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Abstract 

Artificial intelligence (AI) diagnostic systems demonstrate exceptional performance in controlled laboratory settings 
yet consistently fail to translate into equitable and reliable clinical tools. This thesis identifies and analyzes the structural 
roots of this translation gap, arguing that the pervasive challenges of algorithmic bias and poor generalizability are not 
isolated technical failures but predictable outcomes of a development paradigm that prioritizes narrow accuracy 
metrics over robust, equitable performance. 

Through a systematic analysis of evidence across medical specialties, this research demonstrates how models trained 
on geographically concentrated and demographically homogeneous data systematically underperform for marginalized 
populations and fail when deployed in new contexts. The compounding of bias (differential performance across groups) 
and poor generalizability (performance degradation across settings) creates an "equity paradox" wherein AI tools 
perform best for populations with the least need and worst for those who could benefit most from improved diagnostic 
access. 

This thesis reveals how current regulatory frameworks, economic incentives, and organizational structures actively 
reinforce these problematic practices. It moves beyond technical mitigation strategies to propose a fundamental 
reorientation of the AI development lifecycle that centres equity and generalizability as non-negotiable requirements. 
The proposed framework includes proactive data diversity, mandatory multi-site and intersectional validation, fairness-
aware optimization, and robust governance structures. 

The findings necessitate a paradigm shift from accuracy-focused to equity-centred AI development, with implications 
for researchers, regulators, healthcare institutions, and policymakers. Ultimately, this thesis contends that the technical 
capacity for building equitable AI diagnostics exists; what is required is the collective commitment to treat equity not 
as an aspirational goal but as a fundamental criterion for clinical deployment. 

Keywords: Medical Artificial Intelligence; Algorithmic Bias; Generalizability; Health Equity; FDA Regulation; Machine 
Learning; Diagnostic Systems; Clinical Translation; Healthcare Disparities; Responsible AI 

1. Introduction

1.1. The Promise of AI in Medical Diagnostics 

The integration of artificial intelligence into medical diagnostics represents one of the most promising advances in 
modern healthcare, poised to redefine the standards of accuracy, efficiency, and accessibility in medicine. Deep learning 
algorithms now demonstrate exceptional, and at times superhuman, performance in detecting diseases from medical 
images, analyzing pathology slides, and identifying subtle patterns in complex clinical data (LeCun et al., 2015; Topol, 
2019). This rapid progress is not merely theoretical; it is being rapidly codified into clinical practice. By mid-2024, the 
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U.S. Food and Drug Administration (FDA) had cleared nearly 950 AI-enabled medical devices, with approximately 100 
new approvals annually, predominantly in high-stakes fields like radiology, cardiology, and neurology (FDA, 2024). The 
market trajectory reflects this optimism, with valuations projecting explosive growth from $13.7 billion in 2024 to over 
$255 billion by 2033. This rapid proliferation signals a pivotal shift, suggesting that AI diagnostics has transitioned from 
an experimental technology to an emerging clinical reality. 

1.2. The Paradox: Laboratory Success vs. Clinical Failure 

Yet, this compelling narrative of technological triumph obscures a fundamental and deeply troubling paradox: despite 
exceptional performance in controlled laboratory settings, AI diagnostic systems consistently struggle to translate into 
equitable, robust, and widespread clinical use (Kelly et al., 2019). Models that achieve near-perfect accuracy on curated 
test sets frequently fail when deployed in different hospitals, with different patient populations, or across different 
geographic regions (Zech et al., 2018). This performance degradation is not random; it follows predictable and 
systematic patterns. 

More troubling than simple performance drop is the emergence of pervasive algorithmic bias. Evidence increasingly 
demonstrates that these systems perform systematically worse for marginalized populations—the very groups who 
could benefit most from improved diagnostic access (Seyyed-Kalantari et al., 2021). For instance, a dermatology AI 
system may excel at detecting skin cancer in fair-skinned individuals while demonstrating 10-15% lower accuracy for 
patients with darker skin tones (Daneshjou et al., 2022). Similarly, cardiovascular risk prediction algorithms trained 
predominantly on male patients may systematically underestimate risk for women, who often present with different 
symptoms (Larrazabal et al., 2020). A landmark study of a widely used commercial algorithm revealed it assigned lower 
risk scores to Black patients than to White patients with the same level of illness, thereby restricting access to care 
management programs for Black patients (Obermeyer et al., 2019). This is not a collection of isolated incidents but a 
recurring pattern across medical specialties. 

1.3. The Core Argument: A Structural Problem 

This thesis argues that the translation gap between AI diagnostic systems' laboratory performance and their clinical 
utility is not merely a technical challenge but a structural consequence of development practices that prioritize narrow 
accuracy metrics over generalizability and equity (Wiens et al., 2019; Rajkomar et al., 2018). The failures of bias and 
poor generalizability are not bugs in the current system; they are predictable features of a development paradigm that 
is fundamentally misaligned with the realities of diverse healthcare ecosystems. 

This structural challenge manifests through three interconnected problems 

1.3.1. Algorithmic Bias 

AI diagnostic systems trained on homogeneous datasets systematically underperform for underrepresented 
demographic groups (Obermeyer et al., 2019). This bias is predictable—an inevitable outcome of training data that 
reflects and amplifies existing healthcare disparities and access inequities (Gianfrancesco et al., 2018). When a 
staggering 71% of AI diagnostic algorithms for U.S. healthcare are trained on data from just three states—California, 
Massachusetts, and New York the resulting systems encode geographic and demographic privilege directly into their 
algorithmic infrastructure (Larson et al., 2018). 

1.3.2. Poor Generalizability 

Current AI systems demonstrate a critical inability to maintain performance across different institutions, populations, 
and clinical settings (Oakden-Rayner et al., 2020). Models optimized for single-site performance often fail when applied 
elsewhere, even within the same country. External validation studies consistently reveal dramatic performance 
degradation when algorithms encounter data characteristics not represented in their training sets, such as different 
medical equipment, varied clinical protocols, or distinct population demographics (Zech et al., 2018). 

1.3.3. Inadequate Validation Frameworks 

Existing regulatory and clinical validation processes focus primarily on demonstrating technical accuracy in controlled 
settings rather than ensuring robust performance across diverse real-world contexts (Wu et al., 2021). FDA approval 
processes, while evolving, often lack mandatory requirements for comprehensive multi-site testing or disaggregated 
performance reporting across demographic subgroups. This allows systems with limited evidence of equitable 
performance to enter clinical practice, conducting what amounts to an uncontrolled experiment on patient populations 
(Chen et al., 2021). 
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1.4. Significance and Implications for Health Equity 

The implications of this translation gap extend far beyond technical inefficiency or wasted research investment. When 
AI diagnostic systems fail to generalize or perform inequitably, they risk creating a two-tier healthcare system where 
algorithmic tools enhance care for privileged populations while remaining unavailable—or worse, actively harmful—
for marginalized communities (Vyas et al., 2020). This represents an algorithmic amplification of existing health 
inequities, encoded into infrastructure that will shape clinical practice for decades to come. 

Moreover, the current trajectory threatens to irrevocably undermine trust in medical AI broadly. Clinicians who 
encounter systems performing poorly in their specific contexts, or who observe disparate outcomes across patient 
populations, may justifiably resist AI adoption even when specific tools could provide genuine benefit (Char et al., 2018; 
Kelly et al., 2019). Building sustainable, trusted AI diagnostic infrastructure therefore requires addressing these 
structural issues proactively, rather than reactively correcting individual failures after harm has occurred. 

The implications of this translation gap extend beyond national borders to create global health inequities. When AI 
systems developed in high-income countries using Western data are deployed in low- and middle-income countries 
(LMICs) without validation or adaptation, they risk perpetuating a form of digital neocolonialism where technological 
infrastructure developed for wealthy populations is imposed on resource-constrained settings regardless of suitability. 
This dynamic threatens to widen, rather than bridge, global health disparities by creating AI tools that work optimally 
only in the contexts where they were developed, while failing precisely in the settings that could benefit most from 
improved diagnostic capacity. 

1.5. Research Approach and Thesis Structure 

This thesis examines these challenges through a critical analysis of existing literature, regulatory frameworks, and 
deployment case studies. It places particular emphasis on understanding root causes rather than merely documenting 
symptoms. The analysis proceeds systematically 

• Section 2: Background and Literature Review provide the essential foundation, reviewing the evolution of 
medical AI and existing scholarship on bias, generalizability, and clinical translation, while identifying critical 
gaps in current research. 

• Section 3: Understanding Algorithmic Bias in Diagnostic AI analyzes how bias manifests across medical 
specialties, traces its root causes to data collection and curation practices, and examines its real-world 
consequences for healthcare equity. 

• Section 4: The Generalizability Crisis investigates why AI diagnostic systems fail to maintain performance 
across institutions and populations, with particular attention to geographic data concentration and its profound 
implications. 

• Section 5: The Intersection: How Bias and Generalizability Compound Each Other demonstrates that 
these are not separate problems but interconnected outcomes of the same structural issues, showing how they 
combine to create particularly severe equity gaps. 

• Section 6: Barriers to Clinical Translation examines the regulatory, economic, and organizational barriers 
that actively reinforce problematic development practices and impede the implementation of solutions. 

• Section 7: Solutions and Best Practices: Reorienting the Development Pipeline proposes a concrete, 
equity-centred framework for restructuring AI development, from proactive data collection through post-
deployment monitoring, drawing on emerging best practices. 

• Section 8: Conclusion synthesizes the key findings, articulates the theoretical and practical implications, and 
charts a clear path forward for achieving equitable AI diagnostics. 

This research contributes to the growing scholarship on responsible AI in healthcare by centring structural analysis 
(Char et al., 2018). While much existing work documents bias or proposes technical mitigation strategies, this thesis 
argues that sustainable solutions require a fundamental reorientation of development priorities—treating diversity, 
equity, and generalizability not as constraints on optimization but as non-negotiable core requirements for any AI 
system deserving of clinical deployment. 
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Figure 1 The AI Diagnostic Development Pipeline: From Lab to Clinic 
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2. Background and literature review 

2.1. Evolution and Current State of AI in Medical Diagnostics 

Artificial intelligence in healthcare traces its origins to expert systems of the 1970s, such as MYCIN for infection 
diagnosis and antibiotic recommendations (Shortliffe, 1976), and CADUCEUS in the 1980s, which emulated diagnostic 
reasoning (Szolovits et al., 1988). These rule-based systems, while innovative, remained limited by their reliance on 
explicitly programmed medical knowledge and narrow domain applicability. 

The contemporary era of medical AI began with the deep learning revolution of the 2010s, particularly following 
breakthroughs in computer vision and the availability of large medical imaging datasets (LeCun et al., 2015). Deep 
convolutional neural networks demonstrated superhuman performance in specific tasks: detecting diabetic retinopathy 
from retinal images (Gulshan et al., 2016), identifying malignancies in chest radiographs, and segmenting tumours in 
CT scans. These successes generated substantial enthusiasm about AI's transformative potential for healthcare delivery 
(Topol, 2019). 

