally inadequate development paradigms (Mehrabi et al,, 2021).
While such techniques provide value, sustainable equity demands restructuring priorities throughout the Al lifecycle:
collecting diverse data proactively rather than reactively, optimizing for worst-case performance rather than averages,
validating across contexts before deployment rather than after problems emerge, and treating equity as a core
requirement rather than an aspirational goal.

The following section examines how poor generalizability compounds these challenges, demonstrating that bias and
generalizability are not separate problems but interconnected manifestations of the same structural issues in Al
diagnostic development.

Twin symptoms of the same structural disease

Regulatory Gaps
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Bias and poor generalizability aren't separate issues—they're twin symptoms of the same structural disease.
Both stem from unrepresentative training data, reinforced by economic incentives prioritizing speed over
diversity, regulatory gaps that don't mandate external validation, and resource disparities concentrating data
collection in well-resourced centers. Where these problems overlap, the compounding zone creates the worst
outcomes for intersectional groups, manifesting the equity paradox.

Figure 2 The Interconnected Root Causes of Bias and Poor Generalizability

4. The generalizability crisis

4.1. Defining Generalizability in Medical Al

Generalizability refers to an Al model's ability to maintain performance when encountering data characteristics
different from those present during training (Zech et al,, 2018). In medical contexts, this means diagnostic systems
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should work reliably across diverse hospitals, patient populations, clinical workflows, equipment configurations, and
geographic regions. High generalizability indicates robust learning of underlying disease patterns rather than spurious
associations specific to training data.

Poor generalizability manifests as performance degradation when models trained at one institution are deployed at
another, when algorithms encounter different patient demographics than those in training data, when equipment or
protocols differ from development settings, or when temporal changes alter clinical practice patterns. This degradation
can be dramatic: studies consistently document substantial performance drops when models face truly external
validation in novel deployment contexts (Oakden-Rayner et al., 2020).

The distinction between internal and external validation is crucial. Internal validation evaluates model performance
on held-out data from the same source as training data—the same hospitals, time periods, patient populations, and
equipment. While internal validation assesses whether models overfit to training samples, it cannot detect whether
models learn institution-specific patterns rather than generalizable disease markers. External validation tests
performance on data from entirely different sources, revealing whether models truly learned transferable medical
knowledge (Wynants et al.,, 2020).

Current research demonstrates that Al diagnostic systems routinely achieve excellent internal validation but fail
external validation. This pattern indicates models are learning to exploit characteristics of specific datasets—
institutional conventions, equipment signatures, documentation styles, local demographics—rather than universal
disease features (Zech et al., 2018). The result is an Al ecosystem producing tools that appear successful in development
settings but prove unreliable when deployed broadly.

4.2. Evidence of Performance Degradation Across Institutions

Multiple studies examining cross-institutional validation reveal consistent patterns of performance degradation,
demonstrating that poor generalizability is not an isolated phenomenon but a systematic challenge affecting Al
diagnostic applications across medical specialties.

A comprehensive study examining machine learning-based clinical risk prediction models across different hospitals
provides stark evidence. Research found that when models achieved average AUROC of 94.2% within their development
hospitals, cross-hospital deployment resulted in severely reduced performance, with average AUROC decreasing by 8
percentage points to 86.3% (Wong et al., 2021). This degradation occurred even though all hospitals were within the
same country, treating similar conditions, and using comparable clinical protocols.

The implications are significant. An 8-percentage-point AUROC decrease translates to substantially more missed
diagnoses and false alarms. For high-stakes clinical decisions—determining which patients require intensive
monitoring, who needs specialist referral, or which cases warrant emergency intervention—this level of performance
degradation could mean the difference between timely treatment and preventable harm.

International deployment amplifies these challenges. When Al models developed in high-income countries are applied
in low- and middle-income countries, performance degradation becomes even more severe due to different disease
presentations, varying healthcare infrastructure, alternative clinical protocols, and distinct patient demographics.
Research evaluating UK-developed COVID-19 diagnostic models found that systems performing well in NHS trusts
showed marked performance degradation when applied to Vietnamese hospital datasets, despite the apparent
universality of the diagnostic task (Wynants et al., 2020).

The sepsis prediction case exemplifies high-profile deployment failures. The Epic sepsis model was implemented in
hundreds of hospitals to monitor patients and send alerts for those at high risk. However, external validation revealed
the model missed 67% of sepsis patients while generating numerous false alerts (Wong et al.,, 2021). When companies
pitch Al-powered solutions claiming high accuracy, testing on internal hospital datasets almost always reveals
performance falling short by substantial margins.
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Table 2 Evidence of Performance Degradation in External Validation Studies

Al System Internal External Performance Context of External | Reference

Validation Validation Drop Validation

Performance Performance
Sepsis Prediction | AUROC: 0.94 | AUROC: 0.86 | -8 percentage | Cross-hospital Wong et al,,
Model (development (external points validation  within | 2021

hospital) hospitals) same health system
COVID-19 Sensitivity: 92% | Sensitivity: 76% | -16 percentage | International Wynants et
Diagnostic (UK NHS trusts) | (Vietnamese points deployment, al, 2020
Algorithm hospitals) different healthcare

infrastructure
Chest X-ray | AUC: 0.97 | AUC: 0.85 (external | -12 percentage | Different US. | Zech et al,
Pneumonia (source institution) points hospital, different | 2018
Detector institution) patient
demographics

Diabetic Sensitivity: 90% | 21% image | Catastrophic Different  lighting, | Kelly et al,
Retinopathy (controlled trial) | rejection rate in | failure rate equipment in | 2019
Screening field deployment Thailand clinics
Mammography Marketed as | 94% less accurate | Does not meet | Real-world clinical | McKinney
CAD Software "radiologist- than single | clinical utility use across multiple | etal, 2020

level” radiologist in sites

practice

Google's Verily Health Sciences faced similar challenges with their diabetic retinopathy detection system during field
trials in Thailand. The system performed poorly due to different lighting conditions and lower-resolution images than
those in development datasets. Twenty-one percent of images that technicians attempted to input were rejected by the
model as unsuitable a catastrophic failure rate for a screening tool intended to improve access to diagnosis (Kelly et al.,
2019).

Radiology Al demonstrates particularly concerning generalizability problems. Computer-aided detection software
packages for mammography, rushed to market in the mid-2010s, showed numerous failings documented in subsequent
analyses. Despite intense efforts spanning over 20 years, true radiologist-level performance has not been consistently
achieved across diverse deployment settings. A 2021 review found that 94% of Al systems for mammography were less
accurate than a single radiologist, and all were less accurate than consensus of two or more radiologists—revealing how
laboratory performance claims fail to translate to reliable clinical utility (McKinney et al., 2020).

4.3. Sources of Distribution Shift

Understanding why Al diagnostic systems fail to generalize requires examining the multiple factors creating
distribution shift systematic differences between training and deployment data characteristics.

Equipment and technical variations represent a fundamental source of distribution shift. Medical imaging equipment
varies in manufacturer, model, calibration settings, and acquisition parameters. Even standardized modalities like chest
X-rays show substantial variability in image quality, contrast, resolution, and preprocessing across different facilities.
CT scanners use different reconstruction algorithms, slice thicknesses, and radiation doses. MRI machines vary in field
strength, coil configurations, and pulse sequences. Pathology slide preparation and staining protocols differ between
laboratories.

These technical variations create systematic differences in raw data characteristics that Al models can detect and exploit
during training. When models optimize for performance on images from specific equipment, they learn equipment
signatures as useful features for prediction. During deployment with different equipment, those signatures are absent
or altered, causing performance degradation. The problem intensifies when training data comes from cutting-edge
equipment at well-resourced academic medical centres, but deployment occurs in community hospitals with older, less
sophisticated technology.
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How training on limited distributions leads to deployment fallures
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Real-world healthcare is inherently diverse across populations, clinical practices, equipment, and time. Models
trained on narrow slices of this distribution—limited to spedfic Institutions, time periods, or patient populations
—inevitably encounter distribution shift during deployment. Each source of shift independently degrades
performance, and their combination creates compounding fallures. The outer ring of performance degradation
is not an unfortunate side effect but a predictable consequence of training on limited distributions.

Figure 3 Sources of Distribution Shift in Medical Al

Population demographic differences create distribution shift through variations in disease prevalence, presentation
patterns, comorbidity profiles, and genetic factors across geographic regions and patient populations. Cardiovascular
disease presents differently across age groups, sexes, and ethnic populations. Cancer incidence and subtype
distributions vary geographically. Infectious disease patterns reflect local epidemiology. When Al models train
predominantly on specific demographic groups, they optimize for disease characteristics typical of those populations
while underperforming for others with different presentations.

Clinical practice variations systematically differ across institutions and regions. Diagnostic protocols, treatment
guidelines, referral patterns, and documentation practices vary, creating different statistical distributions in clinical
data. What constitutes standard care at a tertiary academic centre may differ from practices at community hospitals.
Threshold decisions—when to order specific tests, when to initiate treatments, when to refer to specialists—vary based
on institutional culture, resource availability, and patient populations served.

These practice variations become encoded in training data. If certain diagnostic tests are ordered more frequently for
specific patient populations at development institutions, AI models learn those patterns as diagnostically relevant.
During deployment at institutions with different ordering practices, the expected patterns are absent, causing model
confusion and performance degradation.
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Temporal evolution creates distribution shift as medical practice, disease patterns, and technology change over time.
New clinical guidelines alter standard protocols. Emerging pathogens introduce novel disease presentations. Updated
equipment changes data characteristics. Patient populations evolve as demographics shift. Models trained on historical
data increasingly encounter deployment contexts different from their training environments.

The COVID-19 pandemic provided dramatic illustration of temporal distribution shift. Diagnostic patterns,
hospitalization thresholds, testing protocols, and clinical workflows changed rapidly. Al models trained on pre-
pandemic data performed poorly during the pandemic as these fundamental shifts altered data distributions (Wynants
et al,, 2020). Even post-pandemic, lasting changes in healthcare delivery expanded telemedicine, altered emergency
department utilization, changed referral patterns continue creating temporal distribution shift affecting model
performance.