By 2025, AI diagnostic applications span diverse medical specialties. In radiology, algorithms assist with interpretation 
of chest X-rays, CT scans, MRIs, and other imaging modalities, with 76% of FDA-approved AI medical devices focused 
on this specialty (FDA, 2024). Cardiology applications include ECG interpretation, echocardiogram analysis, and 
cardiovascular risk prediction. Dermatology systems classify skin lesions and detect melanoma (Esteva et al., 2017). 
Pathology AI analyzes tissue samples for cancer detection and molecular marker prediction. Multi-modal systems 
increasingly integrate diverse data types—combining medical imaging with electronic health records, genetic 
information, and clinical notes—to provide comprehensive diagnostic assessment (Yu et al., 2018). 

This technical progress has translated into impressive performance metrics. IDx-DR, the first FDA-cleared autonomous 
AI diagnostic device (2018), achieved 87% sensitivity and 90% specificity for detecting diabetic retinopathy in a 
multicentre trial. Numerous published studies report AI performance meeting or exceeding that of expert clinicians for 
specific diagnostic tasks (Liu et al., 2019). Industry valuations reflect this optimism: the AI-enabled medical device 
market was valued at $13.7 billion in 2024, with projections exceeding $255 billion by 2033. 

However, this narrative of success requires critical examination. Most reported performance figures come from 
carefully controlled research settings with curated datasets. The gap between laboratory performance and real-world 
clinical utility remains substantial, driven by challenges this thesis explores in depth (Kelly et al., 2019; Wiens et al., 
2019). 

2.2. The Translation Gap: From Bench to Bedside 

Despite impressive laboratory results, clinical adoption of AI diagnostic systems remains limited relative to the 
technology's apparent capabilities (Shaw et al., 2019). Multiple factors contribute to this translation gap, but two 
interconnected challenges stand out: algorithmic bias and poor generalizability. 

Studies examining AI deployment reveal consistent patterns of performance degradation when systems encounter real-
world variability. Models optimized for specific institutional datasets frequently fail to maintain accuracy when applied 
elsewhere (Zech et al., 2018). Geographic and demographic characteristics unrepresented in training data lead to 
systematically worse outcomes (Oakden-Rayner et al., 2020). The very features that enable high performance in 
development settings deep specialization to available data characteristics become liabilities when systems encounter 
the heterogeneity of actual clinical practice. 

Current literature extensively documents these challenges but less frequently examines their root causes or structural 
origins. Much existing scholarship focuses on technical mitigation strategies algorithmic approaches to reduce bias or 
improve generalization without questioning whether the fundamental development paradigm itself requires 
restructuring (Mehrabi et al., 2021). This thesis contributes by centring that structural analysis, arguing that sustainable 
solutions require rethinking how we prioritize objectives throughout the AI development lifecycle. 

2.3. Algorithmic Bias in Healthcare AI: Scope and Mechanisms 

Algorithmic bias in medical AI refers to systematic errors producing differential performance across demographic 
groups, with particularly poor outcomes for marginalized populations (Chen et al., 2021). Recent comprehensive 
reviews document the pervasiveness and severity of this challenge across medical specialties (Mehrabi et al., 2021). 
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2.3.1. Manifestations Across Medical Specialties 

Bias manifests differently across diagnostic domains but with consistent patterns. In dermatology, multiple studies have 
demonstrated that AI systems trained predominantly on images of fair-skinned individuals show significantly reduced 
accuracy when evaluating darker skin tones (Daneshjou et al., 2022). Convolutional neural networks trained on large 
chest X-ray datasets have been shown to under detect disease in females, Black patients, Hispanic patients, and those of 
low socioeconomic status (Seyyed-Kalantari et al., 2021). Cardiovascular risk prediction algorithms, historically trained 
predominantly on male patient data, demonstrate reduced accuracy for women who often present with different 
symptoms and risk factors (Larrazabal et al., 2020). 

These disparities extend beyond imaging applications. The widely cited study by Obermeyer et al. (2019) revealed that 
a commercial algorithm used to manage health populations systematically assigned lower risk scores to Black patients 
compared to white patients with equivalent health conditions. This occurred because the algorithm used healthcare 
costs as a proxy for health needs, failing to account for systemic inequities in healthcare access and spending that result 
in Black patients receiving less care for equivalent illness severity. 

2.4. Root Causes and Mechanisms 

Understanding bias requires examining its origins throughout the AI lifecycle. Representation bias—the lack of 
sufficient diversity in training data represents the most fundamental challenge limiting generalizability of healthcare AI 
models into unique environments or populations (Zech et al., 2018). This bias can arise from multiple sources: 

2.4.1. Historical healthcare disparities 

Training datasets reflect existing patterns of healthcare access and utilization. Populations facing barriers to care—due 
to geographic isolation, economic constraints, discrimination, or systemic marginalization—are systematically 
underrepresented in medical data (Gianfrancesco et al., 2018). When 73% of clinical text datasets used for AI training 
come from the Americas and Europe (regions representing only 22% of global population), and more than half are in 
English, the resulting geographic concentration inevitably produces systems optimized for specific populations while 
failing others. 

2.4.2. Sampling and selection bias 

Decisions about which data to collect, from which institutions, and which patients to include shape training datasets. 
When AI developers rely on readily available data from well-resourced academic medical centres, they systematically 
exclude the diverse clinical contexts and patient populations characteristic of community hospitals, rural facilities, and 
under-resourced settings (Larson et al., 2018). Research reveals that among U.S. AI diagnostic studies with identifiable 
geographic origins, 71% used patient data exclusively from California, Massachusetts, or New York, with 60% relying 
solely on these three states. This concentration leaves 34 U.S. states completely unrepresented. 

2.4.3. Data aggregation and preprocessing choices 

Converting diverse patient data into uniform model inputs requires decisions about handling missing values, selecting 
features, and standardizing formats. These preprocessing steps can introduce additional bias. For instance, managing 
missing data such as patient weight which may be unavailable for wheelchair users or under representative for 
individuals with limb amputations through imputation or exclusion creates systematic differences in how models learn 
about different patient populations. 

2.4.4. Measurement and labelling bias 

Training data reflects not objective reality but human measurements and classifications, which themselves may embody 
bias. Diagnostic labels assigned by clinicians carry forward any biases present in clinical decision-making (Adamson & 
Smith, 2018). Equipment calibration, imaging protocols, and interpretation standards vary across institutions and 
populations, creating systematic differences in the ground truth labels used for training. 

2.4.5. Algorithmic design choices 

Even with diverse data, algorithmic decisions during model development can introduce or amplify bias. Optimizing for 
overall accuracy incentivizes models to perform well on majority populations while accepting worse performance on 
minorities (Hardt et al., 2016). Loss functions, evaluation metrics, and optimization strategies that fail to account for 
group fairness will naturally produce systems that minimize average error at the expense of equitable performance. 
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The VBAC (Vaginal Birth After Caesarean) calculator provides an illustrative example of how bias can be explicitly 
encoded through algorithmic design. This tool included race-based correction factors systematically assigning lower 
success probabilities to African American and Hispanic women, discouraging VBAC attempts for these groups without 
robust scientific justification. This exemplifies how algorithmic bias can influence critical medical decisions, in this case 
exacerbating existing disparities in maternal healthcare. 

2.4.6. Consequences for Healthcare Equity 

The implications of algorithmic bias extend well beyond technical performance metrics. When diagnostic AI systems 
perform poorly for specific populations, they risk exacerbating existing health disparities through multiple mechanisms 

• Delayed or missed diagnoses: Lower sensitivity for underrepresented groups means diseases are detected 
later, at more advanced stages, when treatment is more difficult and outcomes worse (Seyyed-Kalantari et al., 
2021). 

• Inappropriate clinical recommendations: Biased risk predictions lead to under-treatment of high-risk patients 
in marginalized groups or over-treatment of low-risk patients in majority populations (Obermeyer et al., 2019). 

• Erosion of trust: Patients and clinicians who experience or observe biased system performance may justifiably 
resist AI adoption, denying potential benefits even from well-designed tools (Char et al., 2018). 

• Reinforcement of stereotypes: Algorithmic decisions that systematically differ across demographic groups can 
reinforce harmful assumptions about inherent differences between populations rather than recognizing bias 
as a technical artifact (Vyas et al., 2020). 

• Resource allocation inequities: When AI systems guide decisions about where to deploy diagnostic resources, 
screening programs, or specialist referrals, biased predictions lead to systematic under-serving of marginalized 
communities. 

2.5. The Generalizability Crisis 

While bias specifically concerns differential performance across demographic groups, poor generalizability describes 
AI systems' inability to maintain performance when encountering data characteristics different from training conditions 
(Zech et al., 2018). These challenges are interconnected lack of diversity in training data is a key cause of poor 
generalizability but merit separate examination. 

2.5.1. External Validation and Performance Degradation 

Medical AI systems commonly demonstrate excellent performance on held-out test sets from the same distribution as 
training data but exhibit substantial degradation when evaluated on truly external datasets. This phenomenon, known 
as dataset shift or domain shift, occurs when the statistical properties of real-world deployment data differ from training 
data distributions (Wiens et al., 2019). 

Research on AI diagnostic systems reveals consistent patterns of poor external validation. Models trained at one 
institution frequently demonstrate reduced accuracy when applied at independent centres, even within the same 
country (Oakden-Rayner et al., 2020). A study examining COVID-19 diagnostic algorithms found that models developed 
in UK NHS Trusts showed marked performance degradation when applied to Vietnamese hospital datasets, despite the 
apparent universality of the diagnostic task (Wynants et al., 2020). Similarly, a ResNet18-based model trained on 
colorectal cancer samples from The Cancer Genome Atlas achieved a patient-level AUC of 0.84 on an external validation 
set from similar populations, but performance dropped to 0.69 when applied to gastric cancer samples from Asian 
populations with different histological characteristics. 

The scope of this validation gap is striking. A 2025 cross-sectional analysis of 903 FDA-approved AI-enabled medical 
devices found that clinical performance studies were reported at the time of approval for only approximately half of 
these devices, while one-quarter explicitly stated that no such studies had been conducted (Wu et al., 2021). Among 
those with clinical evaluations, less than one-third provided sex-specific performance data, and only one-fourth 
addressed age-related subgroups. This lack of rigorous external validation means most deployed AI diagnostic systems 
have limited evidence of generalizability. 

2.5.2. Sources of Distribution Shift 

Multiple factors contribute to dataset shift between development and deployment settings 
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• Population demographics: Patient populations differ across geographic regions, healthcare systems, and 
institutional types. Genetic variations, environmental exposures, disease prevalences, comorbidity patterns, 
and socioeconomic factors all vary, creating different statistical distributions in clinical data. 