4.4. The Geographic Data Concentration Problem

The geographic concentration of Al training data represents a particularly troubling manifestation of poor
generalizability with profound implications for healthcare equity. This concentration reflects pragmatic realities of Al
development but produces systems systematically biased toward specific regions while potentially failing elsewhere.

Stanford researchers' analysis revealing that 71% of diagnostic Al studies used patient data exclusively from California,
Massachusetts, or New York, with 34 states completely unrepresented, documents a severe concentration problem
(Larson et al., 2018). This is not coincidental but reflects how Al development occurs. Leading academic medical centres
with advanced informatics infrastructure, large research programs, substantial patient volumes, and resources to create
shareable datasets naturally become primary data sources. Stanford University alone has led the field in making
diagnostic datasets freely available, contributing to Al development but also to geographic concentration.

This concentration creates a form of digital neocolonialism when extended internationally. The vast majority of medical
Al research and development occurs in high-income countries, particularly the United States, United Kingdom, and other
Western nations. Analysis of clinical text datasets used for Al training found that 73% come from the Americas and
Europe regions representing only 22% of global population with more than half in English. This concentration means
Al diagnostic systems are optimized for healthcare contexts, disease patterns, and population demographics specific to
wealthy Western nations while potentially failing elsewhere.

When these systems are deployed in low- and middle-income countries, they frequently encounter insurmountable
challenges. Different disease presentations reflect varying epidemiology and environmental exposures. Healthcare
infrastructure limitations mean different equipment, protocols, and data quality. Alternative clinical workflows and
resource constraints create fundamentally different contexts. Patient demographics, genetic backgrounds, and
comorbidity patterns differ. Al systems optimized for high-income country contexts often prove irrelevant or actively
harmful when deployed in LMICs without substantial adaptation.

The concentration problem creates compounding inequities. Regions already facing healthcare access challenges—
rural areas, under-resourced states, low-income countries—are precisely those lacking representation in Al training
data. When Al diagnostic tools are deployed, they perform best in already well-served areas while failing in places most
needing improved diagnostic access. This pattern risks creating a two-tier system where Al enhances care for privileged
populations while remaining unavailable or unreliable for marginalized communities.

4.5. The External Validation Gap

Despite widespread recognition that external validation is essential for assessing generalizability, current practices
reveal systematic inadequacy in validating Al diagnostic systems across diverse deployment contexts before regulatory
approval and clinical implementation.

A 2025 cross-sectional analysis examining 903 FDA-approved Al-enabled medical devices found that clinical
performance studies were reported at approval for only approximately half of these devices, while one-quarter
explicitly stated that no such studies had been conducted. Among devices with clinical evaluations, less than one-third
provided sex-specific performance data, and only one-fourth addressed age-related subgroups (Wu et al., 2021). This
means most deployed Al diagnostic systems lack rigorous evidence of performance across demographic categories, let
alone true external validation across different institutions and populations.

The validation gap reflects multiple factors. External validation requires access to datasets from institutions not
involved in model development a resource-intensive process requiring data-sharing agreements, ethical approvals, and
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technical infrastructure. Smaller healthcare facilities often lack capacity to participate in validation studies. Competitive
pressures incentivize companies to move quickly from development to deployment without comprehensive validation.
Regulatory frameworks, while evolving, often do not mandate rigorous multi-site external validation before clearance
(FDA, 2024).

Recent research examining 130 healthcare Al systems deployed across multiple institutions found that only 23% had
undergone rigorous bias testing before deployment, while fewer than 15% had established clear accountability
structures for addressing errors. When systems produced disparate outcomes—recommending different treatments
based on patient race, denying care to those with rare conditions, or failing to recognize symptoms in underrepresented
populations there were no systematic mechanisms for patients to seek recourse or for institutions to implement
corrections quickly.

The lack of external validation means Al diagnostic systems routinely enter clinical practice with limited evidence they
will maintain performance in actual deployment settings. Internal validation on held-out data from development
institutions cannot reveal generalizability problems stemming from institutional idiosyncrasies, equipment
characteristics, or population demographics specific to training contexts. Without external validation, healthcare
systems deploying Al tools essentially conduct uncontrolled experiments on their patient populations.

4.6. Performance Monitoring and Drift Detection Challenges

Even when Al diagnostic systems initially perform well in deployment settings, their performance can degrade over
time as clinical practice evolves, patient populations shift, equipment changes, or data characteristics drift. Detecting
and addressing this performance degradation represents a significant challenge largely unresolved in current practice.

Distribution shifts creating performance degradation can be anticipated or unannounced. Sometimes impending shifts
are predictable hospital-wide policy changes, new equipment deployment, updated clinical guidelines. However, many
distribution shifts are subtle and gradual: slowly changing patient demographics, incremental workflow modifications,
or evolving disease patterns. Detecting these changes requires continuous monitoring of model performance, yet most
deployed Al systems lack robust performance monitoring infrastructure.

The main method of detecting degradation within Al models today is clinical intuition on the part of physicians using
the technology. However, relying on clinical intuition is unreliable and highly variable, meaning Al model degradation
may cause misdiagnosis before it is noticed. Beyond general trust, two specific human-factor barriers critically impede
safe deployment: automation bias and alert fatigue. Automation bias describes the tendency for clinicians to over-rely
on Al recommendations, accepting algorithmic outputs without sufficient scrutiny. This creates risks when models
exhibit hidden biases or context-specific failures, as clinicians may not activate their own expertise to question incorrect
Al suggestions. Simultaneously, alert fatigue emerges when Al systems generate excessive false positives or low-value
alerts, causing clinicians to become desensitized and potentially ignore critical warnings. Clinicians may not recognize
when Al recommendations become less accurate, particularly if degradation is gradual rather than sudden. By the time
problems become obvious through accumulated adverse outcomes, substantial harm may have already occurred.

Technical approaches to performance monitoring face their own challenges. Continuously measuring accuracy requires
ongoing access to ground truth labels—confirmed diagnoses for patients receiving Al-based recommendations.
Obtaining these labels is resource-intensive, often involving manual chart review or waiting for definitive diagnostic
outcomes. For some applications, true outcomes may not be known for months or years, making timely detection of
performance degradation impossible.

Confounding medical interventions complicate performance monitoring. When Al systems generate alerts prompting
clinical action, subsequent interventions may prevent predicted outcomes from occurring. For example, if an Al system
predicts acute kidney injury and clinicians respond with protective measures preventing the injury, the model appears
inaccurate yet it may have been correct about the trajectory that would have occurred without intervention. This
paradox intensifies as Al systems become more effective: the better they work, the faster their apparent performance
degrades due to interventions they trigger.

Alternative monitoring approaches using proxy metrics—detecting changes in input data distributions, monitoring
prediction confidence scores, tracking unusual patterns—can alert to potential problems without requiring ground
truth labels. However, these methods cannot definitively confirm whether performance has actually degraded, only that
conditions have changed in ways that might affect performance. Healthcare institutions must then decide whether to
adjust, retrain, or suspend Al systems based on uncertain signals.
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The FDA has explicitly recognized these challenges, issuing a request for public comment on measuring and evaluating
Al-enabled medical device performance in the real world. The agency acknowledges that Al system performance can be
influenced by changes in clinical practice, patient demographics, data inputs, and healthcare infrastructure. Data drift,
concept drift, and model drift may lead to performance degradation, bias, or reduced reliability. Currently, many Al-
enabled medical devices are evaluated primarily through retrospective testing or static benchmarks rather than
continuous real-world monitoring.

The fundamental limitation of current monitoring approaches is their reactive nature—they attempt to detect problems
after performance has already degraded. A more proactive paradigm is needed: Adaptive Equity. This concept reframes
the challenge from merely detecting drift to continuously maintaining equitable performance across all subgroups as
clinical environments, patient populations, and disease patterns evolve. Adaptive Equity requires systems that can not
only identify when they're failing but automatically adjust to prevent disparate impacts before they occur. (This concept
will be elaborated in Section 7.12.)

4.7. Why Generic Models Fail: The Specialization-Generalization Trade-Off

The consistent pattern of poor cross-institutional performance reveals a fundamental tension in Al development: the
trade-off between specialization to specific contexts and generalization across diverse settings. Current development
practices resolve this tension by prioritizing narrow performance optimization, inevitably producing systems that fail
to generalize.

When Al models train on data from specific institutions, they face no incentive to distinguish between universal disease
patterns and institution-specific idiosyncrasies. Both types of features improve performance on internal validation sets,
so models learn whatever patterns most effectively minimize training loss. Equipment signatures, institutional coding
conventions, documentation styles, local demographics, and clinical practice patterns all become useful features for
optimization.

This specialization produces impressive internal validation metrics but poor generalizability. Models essentially overfit
not to individual training samples but to institutional characteristics. The more completely models exploit institution-
specific patterns, the better they perform internally but the worse they generalize externally. Researchers studying
cross-hospital validation concluded that performance degradation identified limitations in developing a generic model
for different hospitals, recommending instead that specialized prediction models be generated for each hospital to
guarantee performance.

However, institution-specific models create their own problems. Developing separate models for each deployment site
requires substantial resources, technical expertise, and local data that many healthcare facilities lack. Community
hospitals, rural facilities, and resource-limited settings cannot afford to develop custom Al systems, yet deploying
externally developed models risks poor performance. This dynamic threatens to create healthcare Al systems accessible
only to well-resourced institutions, exacerbating rather than reducing disparities.

The specialization-generalization trade-off also explains why technical sophistication does not ensure generalizability.
More complex models with greater capacity can learn more intricate patterns in training data, potentially achieving
higher internal validation performance. However, this same capacity enables more complete exploitation of institution-
specific features, worsening generalizability. Without explicit architectural choices, training procedures, or data
strategies promoting generalization, increasing model sophistication may paradoxically reduce external validity.

4.8. Structural Analysis: Generalizability as Predictable Consequence

Examining poor generalizability through a structural lens reveals it is not a technical accident requiring incremental
fixes but a predictable consequence of how Al diagnostic systems are currently developed. Just as with algorithmic bias,
poor generalizability stems from fundamental development practices that prioritize narrow metrics over robust
performance.