• Clinical practice variations: Diagnostic protocols, treatment guidelines, referral patterns, and documentation 
practices differ across institutions and regions. These variations create systematic differences in how medical 
data is generated and recorded. 

• Equipment and technical factors: Medical imaging equipment varies in manufacturer, model, calibration, and 
settings. Even seemingly standardized modalities like chest X-rays show substantial variability in image 
acquisition parameters, preprocessing, and quality across different facilities. Pathology slide preparation and 
staining protocols differ between laboratories. These technical variations create domain shift even when 
examining the same anatomical structures or tissue types. 

• Temporal evolution: Medical practice, disease patterns, and equipment evolve over time. Models trained on 
historical data may encounter changing disease presentations, emerging pathogens, new clinical protocols, or 
updated equipment in deployment, leading to temporal distribution shift. 

• Healthcare system structure: Differences in healthcare financing, insurance coverage, care access, and health 
system organization create systematic variations in which patients seek care, what services they receive, and 
how their data appears in medical records. 

2.5.3. Geographic and Institutional Concentration 

The geographic concentration of training data represents a particularly concerning manifestation of limited 
generalizability. Stanford researchers examining five years of peer-reviewed articles training deep learning algorithms 
for U.S. diagnostic tasks found that 71% of studies used patient data from only California, Massachusetts, or New York 
(Larson et al., 2018). Some 60% relied exclusively on these three states. Thirty-four states had no representation 
whatsoever in the training datasets, while the remaining 13 states contributed limited data. 

This concentration reflects pragmatic realities of AI development: leading academic medical centres with advanced 
informatics infrastructure, research programs, and large patient volumes tend to generate and share datasets. Stanford 
University alone has led the field in making diagnostic datasets freely available. However, the result is an AI ecosystem 
where algorithms are systematically optimized for healthcare contexts in specific, well-resourced regions while 
potentially failing elsewhere. 

The implications extend beyond technical performance. Healthcare challenges, disease patterns, environmental 
exposures, and population demographics differ substantially across U.S. regions. Rural healthcare contexts differ 
fundamentally from urban academic medical centres. Community hospitals operate under different constraints than 
teaching hospitals. When AI diagnostic systems are developed exclusively for specific contexts, they risk being irrelevant 
or harmful when deployed more broadly. 

International disparities amplify these concerns. The vast majority of medical AI research and development occurs in 
high-income countries, particularly the United States, United Kingdom, and other Western nations. When these systems 
are deployed in low- and middle-income countries (LMICs), they frequently fail due to different disease presentations, 
varying healthcare infrastructure, alternative clinical protocols, and different patient demographics (Wynants et al., 
2020). A study evaluating UK-developed COVID-19 diagnostic models in Vietnamese hospitals exemplifies this 
challenge, demonstrating the difficulty of transferring AI systems across contexts with different socioeconomic 
characteristics and healthcare resources. 

2.6. Intersection of Bias and Generalizability 

While analytically distinct, bias and poor generalizability are deeply intertwined challenges stemming from common 
root causes. Both fundamentally arise from training data that fails to represent the full diversity of populations and 
contexts where AI diagnostic systems will be deployed (Chen et al., 2021). 

Limited demographic diversity in training datasets produces both phenomena simultaneously. When marginalized 
populations are underrepresented, models perform worse for those groups (bias) and fail to maintain performance 
when encountering higher proportions of underrepresented populations in deployment settings (poor generalizability). 
Geographic concentration of training data creates algorithms optimized for specific regional contexts (poor 
generalizability) while systematically disadvantaging populations from unrepresented regions (bias). 

This intersection creates compounding equity challenges. Populations already facing healthcare access barriers and 
health disparities—rural communities, low-income populations, racial and ethnic minorities—are both less likely to be 
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represented in training data and more likely to be served by healthcare facilities with different characteristics than 
those where models were developed. The result is AI systems that perform worst precisely where they are most needed. 

Recent scholarship increasingly recognizes these interconnections, calling for holistic approaches addressing both 
challenges simultaneously. Federated learning, where models train on distributed datasets without centralizing patient 
data, offers one promising approach for incorporating diverse populations and institutions (Rieke et al., 2020). Multi-
site validation protocols that require demonstrated performance across varied contexts before deployment represent 
another crucial safeguard. However, these technical solutions alone are insufficient without fundamental reorientation 
of development priorities. 

2.7. Current Mitigation Strategies and Their Limitations 

Substantial research has proposed technical strategies for mitigating bias and improving generalizability in medical AI. 
These approaches operate at different stages of the AI lifecycle 

Preprocessing approaches focus on modifying training data to reduce bias. Re-sampling and re-weighting techniques 
adjust class distributions to balance representation across demographic groups. Data augmentation generates synthetic 
samples to increase diversity. Causal inference methods attempt to identify and remove discriminatory effects from 
datasets. While these techniques can improve fairness metrics, they often require unrealistic assumptions about 
training distributions or result in loss of information implicit in original data. 

In-processing methods modify the training process itself. Fairness-aware loss functions incorporate equity constraints 
during optimization (Hardt et al., 2016). Adversarial debiasing uses adversarial training to remove demographic 
information from model representations while preserving predictive power. Distributionally robust optimization trains 
models to perform well across worst-case data distributions. Invariant risk minimization seeks model features that 
maintain predictive relationships across diverse environments. 

Post-processing techniques adjust model predictions after training to satisfy fairness constraints. Calibrated equalized 
odds modify decision thresholds to achieve equal error rates across groups. These approaches can improve fairness 
metrics without retraining models but often involve trade-offs between overall performance and equity. 

Domain adaptation and transfer learning methods explicitly address generalizability by training models to handle 
distribution shift. These techniques attempt to learn representations that transfer across domains or adapt models to 
new target distributions with limited data. 

While each approach offers value, they share fundamental limitations as strategies for addressing structural problems: 

• Post-hoc nature: Most mitigation techniques treat bias and poor generalizability as problems to fix after models 
are developed rather than issues to prevent through different development practices. This reactive approach 
is inherently limited compared to proactive strategies ensuring diversity and generalizability from the outset. 

• Technical focus: Algorithmic solutions address symptoms (biased predictions, poor transfer) rather than root 
causes (unrepresentative data, optimization for narrow metrics). Technical fixes cannot fully compensate for 
fundamentally inadequate training data. 

• Trade-off framing: Much fairness research frames equity as requiring sacrifices in overall performance, creating 
false dichotomies between accuracy and fairness. This framing obscures how poor generalizability itself limits 
real-world utility regardless of laboratory performance metrics. 

• Validation challenges: Many mitigation strategies improve performance on specific fairness metrics or 
validation datasets but lack evidence of sustained benefits in actual clinical deployment across diverse contexts. 

2.8. Regulatory and Clinical Validation Frameworks 

Understanding translation challenges requires examining how AI diagnostic systems are evaluated and approved for 
clinical use. Current frameworks focus primarily on technical performance validation rather than comprehensive 
assessment of generalizability and equitable performance. 

2.8.1. FDA Approval Process 

The U.S. Food and Drug Administration regulate AI-enabled medical devices through established pathways for medical 
device approval, modified to address AI-specific considerations (FDA, 2024). As of mid-2024, the FDA listed 
approximately 950 cleared AI/ML-enabled medical devices, with roughly 100 new approvals annually. The vast 
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majority fall into Class II (moderate risk) or Class III (high risk) categories requiring premarket notification (510(k)) or 
premarket approval (PMA). 

The approval process evaluates device safety and effectiveness based on clinical performance studies. However, several 
limitations affect these assessments: 

• Limited external validation requirements: FDA approval does not necessarily require multi-site testing or 
validation across diverse populations and healthcare settings. Many devices are cleared based on performance 
in single-site studies or curated research datasets (Wu et al., 2021). 

• Focus on technical over clinical performance: Approval emphasizes analytical validity (does the algorithm 
correctly measure what it claims to measure?) rather than clinical utility (does the device improve patient 
outcomes in actual practice?). 

• Insufficient disaggregated reporting: Current requirements do not consistently mandate reporting 
performance broken down by demographic subgroups, age categories, or other patient characteristics relevant 
to equity and generalizability. 

• Post-market surveillance gaps: While FDA has proposed frameworks for monitoring AI devices that continue 
learning after deployment, systematic post-market surveillance of performance degradation or biased 
outcomes remains limited. 

2.8.2. European Union Regulatory Framework 

The European Union regulates AI medical devices through two overlapping frameworks: the Medical Device Regulation 
(MDR) and In Vitro Diagnostic Regulation (IVDR), alongside the newly enacted AI Act. The AI Act represents the world's 
first comprehensive AI legislation, classifying AI systems by risk category and explicitly designating medical AI as high-
risk, requiring strict requirements for quality management, transparency, human oversight, and bias monitoring 
(European Commission, 2024). 

This dual regulatory structure creates more comprehensive requirements than U.S. frameworks but faces 
implementation challenges. Ensuring datasets used for training, validation, testing, and monitoring represent intended 
populations adequately remains difficult in practice. Notified bodies conducting conformity assessments have limited 
experience with AI-specific validation challenges. 

2.8.3. Clinical Validation Methodologies 

Beyond regulatory approval, rigorous clinical validation is essential for demonstrating AI diagnostic utility. Current 
validation approaches include 

• Diagnostic case-control studies evaluate technical performance by comparing AI predictions against 
reference standards for selected positive and negative cases. These assess analytical validity but often lack 
representativeness of real clinical populations. 

• Diagnostic cohort studies test clinical performance in samples representing target patients in realistic clinical 
scenarios. These provide stronger evidence of clinical utility but remain uncommon for many approved AI 
devices. 

• Randomized controlled trials offer the gold standard for demonstrating clinical utility by measuring whether 
AI actually improves patient outcomes. However, very few AI diagnostic systems have undergone RCT 
evaluation before clinical deployment. 

• External validation studies assess performance on data from institutions not involved in model development. 
These are crucial for evaluating generalizability but are reported for only approximately half of FDA-approved 
AI devices at the time of approval (Wu et al., 2021). 

2.9. Barriers to Clinical Adoption 

Even when AI diagnostic systems receive regulatory approval, multiple barriers impede broad clinical adoption and 
equitable deployment (Shaw et al., 2019; Kelly et al., 2019): 

• Trust and explainability: Clinicians must trust AI recommendations to incorporate them into clinical decision-
making. Black-box models that provide predictions without explanation face adoption resistance. Experiences 
with biased or inaccurate predictions erode trust (Char et al., 2018). 
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• Workflow integration: Effective AI deployment requires seamless integration into existing clinical workflows. 
Clunky interfaces, additional documentation requirements, or disrupted processes create friction inhibiting 
adoption. 

• Liability and responsibility: Ambiguity about responsibility for AI-assisted diagnostic errors—whether 
liability rests with clinicians, AI developers, or healthcare institutions—creates hesitancy about deployment. 