Single-site optimization dominates current practice. Models are developed and validated primarily or exclusively using
data from individual institutions or small consortia. Optimization targets internal validation performance without
explicit generalizability constraints. This approach produces systems maximally adapted to specific contexts while
minimizing external validity. When developers lack access to diverse multi-site data during training, creating
generalizable models becomes essentially impossible regardless of algorithmic sophistication.
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Convenience sampling determines which data are used for Al development. Readily available datasets from well-
resourced institutions become training sources not because they are representative but because they are accessible.
This sampling strategy systematically excludes diverse clinical contexts, patient populations, and healthcare settings—
precisely the diversity essential for generalization. Geographic concentration, demographic homogeneity, and
institutional similarity in training data inevitably produce models that generalize poorly beyond those specific contexts
(Larson et al., 2018).

Narrow evaluation metrics obscure generalization failures. When studies report overall accuracy, sensitivity, or AUC
without disaggregating by subgroups or validating across external sites, poor generalizability remains invisible.
Publication norms emphasizing impressive performance numbers rather than external validation encourage
researchers to optimize for internal metrics while avoiding rigorous generalizability assessment. Regulatory approval
processes that do not mandate comprehensive external validation allow systems to enter clinical practice despite
limited evidence of robust performance (Wu et al.,, 2021).

Economic incentives reinforce these practices. Collecting diverse multi-site datasets is expensive and time-consuming.
Comprehensive external validation requires resources, partnerships, and data-sharing agreements that slow
development timelines and increase costs. In competitive commercial environments where companies race to
demonstrate high performance and secure regulatory approval, investments in generalizability compete with pressures
for rapid deployment. When validation gaps are tolerated by regulators and markets, economic rationality suggests
minimizing validation costs (Kelly et al., 2019).

The structural analysis demonstrates that poor generalizability, like algorithmic bias, results not from individual
failures but from systemic development practices. Current approaches optimize for success within specific contexts
while systematically neglecting the diversity essential for robust performance across varied deployment settings.
Technical solutions transfer learning, domain adaptation, federated learning—offer value but cannot fully compensate
for fundamentally inadequate development paradigms. Sustainable generalizability requires restructuring how
development occurs: prioritizing diversity in data collection, mandating multi-site validation, optimizing for worst-case
rather than average performance, and treating generalizability as a fundamental requirement rather than an
aspirational goal.

The following section examines how poor generalizability and algorithmic bias compound each other, demonstrating
these are not separate challenges but interconnected manifestations of the same structural problems in Al diagnostic
development.

5. The Intersection: How Bias and Generalizability Compound Each Other

The previous sections examined algorithmic bias and poor generalizability as distinct phenomena, each with its own
manifestations, mechanisms, and consequences. This analytical separation, however, obscures a critical reality: they are
not separate challenges but interconnected manifestations of the same structural deficiencies in Al development
practices. This section demonstrates how bias and poor generalizability compound each other, creating equity gaps
more severe than either challenge would produce in isolation. Understanding this intersection is essential, for it reveals
why technical solutions addressing either problem individually prove insufficient and why a fundamental restructuring
of development paradigms is necessary.

5.1. Common Root: Unrepresentative Training Data

Both algorithmic bias and poor generalizability fundamentally stem from the same root cause: training data that fails to
represent the full diversity of populations and contexts where Al diagnostic systems will be deployed. This
representation bias is a dominant form of bias that critically limits the generalizability of healthcare Al models (Zech et
al, 2018). When datasets systematically underrepresent specific demographic groups, two outcomes occur
simultaneously: models learn less effectively about disease patterns in those groups (producing bias), and they optimize
for characteristics present in overrepresented groups, failing to capture patterns necessary for performance in diverse
deployment contexts (poor generalizability).

This common root is evident in the geographic concentration of training data. Research reveals that over half of all
published clinical Al models leverage datasets from either the United States or China, with many U.S. datasets
overrepresenting non-Hispanic Caucasian patients relative to the general population (Larson et al, 2018). This
concentration produces both bias (worse performance for underrepresented ethnic groups) and poor generalizability
(performance degradation when deployed outside these specific geographic contexts). The mechanism operates
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through how Al models handle underrepresented groups. When trained on imbalanced data, algorithms tend to
"underestimate" or treat minority patterns as noise to avoid overfitting, approximating mean trends instead (Chen et
al,, 2021). This behaviour simultaneously produces bias (differential performance) and compromises generalizability
(inability to handle contexts where these "minority" patterns are prevalent).

5.2. Compounding Mechanisms: How Each Problem Worsens the Other

Bias and poor generalizability do not merely share common origins; they actively compound each other through
feedback mechanisms that amplify both problems beyond what either would produce independently.

Bias worsens generalizability through learned dependencies on majority characteristics. When models perform poorly
for specific demographic groups during training, developers often lack the disaggregated performance metrics
necessary to detect this bias (Mehrabi et al,, 2021). Models that appear to perform well overall may achieve high
accuracy by specializing to majority group characteristics while failing for minorities. This specialization creates
systems optimized for narrow demographic contexts, ensuring poor generalizability when deployed in settings with
different demographic distributions.

Poor generalizability amplifies bias through deployment decisions and feedback loops. When Al systems fail to
generalize, healthcare organizations face a choice. Well-resourced institutions can afford local validation and model
customization, while under-resourced facilities—which often serve populations already facing healthcare disparities—
cannot (Reddy et al., 2020). This creates a pattern where Al tools are deployed successfully in privileged contexts but
remain unavailable or unreliable in marginalized settings, systematically amplifying existing healthcare inequities.

Training data scarcity creates a vicious cycle of compounding disadvantages. Limited representation of specific
populations creates multiple interconnected problems: models learn disease patterns less reliably for these groups
(bias); they lack examples to recognize these groups in varied contexts (poor generalizability); and external validation
studies often lack sufficient samples to assess performance reliably (validation gaps). Each limitation reinforces the
others, creating particularly severe disadvantages for populations with minimal representation (Seyyed-Kalantari et al.,
2021).

5.3. Intersectional Inequities: Compounded Disadvantages

The intersection of bias and poor generalizability creates particularly acute problems for populations facing multiple,
overlapping forms of marginalization. Individuals belonging to several underrepresented categories simultaneously for
instance, elderly Black women in rural areas experience compounded disadvantages that exceed the sum of individual
biases.

Intersectional data scarcity operates multiplicatively rather than additively. If Black patients constitute 10% of a
training dataset and rural patients constitute 15%, Black rural patients may represent only 0.5-1.5%, not 25%
(Buolamwini & Gebru, 2018). This severe underrepresentation means models have virtually no examples from which
to learn disease patterns for intersectional groups. The result is Al systems that perform catastrophically for precisely
those populations facing the greatest healthcare access barriers and health disparities.

Historical underrepresentation affects both datasets and development teams, with women and researchers of colour
being underrepresented in clinical Al research (AIM-AHEAD, 2024). This dual absence means both the data and the
perspectives essential for identifying and addressing intersectional equity concerns are missing during design,
development, and validation.

5.4. The Equity Paradox: Al Helps Least Where Needed Most

The compounding of bias and poor generalizability culminates in what this thesis terms the "equity paradox” in medical
Al: diagnostic systems perform best for populations with the least need for improved care access and worst for populations
who could benefit most from enhanced diagnostic capabilities. This inversion transforms Al's promise to democratize
healthcare into a reality where it amplifies existing disparities.

Populations already enjoying excellent healthcare access typically well-served, majority demographics in well-
resourced urban academic medical centres are most likely to be well-represented in training data. Models optimized on
these populations perform best for them and generalize most reliably to similar settings. These groups experience Al as
delivering on its promise.
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Conversely, populations facing healthcare access barriers rural communities, racial and ethnic minorities, low-income
individuals are systematically underrepresented in training data. Models perform worse for them individually (bias)
and fail when deployed in facilities serving them (poor generalizability). When under-resourced facilities attempt
deployment, they encounter systems optimized for different contexts. These groups experience Al as unreliable or
harmful: leading to missed diagnoses, false alarms, and erosion of trust (Char et al., 2018). This paradox is intensified
because well-resourced institutions can invest in validation and customization, while under-resourced ones cannot,
creating a two-tier ecosystem.
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5.5. Real-World Manifestations: Case Studies of Compounding Effects

Examining specific deployment contexts reveals how bias and poor generalizability compound in practice.

e Rural Healthcare Deployment: Rural facilities differ from urban academic centres in infrastructure,
workflows, and staffing creating generalizability challenges. Simultaneously, rural populations often have
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different demographic and socioeconomic characteristics—creating bias vulnerabilities. When urban-
developed Al systems are deployed rurally, they encounter both distribution shift (different context) and
demographic mismatch, leading to dramatically worse performance.

e International Deployment to LMICs: Al systems developed in high-income countries encounter massive
distribution shifts in low- and middle-income countries (LMICs): different equipment, protocols, disease
epidemiology, and population demographics (Wynants et al, 2020). Each dimension creates both
generalizability challenges and bias risks. The combination creates systems that are often non-functional for
populations potentially benefiting most from improved diagnostic access.

o Safety-Net Hospitals: These institutions serve disproportionately minority, low-income populations
(demographic mismatch/bias risk) and operate under different resource constraints than academic centres
(contextual mismatch/generalizability challenge). Deploying externally developed Al systems here produces
particularly poor performance precisely where healthcare challenges are most acute.

5.6. Validation Gaps Obscure Compounding Effects

The interconnection between bias and poor generalizability is further obscured by validation practices that fail to assess
either challenge adequately. Aggregate validation metrics—reporting overall accuracy across entire test sets—obscure
both bias (by averaging over groups) and poor generalizability (by testing on data from the same distribution as training
data). A 2025 analysis of FDA-approved devices found clinical performance studies reported at approval for only ~50%
of devices, with less than one-third providing sex-specific performance data (Wu et al., 2021). This inadequacy means
most deployed systems have not been tested across diverse demographic groups or varied institutional contexts.

The lack of intersectional validation is particularly problematic. Even studies that disaggregate by single demographic
characteristics rarely examine intersectional categories (e.g., elderly Black women). Yet these groups face the most
severe compounding effects. Without intersectional validation, the populations most vulnerable to Al failures remain
invisible in performance assessments (Buolamwini & Gebru, 2018).

5.7. Why Technical Solutions Alone Are Insufficient

Recognizing the interconnected nature of bias and poor generalizability reveals why purely technical mitigation
strategies, applied in isolation, are destined to fall short. Approaches that treat these as separate, isolated challenges
cannot address their compounding effects or underlying common causes.