• Economic considerations: Implementing AI systems requires upfront costs for software, integration, training, 
and ongoing monitoring. Without clear evidence of improved outcomes or efficiency, healthcare systems may 
prioritize other investments. 

• Validation burden: Healthcare institutions deploying AI face challenges validating system performance in 
their specific contexts, particularly for smaller facilities lacking informatics expertise (Reddy et al., 2020). 

• Health equity concerns: Awareness of bias in AI systems makes healthcare leaders appropriately cautious 
about deployment, particularly in settings serving vulnerable populations. 

2.10. Gaps in Current Literature 

While existing scholarship extensively documents algorithmic bias, poor generalizability, and clinical translation 
challenges, several important gaps limit understanding of root causes and effective solutions: 

2.10.1. Limited structural analysis 

Most literature focuses on documenting specific instances of bias or proposing technical mitigation strategies rather 
than examining how fundamental development practices create these problems systematically. Few studies critically 
analyze the development paradigm itself. 

2.10.2. Separation of bias and generalizability 

Bias and poor generalizability are often treated as distinct problems requiring separate solutions rather than as 
interconnected manifestations of the same structural issues. Research examining their interaction and common root 
causes remains limited. 

2.10.3. Focus on symptoms over causes 

Extensive literature proposes algorithmic techniques for reducing bias or improving transfer, but less attention is paid 
to preventive strategies addressing why training data lacks diversity in the first place. 

2.10.4. Post-hoc rather than proactive approaches 

Most proposed solutions involve fixing problems after models are developed rather than restructuring development 
pipelines to prevent problems from arising. 

2.10.5. Limited equity-centred frameworks 

While fairness in machine learning has emerged as a major research area, much work remains narrowly technical, 
lacking integration with health equity scholarship, critical race theory, and other frameworks for understanding 
structural inequality. 

2.10.6. Insufficient real-world evidence 

Most studies evaluate AI systems in research settings using curated datasets. Evidence from actual clinical deployment, 
particularly examining long-term outcomes across diverse populations and contexts, remains scarce. 

2.10.7. Developer practice examination 

Limited research examines the incentives, constraints, and decision-making processes of AI developers to understand 
why current practices persist despite known problems. 

This thesis addresses these gaps by focusing on structural analysis of development practices, examining the 
interconnection between bias and generalizability, proposing proactive rather than reactive solutions, and integrating 
technical analysis with health equity frameworks. 
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3. Understanding algorithmic bias in diagnostic ai 

3.1. Defining Algorithmic Bias in Medical Context 

Algorithmic bias in medical AI refers to systematic errors that produce differential performance across demographic 
groups, resulting in disproportionately poor outcomes for marginalized populations (Mehrabi et al., 2021; Chen et al., 
2021). Unlike random errors that affect all groups equally, bias creates patterns where specific populations—defined 
by race, gender, age, socioeconomic status, or other characteristics—consistently experience worse algorithmic 
performance. 

This bias operates at multiple levels, each with distinct clinical implications: 

• Technical Bias manifests as measurably different accuracy, sensitivity, or specificity across demographic 
groups. 

• Diagnostic Bias occurs when algorithms systematically miss diseases in certain populations or produce false 
positives at different rates. 

• Allocative Bias emerges when biased performance affects resource distribution, systematically excluding 
marginalized groups from beneficial interventions (Obermeyer et al., 2019). 

Crucially, algorithmic bias in healthcare is not merely a theoretical fairness concern—it actively harms patients. When 
diagnostic AI systems fail to detect disease in underrepresented populations, patients experience delayed diagnoses, 
later-stage disease presentation, worse treatment outcomes, and increased mortality (Seyyed-Kalantari et al., 2021). 
When risk prediction algorithms systematically underestimate severity for specific groups, those patients are denied 
access to care management programs and specialized resources. These are not abstract equity concerns but concrete 
harms with measurable health consequences (Vyas et al., 2020). 

3.2. Dermatology: A Case Study in Training Data Bias 

Dermatology AI provides perhaps the clearest illustration of how training data composition directly determines 
algorithmic bias. Multiple studies have documented that AI systems for skin lesion classification and melanoma 
detection demonstrate substantially worse performance on darker skin tones compared to lighter skin (Adamson & 
Smith, 2018; Daneshjou et al., 2022). 

3.2.1. The mechanism is straightforward 

Dermatology AI models are trained predominantly on images of fair-skinned individuals. Analysis of publicly available 
datasets reveals a severe underrepresentation of darker skin tones. One study found that of 2,436 images with stated 
skin colour, only 10 depicted brown skin and merely one showed dark brown or black skin. Another analysis examining 
thousands of AI-generated dermatology images found that only a small percentage reflected dark skin across leading AI 
platforms. 

The consequences are severe and clinically significant. Research using the Diverse Dermatology Images (DDI) dataset—
created specifically to include biopsy-proven malignancies across skin tones—demonstrated that state-of-the-art 
dermatology AI algorithms show markedly worse performance on lesions appearing on dark skin compared to light 
skin (Daneshjou et al., 2022). This performance disparity has real clinical implications. Melanoma, while less common 
in darker-skinned populations, presents at later stages and with worse outcomes in these groups—partly because of 
delayed diagnosis. When AI diagnostic tools systematically underperform for dark skin, they risk exacerbating existing 
disparities by further delaying detection in populations already facing worse outcomes. 

Importantly, research demonstrates that fine-tuning AI models on diverse datasets can close performance gaps between 
skin tones, proving that the problem is solvable through better data practices rather than being an inherent limitation 
of the technology (Tschandl et al., 2020). However, this requires proactive commitment to diversity in dataset curation 
rather than treating it as an afterthought. 

3.3. Radiology: The Insidious Nature of Embedded Bias 

Chest radiography represents another domain where extensive research has documented systematic bias, revealing 
mechanisms more subtle than simple representation disparities. AI algorithms trained to interpret chest X-rays have 
been shown to underdiagnose pulmonary abnormalities in historically underserved patient populations, with classifiers 
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consistently and selectively underdiagnosing conditions in female patients, Black patients, and patients of low 
socioeconomic status (Seyyed-Kalantari et al., 2021; Larrazabal et al., 2020). 

What makes this bias particularly concerning is that chest X-rays appear to be standardized, objective medical images 
without obvious demographic markers. Yet research has demonstrated that AI models can predict self-reported race 
from chest X-rays with high accuracy—even when images are highly degraded or cropped despite human experts being 
unable to make such predictions (Gichoya et al., 2022). This finding reveals that subtle patterns in medical images 
encode demographic information in ways not apparent to human observers but readily learned by AI systems. 

The implications are profound. If AI diagnostic algorithms can detect demographic characteristics from medical images, 
they can use those characteristics as shortcuts in making diagnostic predictions. Research from MIT found that AI 
models most accurate at predicting race and gender from X-ray images also show the biggest fairness gaps, with 
discrepancies in their ability to accurately diagnose images of people of different races or genders. This suggests models 
may be using demographic categorizations as shortcuts rather than learning disease-specific features. 

The mechanisms producing these shortcuts are complex. Technical parameters related to image acquisition and 
processing influence AI models trained to predict patient race, partly reflecting underlying biases in the original clinical 
datasets. Different equipment, protocols, and settings across institutions create systematic variations that correlate 
with patient demographics. Equipment calibration differences, varied imaging parameters, and institutional practices 
all introduce patterns that algorithms can learn and exploit. 

Chest radiography foundation models—large-scale AI models trained on massive datasets and then adapted for specific 
diagnostic tasks—demonstrate significant racial and sex bias leading to uneven performance across patient subgroups. 
Analysis of a chest radiography foundation model found that classification performance on detecting normal findings 
decreased between 6.8% and 7.8% for female patients, and performance in detecting pleural effusion decreased 
between 10.7% and 11.6% for Black patients compared to average model performance. These performance disparities 
translate directly to clinical harms, where underdiagnosis bias labels sick individuals as healthy, potentially delaying 
access to care (Seyyed-Kalantari et al., 2021). 

3.4. Beyond Imaging: Algorithmic Bias in Risk Prediction 

While medical imaging provides vivid examples of algorithmic bias, the problem extends to all forms of diagnostic and 
predictive AI in healthcare. A landmark 2019 study by Obermeyer and colleagues examined a widely used commercial 
algorithm affecting millions of patients and revealed how bias can be encoded through seemingly neutral design choices. 

The algorithm in question helped identify patients for enrolment in high-risk care management programs—
interventions providing additional resources and attention to patients with complex medical needs. The algorithm 
exhibited significant racial bias, with Black patients at a given risk score being considerably sicker than White patients, 
as evidenced by signs of uncontrolled illnesses. At the 97th percentile risk score, Black patients had on average 26 
percent more chronic illnesses than White patients, and remedying this disparity would increase the percentage of Black 
patients receiving additional help from 17.7% to 46.5%. 

The bias arose not from explicit racial targeting but from a common design decision: using healthcare costs as a proxy 
for health needs. The algorithm predicted healthcare costs rather than illness, but unequal access to care meant less 
money was spent caring for Black patients than for White patients with equivalent health needs. Even when Black and 
White patients have the same health needs, systemic barriers—including discrimination, mistrust of healthcare 
systems, geographic access limitations, and insurance disparities—result in Black patients receiving less care and 
generating lower costs (Obermeyer et al., 2019). 

This case exemplifies how convenient proxies can introduce bias. Healthcare costs are readily available in 
administrative datasets, require minimal data cleaning, and correlate strongly with health needs for many purposes. 
For algorithm developers optimizing for predictive accuracy on average, costs appear to be an efficient, effective target 
variable. However, this overlooks how costs systematically diverge from needs across demographic groups due to 
structural inequities in healthcare access and utilization. 

Importantly, when the bias was identified and the algorithm reformulated to use health predictions alongside cost 
predictions, racial bias was reduced by 84 to 86 percent. This demonstrates that the problem was not insurmountable 
but stemmed from development choices that prioritized convenience and overall accuracy over equitable performance. 
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Table 1 Documented Cases of Algorithmic Bias Across Medical Specialties 

Medical Specialty AI Application Nature of Bias Impact Key Reference 

Dermatology Skin lesion 
classification, 
melanoma detection 

10-15% lower accuracy 
for darker skin tones vs. 
lighter skin 

Delayed cancer diagnosis, 
worse outcomes for 
patients of color 

Daneshjou et al., 
2022 

Radiology Chest X-ray 
interpretation 
(pneumonia, 
tuberculosis) 

Underdiagnosis in female, 
Black, Hispanic, and low-
SES patients 

Missed critical diagnoses 
in already underserved 
populations 

Seyyed-Kalantari 
et al., 2021 

Cardiology Cardiovascular risk 
prediction algorithms 

Systematic 
underestimation of risk 
for women and Black 
patients 

Denied access to care 
management programs, 
delayed interventions 

Obermeyer et al., 
2019; Larrazabal 
et al., 2020 

Ophthalmology Diabetic retinopathy 
screening 

Performance degradation 
in low-resource settings 
with different equipment 

Failed deployment in 
communities needing 
screening most 

Kelly et al., 2019 

Pathology Cancer detection 
from tissue slides 

Reduced accuracy for 
minority populations due 
to training data gaps 

Potential for incorrect 
treatment planning 

Zech et al., 2018 

3.5. Root Causes: How Development Practices Create Bias 

Understanding why algorithmic bias is so pervasive requires examining the entire AI development lifecycle rather than 
focusing solely on algorithms or datasets in isolation. Bias enters at multiple stages through choices that seem 
reasonable or necessary in individual contexts but systematically disadvantage certain populations when compounded. 

3.5.1. Data Collection and Sampling Decisions 

Training datasets overwhelmingly come from well-resourced academic medical centres in specific geographic regions. 
The geographic concentration means most U.S. patient data for AI training comes from just three states—California, 
Massachusetts, and New York (Larson et al., 2018). This convenience sampling systematically excludes diverse clinical 
contexts and patient populations, optimizing for the populations and contexts those datasets represent while failing to 
capture diversity essential for generalization. 

3.5.2. Dataset Curation and Preprocessing 

Decisions about which variables to include, how to handle missing data, how to balance classes, and which quality 
thresholds to apply all shape what patterns models learn. Missing data is often handled through imputation or exclusion, 
but missingness itself may be informative and differ systematically across populations (Gianfrancesco et al., 2018). 

3.5.3. Labeling Practices 

Diagnostic labels reflect human judgments that themselves may embody bias. If clinicians are less likely to order 
confirmatory tests for certain populations, those diagnoses will be underrepresented in training data regardless of true 
disease prevalence. If imaging interpretation differs across populations due to unfamiliarity or implicit bias, training 
labels will be systematically noisier for underrepresented groups (Adamson & Smith, 2018). 

3.5.4. Algorithmic Design Choices 

Optimizing for overall accuracy incentivizes models to perform well on majority populations while accepting worse 
performance on minorities a mathematically rational choice when minority populations constitute small fractions of 
training data (Hardt et al., 2016). Standard loss functions minimize average error without regard for how that error 
distributes across subgroups. 
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3.5.5. Evaluation and Validation Practices 

Bias remains invisible when studies focus on aggregate performance metrics. Reporting overall accuracy, sensitivity, or 
AUC obscures differential performance across demographic groups. A 2025 analysis found that clinical performance 
data were reported at approval for only approximately half of FDA-approved AI devices, with less than one-third 
providing sex-specific performance data and only one-fourth addressing age-related subgroups (Wu et al., 2021). 

3.5.6. Economic and Organizational Incentives 

Collecting diverse, representative datasets is expensive and time-consuming. Addressing bias requires additional 
validation studies, disaggregated analyses, and potentially accepting lower overall performance to achieve equitable 
outcomes. In competitive commercial environments, these equity considerations become deprioritized as costs rather 
than requirements (Kelly et al., 2019). 

3.6. Mechanisms of Harm: From Technical Bias to Health Inequity 

Algorithmic bias in diagnostic AI does not remain confined to performance metrics but translates directly into tangible 
harms affecting patient health and healthcare equity. 

Delayed or Missed Diagnoses occur when lower sensitivity for underrepresented groups means diseases are not 
detected until later stages. For conditions where early detection dramatically improves outcomes cancer, cardiovascular 
disease, diabetic complications delays measured in months can determine survival (Seyyed-Kalantari et al., 2021). 

Inappropriate Clinical Decision-Making results from biased risk predictions. When algorithms systematically assign 
lower risk scores to Black patients with equivalent or greater health needs, those patients are denied access to care 
management programs, specialist referrals, preventive interventions, and enhanced monitoring (Obermeyer et al., 
2019). 

Reinforcement of Existing Disparities occurs when AI systems encode and perpetuate patterns from biased training 
data. Healthcare data reflects existing inequities in access, utilization, quality, and outcomes. When AI models learn from 
this data without explicit correction, they reproduce and may amplify those inequities (Vyas et al., 2020). 

Erosion of Trust emerges when patients and clinicians experience or observe biased system performance. Communities 
already facing healthcare discrimination and medical mistrust have well-founded skepticism about technological 
solutions that demonstrate similar patterns (Char et al., 2018). 

Resource Allocation Inequities compound when biased algorithms guide deployment decisions. If AI screening tools 
direct resources toward populations where they perform best—typically well-represented groups in training data—
they systematically under-serve marginalized communities most lacking in healthcare access. 

3.7. Structural Analysis: Bias as Predictable Outcome 

The critical insight from examining algorithmic bias across specialties and contexts is that bias is not an aberration 
requiring explanation but a predictable, systematic outcome of current development practices (Rajkomar et al., 2018). 
This reframes the challenge from "how do we fix bias in AI?" to "how do we restructure AI development to prevent 
bias?" 

Current practices prioritize metrics that make bias inevitable: 

• Narrow accuracy over robust generalization rewards models that specialize to training data characteristics 
• Overall performance over equitable outcomes allows sacrificing minority group performance to optimize 

averages 
• Convenient proxies over direct measurement introduces systematic errors when proxies diverge from targets 

across groups 
• Aggregate validation over disaggregated assessment makes bias invisible in reported metrics 

These priorities reflect reasonable choices in isolated contexts but systematically disadvantage specific populations 
when applied at scale. A developer maximizing accuracy on available data behaves rationally; a regulator focusing on 
overall performance follows established precedent; a researcher using convenient datasets works within resource 
constraints. Yet the cumulative effect is an AI ecosystem producing tools that fail precisely where they are most needed. 



World Journal of Advanced Research and Reviews, 2025, 28(03), 2134-2179 

2149 

Addressing this requires recognizing that technical solutions bias mitigation algorithms, fairness constraints, post-hoc 
corrections cannot fully compensate for fundamentally inadequate development paradigms (Mehrabi et al., 2021). 
While such techniques provide value, sustainable equity demands restructuring priorities throughout the AI lifecycle: 
collecting diverse data proactively rather than reactively, optimizing for worst-case performance rather than averages, 
validating across contexts before deployment rather than after problems emerge, and treating equity as a core 
requirement rather than an aspirational goal. 

The following section examines how poor generalizability compounds these challenges, demonstrating that bias and 
generalizability are not separate problems but interconnected manifestations of the same structural issues in AI 
diagnostic development. 

 

Figure 2 The Interconnected Root Causes of Bias and Poor Generalizability 

4. The generalizability crisis 

4.1. Defining Generalizability in Medical AI 

Generalizability refers to an AI model's ability to maintain performance when encountering data characteristics 
different from those present during training (Zech et al., 2018). In medical contexts, this means diagnostic systems 
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should work reliably across diverse hospitals, patient populations, clinical workflows, equipment configurations, and 
geographic regions. High generalizability indicates robust learning of underlying disease patterns rather than spurious 
associations specific to training data. 

Poor generalizability manifests as performance degradation when models trained at one institution are deployed at 
another, when algorithms encounter different patient demographics than those in training data, when equipment or 
protocols differ from development settings, or when temporal changes alter clinical practice patterns. This degradation 
can be dramatic: studies consistently document substantial performance drops when models face truly external 
validation in novel deployment contexts (Oakden-Rayner et al., 2020). 

The distinction between internal and external validation is crucial. Internal validation evaluates model performance 
on held-out data from the same source as training data—the same hospitals, time periods, patient populations, and 
equipment. While internal validation assesses whether models overfit to training samples, it cannot detect whether 
models learn institution-specific patterns rather than generalizable disease markers. External validation tests 
performance on data from entirely different sources, revealing whether models truly learned transferable medical 
knowledge (Wynants et al., 2020). 

Current research demonstrates that AI diagnostic systems routinely achieve excellent internal validation but fail 
external validation. This pattern indicates models are learning to exploit characteristics of specific datasets—
institutional conventions, equipment signatures, documentation styles, local demographics—rather than universal 
disease features (Zech et al., 2018). The result is an AI ecosystem producing tools that appear successful in development 
settings but prove unreliable when deployed broadly. 

4.2. Evidence of Performance Degradation Across Institutions 

Multiple studies examining cross-institutional validation reveal consistent patterns of performance degradation, 
demonstrating that poor generalizability is not an isolated phenomenon but a systematic challenge affecting AI 
diagnostic applications across medical specialties. 

A comprehensive study examining machine learning-based clinical risk prediction models across different hospitals 
provides stark evidence. Research found that when models achieved average AUROC of 94.2% within their development 
hospitals, cross-hospital deployment resulted in severely reduced performance, with average AUROC decreasing by 8 
percentage points to 86.3% (Wong et al., 2021). This degradation occurred even though all hospitals were within the 
same country, treating similar conditions, and using comparable clinical protocols. 

The implications are significant. An 8-percentage-point AUROC decrease translates to substantially more missed 
diagnoses and false alarms. For high-stakes clinical decisions—determining which patients require intensive 
monitoring, who needs specialist referral, or which cases warrant emergency intervention—this level of performance 
degradation could mean the difference between timely treatment and preventable harm. 

International deployment amplifies these challenges. When AI models developed in high-income countries are applied 
in low- and middle-income countries, performance degradation becomes even more severe due to different disease 
presentations, varying healthcare infrastructure, alternative clinical protocols, and distinct patient demographics. 
Research evaluating UK-developed COVID-19 diagnostic models found that systems performing well in NHS trusts 
showed marked performance degradation when applied to Vietnamese hospital datasets, despite the apparent 
universality of the diagnostic task (Wynants et al., 2020). 

The sepsis prediction case exemplifies high-profile deployment failures. The Epic sepsis model was implemented in 
hundreds of hospitals to monitor patients and send alerts for those at high risk. However, external validation revealed 
the model missed 67% of sepsis patients while generating numerous false alerts (Wong et al., 2021). When companies 
pitch AI-powered solutions claiming high accuracy, testing on internal hospital datasets almost always reveals 
performance falling short by substantial margins. 
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Table 2 Evidence of Performance Degradation in External Validation Studies 

AI System Internal 
Validation 
Performance 

External 
Validation 
Performance 

Performance 
Drop 

Context of External 
Validation 

Reference 

Sepsis Prediction 
Model 

AUROC: 0.94 
(development 
hospital) 

AUROC: 0.86 
(external 
hospitals) 

-8 percentage 
points 

Cross-hospital 
validation within 
same health system 

Wong et al., 
2021 

COVID-19 
Diagnostic 
Algorithm 

Sensitivity: 92% 
(UK NHS trusts) 

Sensitivity: 76% 
(Vietnamese 
hospitals) 

-16 percentage 
points 

International 
deployment, 
different healthcare 
infrastructure 

Wynants et 
al., 2020 

Chest X-ray 
Pneumonia 
Detector 

AUC: 0.97 
(source 
institution) 

AUC: 0.85 (external 
institution) 

-12 percentage 
points 

Different U.S. 
hospital, different 
patient 
demographics 

Zech et al., 
2018 

Diabetic 
Retinopathy 
Screening 

Sensitivity: 90% 
(controlled trial) 

21% image 
rejection rate in 
field deployment 

Catastrophic 
failure rate 

Different lighting, 
equipment in 
Thailand clinics 

Kelly et al., 
2019 

Mammography 
CAD Software 

Marketed as 
"radiologist-
level" 

94% less accurate 
than single 
radiologist in 
practice 

Does not meet 
clinical utility 

Real-world clinical 
use across multiple 
sites 

McKinney 
et al., 2020 

Google's Verily Health Sciences faced similar challenges with their diabetic retinopathy detection system during field 
trials in Thailand. The system performed poorly due to different lighting conditions and lower-resolution images than 
those in development datasets. Twenty-one percent of images that technicians attempted to input were rejected by the 
model as unsuitable a catastrophic failure rate for a screening tool intended to improve access to diagnosis (Kelly et al., 
2019). 