Bias mitigation techniques (e.g., post-hoc fairness constraints) may address demographic performance gaps within a
specific training distribution but do not ensure models will maintain fairness across different deployment contexts
(Barocas et al., 2019). A model adjusted to be "fair" in one institution may exhibit dramatically different fairness
properties when deployed elsewhere.

Generalizability techniques (e.g., domain adaptation) that optimize for robust performance across different hospitals
may inadvertently worsen bias if they prioritize performance on well-represented majority groups. Transfer learning
using limited local data may improve average performance while leaving or worsening demographic disparities if the
local data lacks diversity.

The fundamental limitation is that technical solutions operate within the paradigm that created both problems:
development using unrepresentative data and optimization for narrow metrics. They are attempts to fix the outputs of
a broken system rather than repair the system itself.

5.8. Structural Analysis: The Need for Integrated Solutions

Understanding bias and poor generalizability as interconnected outcomes of common structural deficiencies points
toward integrated solutions that address root causes rather than symptoms. Three key imperatives emerge:

Data diversity is non-negotiable. No algorithmic sophistication can compensate for fundamentally unrepresentative
training data. Proactive collection of diverse datasets capturing demographic, geographic, institutional, and clinical
variability must become a fundamental requirement, necessitating restructured incentives and regulatory expectations
(STANDING Together, 2024).

Validation must be comprehensive and intersectional. Assessing bias within single-site data and assessing

generalizability using aggregate metrics both fail to reveal compounding effects. Validation frameworks must
simultaneously examine performance across demographic subgroups and across deployment contexts, with a focus on
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intersectional categories. Regulatory approval should require evidence of maintained equitable performance across
diverse real-world settings (FDA, 2024; Wu et al.,, 2021).

Development priorities must be fundamentally reoriented. Current practices optimize for performance on available
data, treating diversity and generalizability as secondary concerns. Sustainable equity requires inverting these
priorities: treating robust, equitable performance across diverse populations and contexts as the primary goal, even if
this means accepting lower peak performance on narrow, aggregated metrics (Wiens et al., 2019).

The structural interconnection means addressing either challenge requires addressing both. Solutions must be
integrated, proactive, and structural. The following sections examine the barriers to such solutions and propose a
concrete framework for this necessary reorientation.

6. Barriers to clinical translation

The previous sections established that algorithmic bias and poor generalizability stem from structural deficiencies in
Al development practices. However, understanding why these problems persist requires examining the barriers
preventing solutions from being implemented. Current regulatory frameworks, economic incentives, organizational
structures, and clinical workflows actively reinforce development practices that prioritize narrow performance over
equity and generalizability. This section analyzes how these systemic barriers impede the translation of Al diagnostic
systems into equitable, robust clinical tools and perpetuate the equity paradox.

6.1. Regulatory Framework Inadequacies

Regulatory oversight of Al diagnostic systems aims to ensure safety and effectiveness before clinical deployment.
However, existing frameworks were designed for traditional medical devices with fixed characteristics, not adaptive Al
systems that learn from data and may evolve over time. This fundamental mismatch creates regulatory gaps that allow
biased, poorly generalizable systems to enter clinical practice.

6.1.1. FDA Approval Processes and Their Limitations

The U.S. Food and Drug Administration regulate Al-enabled medical devices through established pathways: 510(k)
premarket clearance, De Novo classification, or Premarket Approval (FDA, 2024). As of mid-2024, approximately 950
Al/ML-enabled medical devices had received FDA clearance, with roughly 100 new approvals annually. The majority
fall into Class II (moderate risk) requiring 510(k) clearance based on substantial equivalence to predicate devices.

These pathways contain critical limitations for addressing bias and generalizability. The 510(k) process’s precedent-
based approach can perpetuate problems present in earlier generations. More fundamentally, current approval
processes do not consistently require comprehensive evidence of generalizability or equitable performance across
diverse populations. A 2025 analysis of 903 FDA-approved Al-enabled medical devices found clinical performance
studies were reported at approval for only approximately half, with less than one-third providing sex-specific
performance data and only one-fourth addressing age-related subgroups (Wu et al., 2021). This means most deployed
systems lack disaggregated validation demonstrating equitable performance, let alone rigorous external validation
across different institutions and contexts.

The FDA explicitly recognizes these limitations, acknowledging its traditional paradigm was not designed for adaptive
Al technologies (FDA, 2025). While updated guidance establishes documentation requirements including bias analysis,
the absence of mandatory requirements for comprehensive multi-site external validation represents a persistent gap
that allows systems with limited evidence of equitable performance to enter clinical practice.

6.1.2. The Predetermined Change Control Plan Challenge

The FDA's Predetermined Change Control Plan (PCCP) allows manufacturers to implement approved algorithm
modifications without new marketing applications for each change, provided modifications stay within predefined
boundaries (FDA, 2025). While this approach recognizes Al's adaptive nature, it creates challenges for monitoring

equity.
If post-deployment data lack diversity or reflect biased clinical practices, continuous learning could actually worsen bias

over time. Without robust real-world performance monitoring disaggregated by demographic groups, evolutionary
changes may systematically degrade equitable performance while remaining within authorized modification
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boundaries. The challenge intensifies because the main method of detecting degradation today remains clinical
intuition, which is unreliable and variable, meaning harm may occur before problems are noticed.

6.1.3. Validation Requirements and Their Gaps

Current regulatory approaches focus primarily on technical accuracy rather than clinical utility and equitable
performance. Approval can be granted based on performance in controlled research settings without evidence the
system maintains accuracy in diverse real-world deployment contexts. The absence of mandatory external validation
requirements represents a critical gap. While the FDA encourages multi-site testing and demographic disaggregation,
these remain recommendations rather than requirements for many device classes (Wu et al,, 2021). Healthcare
institutions deploying FDA-cleared devices often assume regulatory approval indicates comprehensive validation,
unaware that clearance may be based on single-site studies with limited demographic diversity.

International regulatory frameworks face similar challenges. The European Union's Al Act explicitly designates medical
Al as high-risk, requiring quality management, transparency, human oversight, and bias monitoring (European
Commission, 2024). However, ensuring datasets adequately represent intended populations remains difficult in
practice, and notified bodies conducting conformity assessments have limited experience with Al-specific validation
challenges.

6.2. Economic Barriers and Misaligned Incentives

Economic factors powerfully shape Al development priorities, often incentivizing practices that perpetuate bias and
poor generalizability. Understanding these economic barriers reveals why sustainable equity requires restructuring
financial incentives.

6.2.1. Development Costs and Resource Constraints

Creating Al diagnostic systems requires substantial financial investment. Developing a single Al model can cost upwards
of $1 million, and because models do not always work correctly, not every model makes it to deployment. More
comprehensive estimates suggest implementing Al in healthcare ranges from $40,000 for simple functionality to
$100,000 or more for complex solutions.

These costs create strong incentives to minimize expenses wherever possible. Collecting diverse, representative
datasets from multiple institutions across geographic regions is expensive and time-consuming. Using readily available
data from single well-resourced institutions dramatically reduces costs and accelerates development timelines (Kelly
et al., 2019). Similarly, comprehensive external validation requires substantial resources. When external validation is
not mandated by regulators, economic rationality suggests minimizing validation costs by testing only on readily
available datasets.

6.2.2. Competitive Pressures and Time-to-Market

Medical Al represents a competitive commercial market where first-mover advantages confer significant benefits.
Companies race to demonstrate impressive performance metrics, secure regulatory approval, and establish market
presence before competitors. These pressures create strong incentives to prioritize speed over comprehensive
validation (Shaw et al.,, 2019).

Collecting diverse data, conducting multi-site validation, and implementing bias mitigation strategies all extend
development timelines. In fast-moving competitive markets, delays measured in months can mean the difference
between market leadership and obsolescence. When regulatory frameworks do not mandate comprehensive diversity
and validation, competitive dynamics systematically favour companies that minimize these time-consuming activities.

6.2.3. Deployment Costs and Implementation Barriers

Beyond development, substantial costs arise during clinical deployment. Continuously running Al models is costly,
creating a financial barrier to widespread use. Healthcare institutions face expenses for software licensing, hardware
infrastructure, system integration, staff training, workflow redesign, and ongoing maintenance.

These deployment costs create particularly acute barriers for under-resourced facilities serving marginalized
populations. Rural hospitals and community centres lack resources to develop these tools, to evaluate them effectively,
or to implement them into their computer systems, making accessibility and equity critical concerns (Reddy et al., 2020).
This resource disparity creates a vicious cycle: Al systems are developed primarily at well-resourced institutions using
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their data, optimized for their contexts, and validated in their settings. Under-resourced facilities serving diverse,
marginalized populations lack both the representation in training data and the resources for effective deployment,
perpetuating the equity paradox.

6.2.4. Misaligned Value Propositions

Current Al business models often misalign with equity goals. Value propositions typically emphasize aggregate
efficiency gains reducing radiologist reading time, accelerating diagnoses, minimizing false positives. These benefits
accrue most reliably in contexts similar to development settings serving similar populations.

When Al systems perform poorly for specific demographic groups or in under-resourced settings, the economic case for
deployment weakens in precisely those contexts. Facilities serving predominantly marginalized populations may find
Al tools less effective, generating fewer benefits while requiring equal or greater implementation costs. This creates
perverse incentives where commercial viability depends on deployment in already well-served contexts rather than
where improved diagnostic access is most needed.

Healthcare reimbursement structures compound these misalignments. When payment models reward volume and
efficiency rather than equity and outcomes, Al tools that improve throughput in privileged settings generate clearer
financial returns than tools addressing disparities. Without reimbursement mechanisms explicitly valuing equity,
economic incentives systematically favour development and deployment patterns that exacerbate rather than reduce
healthcare disparities.

6.3. Organizational and Workflow Integration Challenges

Even when Al diagnostic systems demonstrate adequate performance and receive regulatory approval, organizational
and clinical workflow barriers impede effective deployment—particularly in ways that ensure equitable, generalizable
use.