Radiology AI demonstrates particularly concerning generalizability problems. Computer-aided detection software 
packages for mammography, rushed to market in the mid-2010s, showed numerous failings documented in subsequent 
analyses. Despite intense efforts spanning over 20 years, true radiologist-level performance has not been consistently 
achieved across diverse deployment settings. A 2021 review found that 94% of AI systems for mammography were less 
accurate than a single radiologist, and all were less accurate than consensus of two or more radiologists—revealing how 
laboratory performance claims fail to translate to reliable clinical utility (McKinney et al., 2020). 

4.3. Sources of Distribution Shift 

Understanding why AI diagnostic systems fail to generalize requires examining the multiple factors creating 
distribution shift systematic differences between training and deployment data characteristics. 

Equipment and technical variations represent a fundamental source of distribution shift. Medical imaging equipment 
varies in manufacturer, model, calibration settings, and acquisition parameters. Even standardized modalities like chest 
X-rays show substantial variability in image quality, contrast, resolution, and preprocessing across different facilities. 
CT scanners use different reconstruction algorithms, slice thicknesses, and radiation doses. MRI machines vary in field 
strength, coil configurations, and pulse sequences. Pathology slide preparation and staining protocols differ between 
laboratories. 

These technical variations create systematic differences in raw data characteristics that AI models can detect and exploit 
during training. When models optimize for performance on images from specific equipment, they learn equipment 
signatures as useful features for prediction. During deployment with different equipment, those signatures are absent 
or altered, causing performance degradation. The problem intensifies when training data comes from cutting-edge 
equipment at well-resourced academic medical centres, but deployment occurs in community hospitals with older, less 
sophisticated technology. 
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Figure 3 Sources of Distribution Shift in Medical AI 

Population demographic differences create distribution shift through variations in disease prevalence, presentation 
patterns, comorbidity profiles, and genetic factors across geographic regions and patient populations. Cardiovascular 
disease presents differently across age groups, sexes, and ethnic populations. Cancer incidence and subtype 
distributions vary geographically. Infectious disease patterns reflect local epidemiology. When AI models train 
predominantly on specific demographic groups, they optimize for disease characteristics typical of those populations 
while underperforming for others with different presentations. 

Clinical practice variations systematically differ across institutions and regions. Diagnostic protocols, treatment 
guidelines, referral patterns, and documentation practices vary, creating different statistical distributions in clinical 
data. What constitutes standard care at a tertiary academic centre may differ from practices at community hospitals. 
Threshold decisions—when to order specific tests, when to initiate treatments, when to refer to specialists—vary based 
on institutional culture, resource availability, and patient populations served. 

These practice variations become encoded in training data. If certain diagnostic tests are ordered more frequently for 
specific patient populations at development institutions, AI models learn those patterns as diagnostically relevant. 
During deployment at institutions with different ordering practices, the expected patterns are absent, causing model 
confusion and performance degradation. 
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Temporal evolution creates distribution shift as medical practice, disease patterns, and technology change over time. 
New clinical guidelines alter standard protocols. Emerging pathogens introduce novel disease presentations. Updated 
equipment changes data characteristics. Patient populations evolve as demographics shift. Models trained on historical 
data increasingly encounter deployment contexts different from their training environments. 

The COVID-19 pandemic provided dramatic illustration of temporal distribution shift. Diagnostic patterns, 
hospitalization thresholds, testing protocols, and clinical workflows changed rapidly. AI models trained on pre-
pandemic data performed poorly during the pandemic as these fundamental shifts altered data distributions (Wynants 
et al., 2020). Even post-pandemic, lasting changes in healthcare delivery expanded telemedicine, altered emergency 
department utilization, changed referral patterns continue creating temporal distribution shift affecting model 
performance. 

4.4. The Geographic Data Concentration Problem 

The geographic concentration of AI training data represents a particularly troubling manifestation of poor 
generalizability with profound implications for healthcare equity. This concentration reflects pragmatic realities of AI 
development but produces systems systematically biased toward specific regions while potentially failing elsewhere. 

Stanford researchers' analysis revealing that 71% of diagnostic AI studies used patient data exclusively from California, 
Massachusetts, or New York, with 34 states completely unrepresented, documents a severe concentration problem 
(Larson et al., 2018). This is not coincidental but reflects how AI development occurs. Leading academic medical centres 
with advanced informatics infrastructure, large research programs, substantial patient volumes, and resources to create 
shareable datasets naturally become primary data sources. Stanford University alone has led the field in making 
diagnostic datasets freely available, contributing to AI development but also to geographic concentration. 

This concentration creates a form of digital neocolonialism when extended internationally. The vast majority of medical 
AI research and development occurs in high-income countries, particularly the United States, United Kingdom, and other 
Western nations. Analysis of clinical text datasets used for AI training found that 73% come from the Americas and 
Europe regions representing only 22% of global population with more than half in English. This concentration means 
AI diagnostic systems are optimized for healthcare contexts, disease patterns, and population demographics specific to 
wealthy Western nations while potentially failing elsewhere. 

When these systems are deployed in low- and middle-income countries, they frequently encounter insurmountable 
challenges. Different disease presentations reflect varying epidemiology and environmental exposures. Healthcare 
infrastructure limitations mean different equipment, protocols, and data quality. Alternative clinical workflows and 
resource constraints create fundamentally different contexts. Patient demographics, genetic backgrounds, and 
comorbidity patterns differ. AI systems optimized for high-income country contexts often prove irrelevant or actively 
harmful when deployed in LMICs without substantial adaptation. 

The concentration problem creates compounding inequities. Regions already facing healthcare access challenges—
rural areas, under-resourced states, low-income countries—are precisely those lacking representation in AI training 
data. When AI diagnostic tools are deployed, they perform best in already well-served areas while failing in places most 
needing improved diagnostic access. This pattern risks creating a two-tier system where AI enhances care for privileged 
populations while remaining unavailable or unreliable for marginalized communities. 

4.5. The External Validation Gap 

Despite widespread recognition that external validation is essential for assessing generalizability, current practices 
reveal systematic inadequacy in validating AI diagnostic systems across diverse deployment contexts before regulatory 
approval and clinical implementation. 

A 2025 cross-sectional analysis examining 903 FDA-approved AI-enabled medical devices found that clinical 
performance studies were reported at approval for only approximately half of these devices, while one-quarter 
explicitly stated that no such studies had been conducted. Among devices with clinical evaluations, less than one-third 
provided sex-specific performance data, and only one-fourth addressed age-related subgroups (Wu et al., 2021). This 
means most deployed AI diagnostic systems lack rigorous evidence of performance across demographic categories, let 
alone true external validation across different institutions and populations. 

The validation gap reflects multiple factors. External validation requires access to datasets from institutions not 
involved in model development a resource-intensive process requiring data-sharing agreements, ethical approvals, and 



World Journal of Advanced Research and Reviews, 2025, 28(03), 2134-2179 

2154 

technical infrastructure. Smaller healthcare facilities often lack capacity to participate in validation studies. Competitive 
pressures incentivize companies to move quickly from development to deployment without comprehensive validation. 
Regulatory frameworks, while evolving, often do not mandate rigorous multi-site external validation before clearance 
(FDA, 2024). 

Recent research examining 130 healthcare AI systems deployed across multiple institutions found that only 23% had 
undergone rigorous bias testing before deployment, while fewer than 15% had established clear accountability 
structures for addressing errors. When systems produced disparate outcomes—recommending different treatments 
based on patient race, denying care to those with rare conditions, or failing to recognize symptoms in underrepresented 
populations there were no systematic mechanisms for patients to seek recourse or for institutions to implement 
corrections quickly. 

The lack of external validation means AI diagnostic systems routinely enter clinical practice with limited evidence they 
will maintain performance in actual deployment settings. Internal validation on held-out data from development 
institutions cannot reveal generalizability problems stemming from institutional idiosyncrasies, equipment 
characteristics, or population demographics specific to training contexts. Without external validation, healthcare 
systems deploying AI tools essentially conduct uncontrolled experiments on their patient populations. 

4.6. Performance Monitoring and Drift Detection Challenges 

Even when AI diagnostic systems initially perform well in deployment settings, their performance can degrade over 
time as clinical practice evolves, patient populations shift, equipment changes, or data characteristics drift. Detecting 
and addressing this performance degradation represents a significant challenge largely unresolved in current practice. 

Distribution shifts creating performance degradation can be anticipated or unannounced. Sometimes impending shifts 
are predictable hospital-wide policy changes, new equipment deployment, updated clinical guidelines. However, many 
distribution shifts are subtle and gradual: slowly changing patient demographics, incremental workflow modifications, 
or evolving disease patterns. Detecting these changes requires continuous monitoring of model performance, yet most 
deployed AI systems lack robust performance monitoring infrastructure. 

The main method of detecting degradation within AI models today is clinical intuition on the part of physicians using 
the technology. However, relying on clinical intuition is unreliable and highly variable, meaning AI model degradation 
may cause misdiagnosis before it is noticed. Beyond general trust, two specific human-factor barriers critically impede 
safe deployment: automation bias and alert fatigue. Automation bias describes the tendency for clinicians to over-rely 
on AI recommendations, accepting algorithmic outputs without sufficient scrutiny. This creates risks when models 
exhibit hidden biases or context-specific failures, as clinicians may not activate their own expertise to question incorrect 
AI suggestions. Simultaneously, alert fatigue emerges when AI systems generate excessive false positives or low-value 
alerts, causing clinicians to become desensitized and potentially ignore critical warnings. Clinicians may not recognize 
when AI recommendations become less accurate, particularly if degradation is gradual rather than sudden. By the time 
problems become obvious through accumulated adverse outcomes, substantial harm may have already occurred. 