6.3.1. Clinical Workflow Disruption and Resistance

Integrating Al into clinical workflows requires fundamental changes to established practices. Medical associations have
identified data accessibility and operational infrastructure as significant barriers to Al integration, affecting 74% of
respondents (Shaw et al.,, 2019). Clinicians face additional workload during implementation phases, and in already
overburdened healthcare settings facing clinician burnout, this creates resistance even when Al promises long-term
efficiency gains.

Trust represents a critical barrier. Clinicians must trust Al recommendations to incorporate them into clinical decision-
making. When systems produce unexplained predictions, generate occasional obvious errors, or demonstrate
inconsistent performance, clinician trust erodes (Char et al., 2018). Experiences with biased predictions or poor
generalizability spread through professional networks, creating resistance that affects adoption.

Beyond general trust, two specific human-factor barriers critically impede safe deployment: automation bias and alert
fatigue. Automation bias describes clinicians' tendency to over-rely on Al recommendations, accepting algorithmic
outputs without sufficient scrutiny. This creates risks when models exhibit hidden biases. Simultaneously, alert fatigue
emerges when Al systems generate excessive false positives, causing clinicians to become desensitized and potentially
ignore critical warnings. These psychological dynamics mean that even technically accurate Al can produce negative
clinical outcomes through its interaction with human decision-makers.

6.3.2. Data Infrastructure and Interoperability

Effective Al deployment requires robust data infrastructure that many healthcare facilities lack. Systems must integrate
with electronic health records, imaging archives, laboratory information systems, and clinical workflows—integration
that proves technically complex and expensive.

Data quality, standardization, and accessibility create persistent challenges. Medical associations reported that
accessing health data for training Al algorithms and the complexities in training, testing, and validating Al algorithms
were the most prominent barriers to Al adoption (Shaw et al., 2019). When data exist in incompatible formats or remain
siloed across systems, deploying Al tools requiring integrated multi-modal data becomes prohibitively difficult.
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6.3.3. Organizational Governance and Decision-Making

Healthcare organizations face challenges establishing appropriate governance structures for Al adoption. Decisions
about which Al tools to deploy, how to validate their performance, when to update systems, and how to monitor for bias
require expertise spanning clinical medicine, data science, ethics, and informatics—combinations rarely available in
integrated governance teams.

A 2024 survey of 43 U.S. health systems found Al adoption and perceptions of success varied significantly, with only
19% reporting high degrees of success with Al in imaging and radiology despite most having deployed such systems.
This disconnect suggests governance and implementation challenges beyond technical performance.

6.3.4. Training and Change Management

Successful Al deployment requires comprehensive training for clinical and technical staff training that proves expensive
and time-consuming. The time required for training Al systems and certainly in early stages following implementation
is likely to remain a barrier (Shaw et al., 2019). When clinical schedules already operate at capacity, finding time for
comprehensive Al training without compromising patient care proves extremely difficult.

Change management more broadly communicating benefits, addressing concerns, managing resistance, and building
organizational commitment requires dedicated resources and expertise. Without effective change management, even
technically sound Al implementations can fail due to insufficient user engagement or cultural resistance.

6.4. Performance Monitoring and Accountability Gaps

Even after successful deployment, ensuring Al systems maintain equitable, effective performance requires ongoing
monitoring monitoring that current practices inadequately support.

6.4.1. Lack of Real-World Performance Tracking

Most deployed Al diagnostic systems lack robust infrastructure for continuous performance monitoring in real-world
settings. Al system performance can be influenced by changes in clinical practice, patient demographics, data inputs,
and healthcare infrastructure, with data drift, concept drift, and model drift potentially leading to performance
degradation, bias, or reduced reliability (FDA, 2025). Yet systematic tracking of these dynamics remains rare.

Measuring accuracy continuously requires ongoing access to ground truth labels confirmed diagnoses for patients
receiving Al-based recommendations. Obtaining these labels is resource intensive. For some applications, true
outcomes may not be known for months or years, making timely detection of performance degradation impossible.

6.4.2. Absence of Disaggregated Monitoring

Even when performance monitoring occurs, it rarely includes systematic disaggregation by demographic subgroups or
comparison across deployment contexts. Aggregate performance metrics can mask systematic bias or context-specific
failures. A model maintaining 85% overall accuracy might show 90% accuracy for well-represented groups but only
70% for minorities a critical disparity invisible in aggregate statistics.

Recent research examining healthcare Al systems deployed across multiple institutions found only 23% had undergone
rigorous bias testing before deployment, while fewer than 15% had established clear accountability structures for
addressing errors. When systems produce disparate outcomes, there exist no systematic mechanisms for patients to
seek recourse or for institutions to implement corrections quickly.

6.4.3. Technical Challenges in Drift Detection

Detecting when Al performance degrades requires distinguishing meaningful changes from normal variation.
Distribution shifts creating performance problems may be subtle and gradual. Detecting these changes while avoiding
false alarms requires sophisticated monitoring systems that few healthcare institutions have implemented.

Alternative monitoring approaches using proxy metrics can alert to potential problems without requiring ground truth
labels. However, these methods cannot definitively confirm whether performance has degraded, only that conditions
have changed in ways that might affect performance. Healthcare institutions must then decide whether to adjust,
retrain, or suspend Al systems based on uncertain signals—decisions with significant resource implications and
potential patient safety impacts.
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6.5. Knowledge Gaps and Capacity Limitations

Implementing equitable, generalizable Al diagnostic systems requires expertise spanning multiple domains—clinical
medicine, machine learning, health equity, implementation science, and informatics. This expertise remains scarce,
creating human capital barriers to sustainable Al deployment.

Many healthcare institutions, particularly smaller community hospitals and under-resourced facilities, lack in-house
expertise to independently evaluate Al systems, conduct local validation studies, or customize models for their specific
contexts. They depend on vendor claims and regulatory approvals, unable to critically assess whether systems will work
well for their patient populations and clinical workflows (Reddy et al., 2020).

Even well-resourced institutions face challenges. Trust was found to be a significant catalyst of adoption, impacted by
several barriers, with governance structures identified as key facilitators (Shaw et al,, 2019). Yet establishing effective
governance requires understanding complex technical, ethical, and clinical considerations that exceed expertise
available in many healthcare organizations.

6.6. Structural Analysis: How Barriers Reinforce Problematic Practices

Examining these barriers collectively reveals how current structures systematically reinforce development practices
that perpetuate bias and poor generalizability rather than addressing them. Regulatory frameworks that do not
mandate comprehensive external validation allow systems with limited evidence of equity and generalizability to enter
clinical practice (Wu et al., 2021). Economic incentives that reward speed, narrow accuracy metrics, and deployment in
well-served markets systematically discourage investments in diversity and comprehensive validation (Kelly et al.,
2019). Organizational structures that separate developers from deployment contexts create information asymmetries
and misaligned incentives. Resource disparities between well-funded and under-resourced institutions concentrate
both Al development and successful deployment in privileged settings (Reddy et al., 2020), actively reinforcing the
equity paradox.

These barriers are not isolated problems but interconnected elements of a system that makes problematic development
practices economically rational and practically feasible. Developers face strong incentives to use convenient data
sources, minimize validation costs, and prioritize impressive performance metrics over robust generalizability.
Regulators lack frameworks to effectively require comprehensive diversity and validation. Healthcare institutions lack
resources to conduct independent assessment. Patients lack information and recourse when systems perform poorly.

Addressing these structural barriers requires coordinated changes across regulatory policy, economic incentives,
organizational practices, and knowledge infrastructure. Technical solutions addressing algorithmic bias or poor
generalizability cannot succeed within a system that actively disincentivizes the very practices necessary for equity and
generalizability. The following section examines concrete strategies for restructuring these systems to centre equity
and generalizability as fundamental requirements throughout the Al lifecycle.

Table 3 Structural Root Causes and Their Manifestations

Structural Root Cause Primary Manifestation | Secondary Compounding Effect
Consequences
Unrepresentative  Training | Algorithmic Bias: | Poor Generalizability: | Populations facing healthcare
Data (Geographic | Differential performance | Failure in new contexts | disparities experience both
concentration, demographic | across groups worse individual care AND
homogeneity) systemic tool failure
Narrow Optimization | Development of models | Validation frameworks | Tools appear successful in
Priorities (Focus on | that sacrifice minority | that obscure subgroup | development but fail
aggregate accuracy metrics) | performance for overall | disparities catastrophically for specific
metrics populations in deployment
Inadequate Validation | Regulatory approval | Deployment of systems | Healthcare institutions
Frameworks (Lack of | based on limited | with unknown | conduct uncontrolled
mandatory multi-site, | evidence performance experiments on patients
disaggregated testing) boundaries
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Economic Incentives for | Use of convenient, non- | Avoidance of | Well-resourced settings get

Speed (Time-to-market over | representative datasets | comprehensive functional tools first; under-

robustness) validation = due  to | resourced settings get hand-
cost/time me-down failures

Resource  Disparities in | Development by teams | Tools optimized for

Development (Al expertise | lacking diverse | contexts familiar to
concentrated in privileged | perspectives developers
institutions)

7. Solutions and best practices: reorienting the development pipeline

The preceding analysis establishes that algorithmic bias and poor generalizability are not technical anomalies but
predictable outputs of a flawed development paradigm. Addressing these interconnected challenges requires moving
beyond isolated technical fixes to fundamentally restructure how Al diagnostic systems are conceived, built, validated,
and deployed. This section proposes an Equity-centred Development Lifecycle—a concrete framework that embeds
diversity, equity, and generalizability as non-negotiable core requirements at every stage, from initial planning to post-
market surveillance.

7.1. Proactive Data Diversity: From Convenience to Comprehensiveness

The foundation of equitable Al is representative data. Current reliance on convenience sampling systematically excludes
populations and contexts essential for robust performance. Reorienting toward proactive data diversity requires
mandatory, structured strategies.

7.1.1. Mandating Diverse Data Collection

Diversity must transition from an aspirational goal to a mandatory regulatory and funding prerequisite. This requires
setting explicit, minimum thresholds for demographic (race, ethnicity, gender, age, socioeconomic status), geographic,
and institutional representation in training datasets. Initiatives like STANDING Together are developing consensus-
driven standards for equitable health data, emphasizing that representation alone is insufficient—data must also be
accurate and ethically sourced from minoritized groups (STANDING Together, 2024). Regulatory bodies could require
developers to demonstrate compliance with such standards prior to approval. Economic incentives, such as targeted
grants, must reward comprehensive data collection over sheer volume.

7.1.2. Community-Engaged Data Curation

True representation requires engaging the communities represented in the data. Community-engaged approaches
involve affected populations in defining what data is collected, how it is used, and how benefits are shared. Research
Centres in Minority Institutions (RCMI) are uniquely positioned to lead this work, ensuring Al tools are designed with
input from the communities they aim to serve (AIM-AHEAD, 2024). This participatory model helps capture not just
demographic checkboxes, but the lived experiences, disease presentations, and healthcare contexts of diverse
communities, building trust and legitimacy.

7.1.3. Federated Learning for Privacy-Preserving Diversity

Privacy concerns and data governance are major barriers to sharing patient information. Federated learning (FL) offers
a paradigm-shifting solution by enabling model training across multiple institutions without centralizing raw patient
data (Rieke et al., 2020). In FL, data remains within each hospital's secure infrastructure; only encrypted model updates
are shared. This approach facilitates collaboration across diverse and under-resourced settings while maintaining
compliance with regulations like HIPAA and GDPR. When combined with privacy-enhancing techniques like differential
privacy, FL can build a technical foundation for the inclusive data ecosystems equitable Al requires.

7.2. Equity-centred Development Practices

With diverse data as a foundation, the development process itself must be re-engineered to optimize for fairness and
robustness as primary objectives.
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7.2.1. Fairness-Aware Optimization

Standard optimization minimizes average error, which can mask poor performance for minority groups. Equity-
cantered development employs fairness-aware optimization techniques that treat worst-case subgroup performance as
the key metric. This includes distributionally robust optimization, adversarial debiasing to remove demographic
information from latent representations, and fairness constraints integrated directly into loss functions (Barocas et al,,
2019). The goal is to build models for which high performance is a guarantee for all, not an average skewed by privilege.

7.2.2. Involving Diverse Development Teams

The underrepresentation of women and people of colour in Al research means the perspectives needed to identify
equity concerns are often absent from the design process (Buolamwini & Gebru, 2018). Building diverse teams is not
merely a matter of justice but of technical necessity. This requires intentional recruitment, support for researchers at
minority-serving institutions, inclusive mentorship pipelines, and governance structures that ensure diverse voices
have decision-making authority. Initiatives like AIM-AHEAD explicitly link workforce diversity to the development of
equitable Al (AIM-AHEAD, 2024).

7.2.3. Human-centred Design and Continuous Stakeholder Engagement

Al systems are socio-technical interventions whose success depends on seamless integration into human workflows
and decision-making. Human-cantered design logic must involve clinicians, patients, and healthcare administrators
throughout the development lifecycle—from defining requirements to evaluating prototypes (Sendak et al., 2020). This
engagement is critical for mitigating automation bias (over-reliance on Al) and alert fatigue. Interfaces should be
designed to support, not replace, clinical reasoning by displaying confidence scores, forcing consideration of Al outputs,
and highlighting potential demographic mismatches where model performance may be weaker.

7.3. Comprehensive External Validation Requirements
Robust validation is the bridge between laboratory performance and real-world utility. Current practices are
inadequate. Comprehensive, mandatory external validation must become the gatekeeper for clinical deployment.

7.3.1. Multi-Site, Multi-Population Validation Protocols

Regulatory approval should require demonstrable performance across a spectrum of independent sites that reflect real-
world diversity: different institution types (academic, community, rural, safety-net), geographic regions, equipment,
and patient demographics. Validation must move beyond single-site "internal” tests to prove external generalizability.
Protocols should be standardized to allow for meaningful comparison across studies and systems.

7.3.2. Transparency and Disaggregated Reporting

Transparency is non-negotiable. The publication of "model facts" or "algorithmic impact assessments" should be
required, detailing training data demographics, known limitations, and—critically—disaggregated performance
metrics across race, ethnicity, sex, age, and socioeconomic status (Sendak et al., 2020). Aggregate metrics like overall
AUC must be supplemented with subgroup-specific sensitivity, specificity, and PPV. This transparency enables
regulators, healthcare systems, and the public to assess fairness and fitness-for-purpose.

7.3.3. Collaborative Validation Networks

Establishing independent, collaborative validation networks—consortia of diverse healthcare institutions—would
provide trusted infrastructure for pre-deployment testing. These networks, funded through public-private
partnerships, would use standardized protocols to evaluate Al systems on local data, generating essential evidence of
generalizability while protecting patient privacy through federated approaches.

7.4. Regulatory Reform for Equity and Generalizability

Regulatory bodies hold the most direct leverage to enforce higher standards. Reform must make equity and
generalizability central pillars of the approval process.

7.4.1. Mandating Diversity and External Validation

The FDA and other regulators must evolve guidance into requirement. This includes mandating minimum diversity
thresholds in training data, compulsory multi-site external validation with disaggregated results, and post-market
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surveillance plans that track real-world performance across subgroups (FDA, 2025; Wu et al.,, 2021). Approval should
be conditional on meeting predefined equity benchmarks, not just technical accuracy.

7.4.2. Adaptive Regulation for Continuously Learning Systems

For Al systems that learn after deployment, the Predetermined Change Control Plan (PCCP) framework must explicitly
guard against equity degradation. It must require ongoing, disaggregated performance monitoring as part of the
"predetermined” plan, with clear triggers for mandatory reassessment if performance gaps emerge. Regulations must
ensure continuous learning improves systems equitably for all patients (FDA, 2025).

7.4.3. International Harmonization and Global Equity

With global Al deployment, regulatory harmonization is essential to prevent "equity dumping”"—the deployment of
systems failing fairness standards in high-income countries into lower-regulation markets. International collaboration
on core standards for data diversity, validation, and monitoring can help ensure Al benefits are global, not just Western
(European Commission, 2024).

7.5. Economic Restructuring and Aligned Incentives

Sustainable change requires altering the economic calculus to make equity the rational choice for developers and
healthcare systems.

7.5.1. Funding Models Prioritizing Equity

Public research funding (e.g., from NIH, NSF) must prioritize projects that demonstrate proactive commitments to data
diversity, community engagement, and multi-site validation. Grant applications should be evaluated on their equity
plans as rigorously as their technical innovation. Dedicated funding streams should support data collection from
underrepresented settings and capacity building at under-resourced institutions.

7.5.2. Reimbursement Tied to Equity Outcomes

Payment structures must reward equitable outcomes. Centres for Medicare & Medicaid Services (CMS) and private
insurers could develop value-based purchasing models that offer higher reimbursement for Al tools demonstrating
proven, equitable performance across populations, or that are successfully deployed in underserved areas. Conversely,
reimbursement could be penalized for tools deployed without adequate validation evidence.

7.5.3. Shared Development Models Reducing Barriers

High development costs incentivize corner cutting. Public-good Al models, developed through open-source consortia or
public-private partnerships and validated across diverse sites, could reduce costs and democratize access. Frameworks
like the Personal Health Train demonstrate how federated infrastructure can enable collaborative development while
preserving data sovereignty (Personal Health Train, 2023).

7.6. Organizational Best Practices for Deployment

Healthcare institutions are the final gatekeepers. They must develop the capacity to critically evaluate and responsibly
deploy Al

7.6.1. Local Validation and Customization

Even broadly validated systems require local assessment. Before full deployment, institutions should conduct internal
validation studies to confirm performance on their specific patient population and clinical workflows. This requires
investment in local data science and clinical informatics expertise—a capacity that must be built, particularly at
community and safety-net hospitals.

7.6.2. Disaggregated Performance Monitoring

Post-deployment, institutions must implement continuous monitoring of Al performance, disaggregated by key
demographic groups. This system should track not just algorithmic metrics (sensitivity, specificity) but also clinical
outcomes, ensuring the tool is improving care equitably. Mechanisms for clinicians and patients to report suspected
errors or biases are essential.
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7.6.3. Governance Structures and Accountability

Effective governance requires multidisciplinary committees—including clinicians, data scientists, ethicists, and patient
advocates to oversee Al procurement, deployment, and monitoring. These committees must establish clear policies on
appropriate use, human oversight, and procedures for addressing adverse events or performance disparities.
Accountability must be clear when systems fail.

7.7. Workforce Development and Capacity Building

The equitable Al ecosystem requires a workforce with new, hybrid skills.

7.7.1. Training for Clinicians and Healthcare Leaders

Clinicians need education on Al fundamentals, how to interpret Al outputs critically, and how to recognize potential
bias. This training should be integrated into medical school curricula and continuing education. Healthcare leaders need
training on procuring, governing, and monitoring Al systems, with a focus on equity implications.

7.7.2. Developing Al Expertise in Under-Resourced Settings

Bridging the digital divide requires dedicated programs to build Al evaluation and implementation capacity at
community hospitals, rural facilities, and safety-net institutions. This could involve partnerships with academic centres,
specialized training fellowships, and funding for embedded data science roles.

7.7.3. Building Diverse Al Research Pipelines

Long-term solutions require diversifying the Al research pipeline itself. This means sustained investment in STEM
education at minority-serving institutions, creation of mentorship and career pathways for underrepresented scholars
in Al-for-health, and recognition of equity-cantered research in academic promotion.

7.8. Emerging Technologies and Innovative Approaches

Technical innovation, when guided by equity principles, can provide powerful new tools.

7.8.1. Differential Privacy and Advanced Cryptographic Methods

Beyond federated learning, techniques like differential privacy (adding statistical noise to data or outputs) and
homomorphic encryption (computation on encrypted data) can provide stronger privacy guarantees, enabling broader
and more secure participation in collaborative data ecosystems (Kairouz et al., 2021).

7.8.2. Synthetic Data Generation for Augmentation

Generative Al can create synthetic medical data representing underrepresented populations, helping to balance training
sets. However, synthetic data carries the risk of perpetuating biases in the source data and must be used cautiously as
an augmentation to, not a replacement for, real-world data collection.

7.8.3. Explainable Al for Bias Detection and Trust

Explainable Al (XAI) methods that reveal the features influencing a model's decision are vital for debugging bias,
building clinician trust, and providing recourse to patients. Research should focus on XAI techniques specifically
designed to uncover discriminatory reasoning patterns.