Technical approaches to performance monitoring face their own challenges. Continuously measuring accuracy requires 
ongoing access to ground truth labels—confirmed diagnoses for patients receiving AI-based recommendations. 
Obtaining these labels is resource-intensive, often involving manual chart review or waiting for definitive diagnostic 
outcomes. For some applications, true outcomes may not be known for months or years, making timely detection of 
performance degradation impossible. 

Confounding medical interventions complicate performance monitoring. When AI systems generate alerts prompting 
clinical action, subsequent interventions may prevent predicted outcomes from occurring. For example, if an AI system 
predicts acute kidney injury and clinicians respond with protective measures preventing the injury, the model appears 
inaccurate yet it may have been correct about the trajectory that would have occurred without intervention. This 
paradox intensifies as AI systems become more effective: the better they work, the faster their apparent performance 
degrades due to interventions they trigger. 

Alternative monitoring approaches using proxy metrics—detecting changes in input data distributions, monitoring 
prediction confidence scores, tracking unusual patterns—can alert to potential problems without requiring ground 
truth labels. However, these methods cannot definitively confirm whether performance has actually degraded, only that 
conditions have changed in ways that might affect performance. Healthcare institutions must then decide whether to 
adjust, retrain, or suspend AI systems based on uncertain signals. 
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The FDA has explicitly recognized these challenges, issuing a request for public comment on measuring and evaluating 
AI-enabled medical device performance in the real world. The agency acknowledges that AI system performance can be 
influenced by changes in clinical practice, patient demographics, data inputs, and healthcare infrastructure. Data drift, 
concept drift, and model drift may lead to performance degradation, bias, or reduced reliability. Currently, many AI-
enabled medical devices are evaluated primarily through retrospective testing or static benchmarks rather than 
continuous real-world monitoring. 

The fundamental limitation of current monitoring approaches is their reactive nature—they attempt to detect problems 
after performance has already degraded. A more proactive paradigm is needed: Adaptive Equity. This concept reframes 
the challenge from merely detecting drift to continuously maintaining equitable performance across all subgroups as 
clinical environments, patient populations, and disease patterns evolve. Adaptive Equity requires systems that can not 
only identify when they're failing but automatically adjust to prevent disparate impacts before they occur. (This concept 
will be elaborated in Section 7.12.) 

4.7. Why Generic Models Fail: The Specialization-Generalization Trade-Off 

The consistent pattern of poor cross-institutional performance reveals a fundamental tension in AI development: the 
trade-off between specialization to specific contexts and generalization across diverse settings. Current development 
practices resolve this tension by prioritizing narrow performance optimization, inevitably producing systems that fail 
to generalize. 

When AI models train on data from specific institutions, they face no incentive to distinguish between universal disease 
patterns and institution-specific idiosyncrasies. Both types of features improve performance on internal validation sets, 
so models learn whatever patterns most effectively minimize training loss. Equipment signatures, institutional coding 
conventions, documentation styles, local demographics, and clinical practice patterns all become useful features for 
optimization. 

This specialization produces impressive internal validation metrics but poor generalizability. Models essentially overfit 
not to individual training samples but to institutional characteristics. The more completely models exploit institution-
specific patterns, the better they perform internally but the worse they generalize externally. Researchers studying 
cross-hospital validation concluded that performance degradation identified limitations in developing a generic model 
for different hospitals, recommending instead that specialized prediction models be generated for each hospital to 
guarantee performance. 

However, institution-specific models create their own problems. Developing separate models for each deployment site 
requires substantial resources, technical expertise, and local data that many healthcare facilities lack. Community 
hospitals, rural facilities, and resource-limited settings cannot afford to develop custom AI systems, yet deploying 
externally developed models risks poor performance. This dynamic threatens to create healthcare AI systems accessible 
only to well-resourced institutions, exacerbating rather than reducing disparities. 

The specialization-generalization trade-off also explains why technical sophistication does not ensure generalizability. 
More complex models with greater capacity can learn more intricate patterns in training data, potentially achieving 
higher internal validation performance. However, this same capacity enables more complete exploitation of institution-
specific features, worsening generalizability. Without explicit architectural choices, training procedures, or data 
strategies promoting generalization, increasing model sophistication may paradoxically reduce external validity. 

4.8. Structural Analysis: Generalizability as Predictable Consequence 

Examining poor generalizability through a structural lens reveals it is not a technical accident requiring incremental 
fixes but a predictable consequence of how AI diagnostic systems are currently developed. Just as with algorithmic bias, 
poor generalizability stems from fundamental development practices that prioritize narrow metrics over robust 
performance. 

Single-site optimization dominates current practice. Models are developed and validated primarily or exclusively using 
data from individual institutions or small consortia. Optimization targets internal validation performance without 
explicit generalizability constraints. This approach produces systems maximally adapted to specific contexts while 
minimizing external validity. When developers lack access to diverse multi-site data during training, creating 
generalizable models becomes essentially impossible regardless of algorithmic sophistication. 
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Convenience sampling determines which data are used for AI development. Readily available datasets from well-
resourced institutions become training sources not because they are representative but because they are accessible. 
This sampling strategy systematically excludes diverse clinical contexts, patient populations, and healthcare settings—
precisely the diversity essential for generalization. Geographic concentration, demographic homogeneity, and 
institutional similarity in training data inevitably produce models that generalize poorly beyond those specific contexts 
(Larson et al., 2018). 

Narrow evaluation metrics obscure generalization failures. When studies report overall accuracy, sensitivity, or AUC 
without disaggregating by subgroups or validating across external sites, poor generalizability remains invisible. 
Publication norms emphasizing impressive performance numbers rather than external validation encourage 
researchers to optimize for internal metrics while avoiding rigorous generalizability assessment. Regulatory approval 
processes that do not mandate comprehensive external validation allow systems to enter clinical practice despite 
limited evidence of robust performance (Wu et al., 2021). 

Economic incentives reinforce these practices. Collecting diverse multi-site datasets is expensive and time-consuming. 
Comprehensive external validation requires resources, partnerships, and data-sharing agreements that slow 
development timelines and increase costs. In competitive commercial environments where companies race to 
demonstrate high performance and secure regulatory approval, investments in generalizability compete with pressures 
for rapid deployment. When validation gaps are tolerated by regulators and markets, economic rationality suggests 
minimizing validation costs (Kelly et al., 2019). 

The structural analysis demonstrates that poor generalizability, like algorithmic bias, results not from individual 
failures but from systemic development practices. Current approaches optimize for success within specific contexts 
while systematically neglecting the diversity essential for robust performance across varied deployment settings. 
Technical solutions transfer learning, domain adaptation, federated learning—offer value but cannot fully compensate 
for fundamentally inadequate development paradigms. Sustainable generalizability requires restructuring how 
development occurs: prioritizing diversity in data collection, mandating multi-site validation, optimizing for worst-case 
rather than average performance, and treating generalizability as a fundamental requirement rather than an 
aspirational goal. 

The following section examines how poor generalizability and algorithmic bias compound each other, demonstrating 
these are not separate challenges but interconnected manifestations of the same structural problems in AI diagnostic 
development. 

5. The Intersection: How Bias and Generalizability Compound Each Other 

The previous sections examined algorithmic bias and poor generalizability as distinct phenomena, each with its own 
manifestations, mechanisms, and consequences. This analytical separation, however, obscures a critical reality: they are 
not separate challenges but interconnected manifestations of the same structural deficiencies in AI development 
practices. This section demonstrates how bias and poor generalizability compound each other, creating equity gaps 
more severe than either challenge would produce in isolation. Understanding this intersection is essential, for it reveals 
why technical solutions addressing either problem individually prove insufficient and why a fundamental restructuring 
of development paradigms is necessary. 

5.1. Common Root: Unrepresentative Training Data 

Both algorithmic bias and poor generalizability fundamentally stem from the same root cause: training data that fails to 
represent the full diversity of populations and contexts where AI diagnostic systems will be deployed. This 
representation bias is a dominant form of bias that critically limits the generalizability of healthcare AI models (Zech et 
al., 2018). When datasets systematically underrepresent specific demographic groups, two outcomes occur 
simultaneously: models learn less effectively about disease patterns in those groups (producing bias), and they optimize 
for characteristics present in overrepresented groups, failing to capture patterns necessary for performance in diverse 
deployment contexts (poor generalizability). 

This common root is evident in the geographic concentration of training data. Research reveals that over half of all 
published clinical AI models leverage datasets from either the United States or China, with many U.S. datasets 
overrepresenting non-Hispanic Caucasian patients relative to the general population (Larson et al., 2018). This 
concentration produces both bias (worse performance for underrepresented ethnic groups) and poor generalizability 
(performance degradation when deployed outside these specific geographic contexts). The mechanism operates 
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through how AI models handle underrepresented groups. When trained on imbalanced data, algorithms tend to 
"underestimate" or treat minority patterns as noise to avoid overfitting, approximating mean trends instead (Chen et 
al., 2021). This behaviour simultaneously produces bias (differential performance) and compromises generalizability 
(inability to handle contexts where these "minority" patterns are prevalent). 

5.2. Compounding Mechanisms: How Each Problem Worsens the Other 

Bias and poor generalizability do not merely share common origins; they actively compound each other through 
feedback mechanisms that amplify both problems beyond what either would produce independently. 

Bias worsens generalizability through learned dependencies on majority characteristics. When models perform poorly 
for specific demographic groups during training, developers often lack the disaggregated performance metrics 
necessary to detect this bias (Mehrabi et al., 2021). Models that appear to perform well overall may achieve high 
accuracy by specializing to majority group characteristics while failing for minorities. This specialization creates 
systems optimized for narrow demographic contexts, ensuring poor generalizability when deployed in settings with 
different demographic distributions. 

Poor generalizability amplifies bias through deployment decisions and feedback loops. When AI systems fail to 
generalize, healthcare organizations face a choice. Well-resourced institutions can afford local validation and model 
customization, while under-resourced facilities—which often serve populations already facing healthcare disparities—
cannot (Reddy et al., 2020). This creates a pattern where AI tools are deployed successfully in privileged contexts but 
remain unavailable or unreliable in marginalized settings, systematically amplifying existing healthcare inequities. 

Training data scarcity creates a vicious cycle of compounding disadvantages. Limited representation of specific 
populations creates multiple interconnected problems: models learn disease patterns less reliably for these groups 
(bias); they lack examples to recognize these groups in varied contexts (poor generalizability); and external validation 
studies often lack sufficient samples to assess performance reliably (validation gaps). Each limitation reinforces the 
others, creating particularly severe disadvantages for populations with minimal representation (Seyyed-Kalantari et al., 
2021). 

5.3. Intersectional Inequities: Compounded Disadvantages 

The intersection of bias and poor generalizability creates particularly acute problems for populations facing multiple, 
overlapping forms of marginalization. Individuals belonging to several underrepresented categories simultaneously for 
instance, elderly Black women in rural areas experience compounded disadvantages that exceed the sum of individual 
biases. 