7.9. Integrated Framework: The Equity-centred Development Lifecycle

The solutions above are not a menu of options but interconnected components of an integrated framework. The Equity-
centred Development Lifecycle envisions a continuous process where equity is assessed and enforced at every phase:
7.9.1. Planning Phase

Engagement with diverse stakeholders and affected communities
Equity impact assessment before development begins
Explicit equity goals alongside technical objectives

[ ]
[ ]
[ ]
e Resource allocation for comprehensive diversity and validation
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7.9.2. Data Phase

e Proactive collection from diverse sources

e Community-engaged data curation

e Federated approaches for privacy-preserving diversity

e Transparent documentation of data composition and limitations

7.9.3. Development Phase

e Diverse, multidisciplinary development teams

e Fairness-aware optimization strategies

e Continuous disaggregated performance monitoring
e Iterative engagement with clinical end-users

7.9.4. Validation Phase

o Comprehensive multi-site external validation

e Disaggregated reporting across demographics and contexts
e Intersectional performance assessment

e Transparent documentation of validation results

7.9.5. Regulatory Phase

e Evidence-based requirements for diversity and external validation
e Disaggregated performance reporting to regulators

e Conditional approval based on equity benchmarks

e Ongoing post-market surveillance requirements

7.9.6. Deployment Phase

Local institutional validation

Gradual rollout with continuous monitoring
Human oversight and clear governance
Patient and clinician transparency

7.9.7. Monitoring Phase

Disaggregated real-world performance tracking
Early detection of degradation or bias
Mechanisms for user feedback and reporting
Regular equity audits and reassessment
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Unlike the linear pipeline in Figure 1, this equity-centered lifecycle is circular and terative, with continuous feedback loops
connécting all stages. Equity is not an add-on or checkpaint but the central organizing principle embedded at every stage.
Each stage feeds back Into others: monitoring Informs data curation, validation results shape development practices, and
deployment experiences guide planning. This approach transforms equity from an aspirational goal into & fundamental
requirement that shapes every decision throughout the Al lifecycle.

Figure 5 The Equity-Centered Al Development Lifecycle

This framework provides a concrete blueprint for the paradigm shift from accuracy-focused to equity-cantered Al
development.

7.10. An Implementation Roadmap: From Theory to Practice

Translating this comprehensive framework into reality requires a phased, pragmatic strategy with clear accountability.

e Phase 1: Foundation (1-2 Years): Regulators mandate disaggregated performance reporting. Funders create
grants for diverse data collection. Leading journals require fairness statements and external validation code.
Hospitals establish Al governance committees.

e Phase 2: Integration (3-5 Years): Mandatory multi-site external validation becomes a clearance requirement.
Reimbursement models begin to incorporate equity bonuses/penalties. Collaborative validation networks
become operational. Al equity training enters standard medical curricula.

¢ Phase 3: Entrenchment (5+ Years): The equity-cantered lifecycle is the industry standard. Federated learning
and privacy-preserving techniques are widespread. International regulatory harmonization on core equity
standards is achieved. Al tools developed as public goods are widely accessible.
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Table 4 Comparison of Current vs. Proposed Equity-centred Practices

Development | Current Practice Proposed Equity-centred Practice Expected Impact

Stage

Data Collection | Convenience sampling | Proactive diverse collection; minimum | Training data reflects
from available academic | demographic thresholds; federated | real-world patient
centres learning diversity

Model Minimize aggregate error | Fairness-aware optimization; worst-case | Models perform reliably

Optimization (accuracy, AUC) subgroup performance as primary | across all patient groups

metric

Validation Single-site internal | Mandatory multi-site external validation; | Pre-identification of bias
validation; aggregate | disaggregated reporting by | and generalizability
metrics demographics issues

Regulatory Approval based on | Approval contingent on equity evidence; | Only equitable systems

Review technical accuracy; | robust post-market surveillance with | reach patients;
limited post-market | disaggregated monitoring continuous safety
requirements monitoring

Deployment "One-size-fits-all" Local validation required; clinician | Tools fit local contexts;
deployment; vendor | training on limitations; clear governance | clinicians use Al
claims as primary | structures appropriately
evidence

Economic Reward speed-to-market | Funding/reimbursement tied to equity | Economic incentives

Models and impressive lab | outcomes; public-good development | aligned with equitable
metrics models health outcomes

This roadmap provides stakeholders with a clear path forward, demonstrating that the proposed transformation is
ambitious but achievable.

8. Conclusion

This thesis has examined the fundamental paradox of medical artificial intelligence: diagnostic systems that achieve
exceptional performance in controlled laboratory settings consistently fail to translate into equitable, robust clinical
tools. Through systematic analysis of algorithmic bias, poor generalizability, their intersection, and the structural
barriers that sustain them, this research establishes that these translation failures are not isolated technical problems
requiring incremental fixes, but predictable outcomes of a development paradigm misaligned with the realities of
diverse healthcare ecosystems. The path forward requires nothing less than a fundamental reorientation—from
accuracy-centric to equity-cantered Al development.

8.1. Synthesis of Key Findings

The evidence presented reveals a consistent and troubling pattern. Al diagnostic systems trained on geographically
concentrated and demographically homogeneous datasets systematically underperform for marginalized populations.
Dermatology algorithms show markedly worse accuracy on darker skin tones (Daneshjou et al.,, 2022), radiology models
underdiagnose conditions in female, Black, and low-socioeconomic-status patients (Seyyed-Kalantari et al., 2021), and
risk prediction tools assign lower risk scores to Black patients with equivalent health needs, restricting their access to
care (Obermeyer et al, 2019). These are not aberrations but the predictable result of optimizing for narrow
performance on data that reflects and amplifies existing healthcare disparities.

Simultaneously, these systems demonstrate a critical inability to maintain performance across institutions and contexts.
Models achieving over 94% accuracy within development hospitals see performance drop by 8 percentage points when
deployed elsewhere (Wong et al., 2021). The geographic concentration of training data—with 71% of U.S. diagnostic Al
studies using data exclusively from California, Massachusetts, or New York—produces systems optimized for privileged
contexts while failing in the diverse settings where they are most needed (Larson et al,, 2018).
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Critically, this research demonstrates that bias and poor generalizability are not separate challenges but interconnected
manifestations of the same root cause: development practices that prioritize aggregate accuracy on convenient datasets
over robust performance for all. Their compounding creates the equity paradox: Al diagnostic tools work best for
populations with the least need and worst for those who could benefit most from improved diagnostic access. This
paradox is sustained by regulatory frameworks that lack mandatory diversity and validation requirements (Wu et al,,
2021), economic incentives that reward speed over equity (Kelly et al., 2019), and resource disparities that concentrate
both Al development and successful deployment in already well-served settings (Reddy et al., 2020).

8.2. Theoretical Contributions

This thesis makes several distinct contributions to the scholarship on responsible Al in healthcare:

8.2.1. Structural Analysis of Development Practices

While existing literature extensively documents instances of bias or proposes technical mitigations, this work centres a
structural analysis, demonstrating how fundamental choices in data sourcing, optimization priorities, and validation
practices systematically produce inequitable systems. It argues that bias and poor generalizability are features, not
bugs, of the current paradigm.

8.2.2. The Interconnection of Bias and Generalizability

The thesis establishes that these are not separate problems requiring distinct solutions but interconnected outcomes of
unrepresentative data. It details the compounding mechanisms through which each problem worsens the other,
creating particularly severe equity gaps for intersectionally marginalized populations.

8.2.3. The Equity Paradox Framework

The concept of the equity paradox provides a powerful lens for understanding how technological advancement can
inadvertently amplify healthcare disparities. It captures the perverse outcome where Al's benefits accrue to the already
well-served, transforming a tool of potential democratization into one of further marginalization.

8.2.4. The Equity-Centred Development Lifecycle

Moving beyond critique, the thesis articulates a comprehensive, integrated framework for restructuring Al
development. This lifecycle model embeds proactive diversity, fairness-aware optimization, mandatory multi-site
validation, and continuous monitoring as non-negotiable requirements at every phase, from planning to post-market
surveillance.

8.3. Practical Implications and a Call to Action

The findings demand urgent and coordinated action from all stakeholders in the Al healthcare ecosystem. The technical
capacity to build equitable Al exists; what is lacking is the collective will to mandate it.

8.3.1. For Researchers and Developers

The pursuit of impressive accuracy on narrow benchmarks must be recognized as an academic and ethical dead-end.
Research must prioritize the collection of diverse, community-engaged datasets, adopt fairness-aware optimization as
standard practice, and demand rigorous external validation as a prerequisite for publication. Building on
unrepresentative data is no longer scientifically defensible.

8.3.2. For Regulatory Bodies (FDA, EMA, etc.)

Guidance must evolve into requirement. Regulatory approval must be conditional on demonstrated compliance with
minimum data diversity standards, evidence from comprehensive multi-site external validation, and robust plans for
post-market surveillance with disaggregated performance tracking (FDA, 2025; Wu et al., 2021). The predicate-based
510(k) pathway is inadequate for adaptive Al; new, equity-centred frameworks are needed.

8.3.3. For Healthcare Institutions and Clinicians

FDA clearance cannot be equated with clinical readiness for your specific population. Institutions must build
governance capacity, conduct local validation studies, and demand transparent, disaggregated performance data from
vendors. Clinicians must be trained as informed, critical users of Al, aware of its potential biases and their role as the
final arbiters of patient care.
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8.3.4. For Policymakers and Funders

Public investment must be strategically aligned to dismantle the equity paradox. Funding agencies should prioritize
grants that demonstrate commitments to data diversity and community partnership. Policymakers should explore
reimbursement models that reward equitable outcomes and invest in infrastructure (like federated learning networks)
that lower barriers for under-resourced institutions to participate in and benefit from Al.

Limitations and Future Research

This analysis, while comprehensive, points toward necessary future work. The focus has been primarily on diagnostic
Al within U.S. and European contexts; research must expand to examine therapeutic Al, clinical decision support, and
the unique challenges of deployment in low- and middle-income countries. The proposed Equity-centred Lifecycle
requires empirical validation through longitudinal implementation studies. Furthermore, the rapid emergence of large-
scale foundation models and generative Al presents a critical new frontier. These models, trained on internet-scale data
that embeds societal biases, risk scaling the structural inequities described here to unprecedented levels. Future
research must proactively develop frameworks for auditing, validating, and governing these powerful tools to ensure
they advance, rather than undermine, global health equity.

8.4. Final Reflection: From Promise to Practice

The journey from laboratory bench to patient bedside is one of validation, trust, and demonstrated value for all. For Al
diagnostics, this journey remains incomplete. The translation gap is not a minor technical hurdle, but the direct output
of a system optimized for the wrong metrics a system that produces the equity paradox.

The choice before us is stark. We can continue current practices, producing ever-more sophisticated tools that work
best for the healthiest and wealthiest, thereby encoding present-day inequities into the healthcare infrastructure of the
future or, we can undertake the deliberate, coordinated work of structural reorientation.

This thesis has charted the course for that reorientation: the Equity-centred Development Lifecycle. It is a blueprint for
building Al that earns the trust of every community, functions reliably in every clinic, and truly democratizes diagnostic
excellence. The promise of Al in medicine is real, but it is a conditional promise. It will be realized not through algorithms
alone, but through our collective commitment to build those algorithms justly. The future of Al in healthcare—whether
it amplifies or reduces inequity—is not predetermined. It is a choice. We must choose equity.
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Appendices
APPENDIX A: Proposed Multi-Site External Validation Protocol Template

Purpose

This template operationalizes the comprehensive validation requirements proposed in Section 7.3. It provides a
concrete example of the standardized protocol that regulatory bodies (e.g., FDA) could mandate or that collaborative
validation networks could adopt to rigorously assess algorithmic bias and generalizability prior to clinical deployment.

Study Objective

To evaluate the diagnostic performance and fairness of [Al System Name/Version] across diverse clinical sites, patient
populations, and imaging equipment, assessing its generalizability and identifying any performance disparities across
predefined demographic subgroups.

Participating Site Requirements

A minimum of five (5) independent clinical sites must be included, encompassing the following diversity:
o Institutional Types: At least one (1) academic medical centre, one (1) community hospital, and one (1)
safety-net or rural hospital.
o Geographic Distribution: Sites must represent at least three (3) distinct U.S. Census regions or two (2)
different countries if seeking international validation.
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o Equipment Variance: Data must be acquired from at least two (2) different manufacturer models of the
primary imaging modality (e.g., Siemens vs. GE CT scanners).

Dataset Composition & Minimum Sample Sizes

The validation dataset must be prospectively assembled or sourced from retrospectively collected, site-specific data not
used in model training.
o Overall Minimum: N = [To be determined by intended use and statistical power calculation, e.g., 1000
independent cases].
o Disaggregated Minimums: Each major demographic subgroup must be represented with sufficient
power for statistical analysis. Minimum per site:
= Race/Ethnicity: n2100 per self-reported category (e.g., Asian, Black, White, Hispanic).
= Sex: n=200 for male and female categories.
= Age:n=100 for age brackets (e.g., 18-40, 41-65, 65+).
. Intersectional Consideration: The study must report on feasibility of assessing intersectional categories (e.g.,
Black females 65+) and note if sample sizes are insufficient.

Primary & Secondary Outcomes

e Primary Outcomes: Overall sensitivity, specificity, and AUC of the Al system across the entire pooled
validation set.

e Secondary (Equity) Outcomes: Disaggregated performance metrics (sensitivity, specificity, PPV, NPV) for all
demographic categories listed in Section 3.0. The primary fairness metric is the maximum performance gap
(the largest absolute difference in sensitivity or specificity between any two demographic subgroups).

Statistical Analysis Plan

e Performance metrics will be reported with 95% confidence intervals.

e Generalizability will be assessed by comparing performance (AUC) across sites using a mixed-effects model,
with site as a random effect.

e Algorithmic bias will be assessed by testing for significant differences (p<0.05, adjusted for multiple
comparisons) in secondary outcomes across subgroups within and across sites.

e A sample size justification based on the precision of estimating the maximum performance gap must be
provided.

Reporting Requirements

Results must be reported in accordance with a modified TRIPOD+AI statement and must include:

A site-performance matrix showing outcomes per participating institution.

A disaggregated performance table for all demographic subgroups.

An analysis of failure modes, including case reviews of false negatives/positives stratified by subgroup.

A clear statement of clinical contexts and populations for which performance was and was not validated.

APPENDIX B: Model Fact Sheet (Algorithmic Impact Assessment) Template

Purpose

This Model Fact Sheet template exemplifies the transparency documentation proposed in Section 7.3.2. It serves as an
illustrative "nutrition label" for Al diagnostic models—a framework to be completed by developers and required for
regulatory submission and hospital procurement. The example values demonstrate the type and granularity of
information needed to assess fairness and generalizability risks.

Al Diagnostic Model Fact Sheet
Version: 1.0 | For Model: [Model Name & Version]

e Section 1: Intended Use & Scope

o Intended Use: [e.g, Triage of pneumothorax on chest X-rays]
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o Target Population: [e.g., Adult patients (18+) presenting to emergency departments in the United
States]

o Clinical Context: [e.g.,, Use as a second reader for board-certified radiologists]

o Explicitly Out-of-Scope: [e.g, Paediatric patients, portable X-rays, use as a fully autonomous
diagnostic tool]

e Section 2: Training Data Provenance

Table B1. Example of Required Training Data Transparency Documentation

[llustrative example populated with synthetic data to demonstrate the required level of transparency.

Demographic Factor Composition % Source(s) & Notes
Race/Ethnicity e.g, White: 75%, Black: 12%, Asian: 8%, | Derived from Site A (2015-2020), Site B
Other/Unknown: 5% (2018-2021). Labels based on EHR self-
report.
Sex Assigned at Birth Female: 45%, Male: 55% --
Age Mean: 58 * 16 years --

Geographic Origin e.g., Data from 3 hospitals in Massachusetts

and 1 in California.

Clinical Setting e.g, 100% from inpatient academic medical

centres.

Data Source & Curation Total N: 50,000 images. Curation Note:

Images with technically poor quality were
excluded by a radiologist.

e Section 3: Known Performance Characteristics & Gaps

Overall Performance (Internal Test Set): Sensitivity: 88% (CI: 85-90%), Specificity: 94% (CI: 92-95%).
Disaggregated Performance (Internal): See Table B1. [*Example: Sensitivity for Black patients was 82%
(CI: 75-88%) vs. 90% (CI: 87-92%) for White patients. *]

External Validation Status: (1 Not Performed [J Performed on 1 external site [ Performed per Appendix
A protocol.

If performed, attach summary report.

Known Performance Gaps: [e.g., "Performance degraded on data from Hospital Z using Brand Y X-ray
machines. Sensitivity for patients over 80 was lower in internal testing."]

e Section 4: Bias Mitigation & Fairness Measures

o

o

During Training: [e.g., "Class-balanced sampling was used. Adversarial debiasing was attempted to reduce
correlation with race."]

During Validation: [e.g., "Disaggregated testing was conducted. The model was evaluated against
equalized odds difference, which was <0.05."]

Post-Deployment: [e.g., "The PCCP includes monthly monitoring of sensitivity by race/ethnicity."]

e Section 5: Recommended Monitoring & Governance

@)
@)
@)

Key Equity Metrics to Monitor in Production: Sensitivity by race, age, and sex; site-specific AUC.
Recommended Audit Frequency: Quarterly disaggregated review.

Recommended Clinical Governance: This model should not be used as the sole diagnostic criterion.
Clinicians should be made aware of the potential for reduced sensitivity in elderly and Black patient
populations.
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APPENDIX C: Semi-Structured Interview Guide for Stakeholder Analysis

Purpose

This guide outlines the methodological approach for the qualitative research component proposed in Sections 7.2.3 and
7.6.3. It is designed to elicit in-depth insights from key stakeholders (developers, regulators, clinicians) about the
perceived barriers and facilitators to implementing an equity-centred lifecycle, grounding the theoretical framework in
practical realities.

Study Aim

To understand stakeholder perspectives on the operational, economic, and ethical challenges of developing, validating,
and deploying equitable and generalizable Al diagnostic systems.

Participant Groups

o Al Developers/Researchers (n=10-15): From industry and academia.

o Regulatory Affairs Professionals (n=5-10): From FDA and notified bodies.

o Clinician End-Users & Healthcare Executives (n=10-15): Radiologists, cardiologists, and hospital
CIOs/CMOs.

Informed Consent & Introduction

o Explain study purpose, confidentiality, recording procedures.
o Opening Question: "Can you describe your role and experience with Al diagnostic tools in healthcare?”

Interview Domains and Questions
e Domain 1 Perceptions of the Problem

o Howsignificant do you believe the problems of algorithmic bias and poor generalizability are in today's
Al diagnostics?

o Whatdo you see as the primary root causes of these issues? (Probe: data, incentives, regulation, speed-
to-market).

e Domain 2: Barriers to Equitable Development

o From your perspective, what are the biggest practical barriers to collecting more diverse and
representative training data?

o What are the main disincentives (economic, competitive, regulatory) for conducting comprehensive
multi-site external validation?

o How do current product development timelines and funding models help or hinder a focus on fairness
and robustness?

e Domain 3: Feasibility of Proposed Solutions

o | will describe a few proposed interventions (e.g., mandatory validation templates—Appendix A,
required model fact sheets Appendix B). What is your reaction to their feasibility and potential
effectiveness?

o What would be the single most impactful change a regulator (like the FDA) could make to improve
equity in Al diagnostics?

o What would a hospital need, in terms of resources and expertise, to properly validate and monitor an
Al tool for equitable performance locally?

e Domain 4: Responsibility & Governance

o Who do you believe should hold primary responsibility for ensuring an Al diagnostic tool performs
fairly across all patient groups?
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o What does effective institutional governance of Al look like in a clinical setting?

Closing Question

e Isthere anything we haven’t discussed that you feel is critical for achieving equitable Al diagnostics?
e Do you have any recommendations for this research project?

Proposed Analysis Plan
Interviews will be transcribed, de-identified, and analyzed using thematic analysis to identify convergent and divergent

themes across stakeholder groups, which will directly inform the refinement of the proposed Equity-Centred Lifecycle
framework.
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