Intersectional data scarcity operates multiplicatively rather than additively. If Black patients constitute 10% of a 
training dataset and rural patients constitute 15%, Black rural patients may represent only 0.5-1.5%, not 25% 
(Buolamwini & Gebru, 2018). This severe underrepresentation means models have virtually no examples from which 
to learn disease patterns for intersectional groups. The result is AI systems that perform catastrophically for precisely 
those populations facing the greatest healthcare access barriers and health disparities. 

Historical underrepresentation affects both datasets and development teams, with women and researchers of colour 
being underrepresented in clinical AI research (AIM-AHEAD, 2024). This dual absence means both the data and the 
perspectives essential for identifying and addressing intersectional equity concerns are missing during design, 
development, and validation. 

5.4. The Equity Paradox: AI Helps Least Where Needed Most 

The compounding of bias and poor generalizability culminates in what this thesis terms the "equity paradox" in medical 
AI: diagnostic systems perform best for populations with the least need for improved care access and worst for populations 
who could benefit most from enhanced diagnostic capabilities. This inversion transforms AI’s promise to democratize 
healthcare into a reality where it amplifies existing disparities. 

Populations already enjoying excellent healthcare access typically well-served, majority demographics in well-
resourced urban academic medical centres are most likely to be well-represented in training data. Models optimized on 
these populations perform best for them and generalize most reliably to similar settings. These groups experience AI as 
delivering on its promise. 
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Conversely, populations facing healthcare access barriers rural communities, racial and ethnic minorities, low-income 
individuals are systematically underrepresented in training data. Models perform worse for them individually (bias) 
and fail when deployed in facilities serving them (poor generalizability). When under-resourced facilities attempt 
deployment, they encounter systems optimized for different contexts. These groups experience AI as unreliable or 
harmful: leading to missed diagnoses, false alarms, and erosion of trust (Char et al., 2018). This paradox is intensified 
because well-resourced institutions can invest in validation and customization, while under-resourced ones cannot, 
creating a two-tier ecosystem. 

 

Figure 4 The Equity Paradox in Medical AIΙ 

5.5. Real-World Manifestations: Case Studies of Compounding Effects 

Examining specific deployment contexts reveals how bias and poor generalizability compound in practice. 

• Rural Healthcare Deployment: Rural facilities differ from urban academic centres in infrastructure, 
workflows, and staffing creating generalizability challenges. Simultaneously, rural populations often have 
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different demographic and socioeconomic characteristics—creating bias vulnerabilities. When urban-
developed AI systems are deployed rurally, they encounter both distribution shift (different context) and 
demographic mismatch, leading to dramatically worse performance. 

• International Deployment to LMICs: AI systems developed in high-income countries encounter massive 
distribution shifts in low- and middle-income countries (LMICs): different equipment, protocols, disease 
epidemiology, and population demographics (Wynants et al., 2020). Each dimension creates both 
generalizability challenges and bias risks. The combination creates systems that are often non-functional for 
populations potentially benefiting most from improved diagnostic access. 

• Safety-Net Hospitals: These institutions serve disproportionately minority, low-income populations 
(demographic mismatch/bias risk) and operate under different resource constraints than academic centres 
(contextual mismatch/generalizability challenge). Deploying externally developed AI systems here produces 
particularly poor performance precisely where healthcare challenges are most acute. 

5.6. Validation Gaps Obscure Compounding Effects 

The interconnection between bias and poor generalizability is further obscured by validation practices that fail to assess 
either challenge adequately. Aggregate validation metrics—reporting overall accuracy across entire test sets—obscure 
both bias (by averaging over groups) and poor generalizability (by testing on data from the same distribution as training 
data). A 2025 analysis of FDA-approved devices found clinical performance studies reported at approval for only ~50% 
of devices, with less than one-third providing sex-specific performance data (Wu et al., 2021). This inadequacy means 
most deployed systems have not been tested across diverse demographic groups or varied institutional contexts. 

The lack of intersectional validation is particularly problematic. Even studies that disaggregate by single demographic 
characteristics rarely examine intersectional categories (e.g., elderly Black women). Yet these groups face the most 
severe compounding effects. Without intersectional validation, the populations most vulnerable to AI failures remain 
invisible in performance assessments (Buolamwini & Gebru, 2018). 

5.7. Why Technical Solutions Alone Are Insufficient 

Recognizing the interconnected nature of bias and poor generalizability reveals why purely technical mitigation 
strategies, applied in isolation, are destined to fall short. Approaches that treat these as separate, isolated challenges 
cannot address their compounding effects or underlying common causes. 

Bias mitigation techniques (e.g., post-hoc fairness constraints) may address demographic performance gaps within a 
specific training distribution but do not ensure models will maintain fairness across different deployment contexts 
(Barocas et al., 2019). A model adjusted to be "fair" in one institution may exhibit dramatically different fairness 
properties when deployed elsewhere. 

Generalizability techniques (e.g., domain adaptation) that optimize for robust performance across different hospitals 
may inadvertently worsen bias if they prioritize performance on well-represented majority groups. Transfer learning 
using limited local data may improve average performance while leaving or worsening demographic disparities if the 
local data lacks diversity. 

The fundamental limitation is that technical solutions operate within the paradigm that created both problems: 
development using unrepresentative data and optimization for narrow metrics. They are attempts to fix the outputs of 
a broken system rather than repair the system itself. 

5.8. Structural Analysis: The Need for Integrated Solutions 

Understanding bias and poor generalizability as interconnected outcomes of common structural deficiencies points 
toward integrated solutions that address root causes rather than symptoms. Three key imperatives emerge: 

Data diversity is non-negotiable. No algorithmic sophistication can compensate for fundamentally unrepresentative 
training data. Proactive collection of diverse datasets capturing demographic, geographic, institutional, and clinical 
variability must become a fundamental requirement, necessitating restructured incentives and regulatory expectations 
(STANDING Together, 2024). 

Validation must be comprehensive and intersectional. Assessing bias within single-site data and assessing 
generalizability using aggregate metrics both fail to reveal compounding effects. Validation frameworks must 
simultaneously examine performance across demographic subgroups and across deployment contexts, with a focus on 
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intersectional categories. Regulatory approval should require evidence of maintained equitable performance across 
diverse real-world settings (FDA, 2024; Wu et al., 2021). 

Development priorities must be fundamentally reoriented. Current practices optimize for performance on available 
data, treating diversity and generalizability as secondary concerns. Sustainable equity requires inverting these 
priorities: treating robust, equitable performance across diverse populations and contexts as the primary goal, even if 
this means accepting lower peak performance on narrow, aggregated metrics (Wiens et al., 2019). 

The structural interconnection means addressing either challenge requires addressing both. Solutions must be 
integrated, proactive, and structural. The following sections examine the barriers to such solutions and propose a 
concrete framework for this necessary reorientation. 

6. Barriers to clinical translation 

The previous sections established that algorithmic bias and poor generalizability stem from structural deficiencies in 
AI development practices. However, understanding why these problems persist requires examining the barriers 
preventing solutions from being implemented. Current regulatory frameworks, economic incentives, organizational 
structures, and clinical workflows actively reinforce development practices that prioritize narrow performance over 
equity and generalizability. This section analyzes how these systemic barriers impede the translation of AI diagnostic 
systems into equitable, robust clinical tools and perpetuate the equity paradox. 

6.1. Regulatory Framework Inadequacies 

Regulatory oversight of AI diagnostic systems aims to ensure safety and effectiveness before clinical deployment. 
However, existing frameworks were designed for traditional medical devices with fixed characteristics, not adaptive AI 
systems that learn from data and may evolve over time. This fundamental mismatch creates regulatory gaps that allow 
biased, poorly generalizable systems to enter clinical practice. 

6.1.1. FDA Approval Processes and Their Limitations 

The U.S. Food and Drug Administration regulate AI-enabled medical devices through established pathways: 510(k) 
premarket clearance, De Novo classification, or Premarket Approval (FDA, 2024). As of mid-2024, approximately 950 
AI/ML-enabled medical devices had received FDA clearance, with roughly 100 new approvals annually. The majority 
fall into Class II (moderate risk) requiring 510(k) clearance based on substantial equivalence to predicate devices. 

These pathways contain critical limitations for addressing bias and generalizability. The 510(k) process’s precedent-
based approach can perpetuate problems present in earlier generations. More fundamentally, current approval 
processes do not consistently require comprehensive evidence of generalizability or equitable performance across 
diverse populations. A 2025 analysis of 903 FDA-approved AI-enabled medical devices found clinical performance 
studies were reported at approval for only approximately half, with less than one-third providing sex-specific 
performance data and only one-fourth addressing age-related subgroups (Wu et al., 2021). This means most deployed 
systems lack disaggregated validation demonstrating equitable performance, let alone rigorous external validation 
across different institutions and contexts. 

The FDA explicitly recognizes these limitations, acknowledging its traditional paradigm was not designed for adaptive 
AI technologies (FDA, 2025). While updated guidance establishes documentation requirements including bias analysis, 
the absence of mandatory requirements for comprehensive multi-site external validation represents a persistent gap 
that allows systems with limited evidence of equitable performance to enter clinical practice. 

6.1.2. The Predetermined Change Control Plan Challenge 

The FDA's Predetermined Change Control Plan (PCCP) allows manufacturers to implement approved algorithm 
modifications without new marketing applications for each change, provided modifications stay within predefined 
boundaries (FDA, 2025). While this approach recognizes AI's adaptive nature, it creates challenges for monitoring 
equity. 

If post-deployment data lack diversity or reflect biased clinical practices, continuous learning could actually worsen bias 
over time. Without robust real-world performance monitoring disaggregated by demographic groups, evolutionary 
changes may systematically degrade equitable performance while remaining within authorized modification 
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boundaries. The challenge intensifies because the main method of detecting degradation today remains clinical 
intuition, which is unreliable and variable, meaning harm may occur before problems are noticed. 

6.1.3. Validation Requirements and Their Gaps 

Current regulatory approaches focus primarily on technical accuracy rather than clinical utility and equitable 
performance. Approval can be granted based on performance in controlled research settings without evidence the 
system maintains accuracy in diverse real-world deployment contexts. The absence of mandatory external validation 
requirements represents a critical gap. While the FDA encourages multi-site testing and demographic disaggregation, 
these remain recommendations rather than requirements for many device classes (Wu et al., 2021). Healthcare 
institutions deploying FDA-cleared devices often assume regulatory approval indicates comprehensive validation, 
unaware that clearance may be based on single-site studies with limited demographic diversity. 

International regulatory frameworks face similar challenges. The European Union's AI Act explicitly designates medical 
AI as high-risk, requiring quality management, transparency, human oversight, and bias monitoring (European 
Commission, 2024). However, ensuring datasets adequately represent intended populations remains difficult in 
practice, and notified bodies conducting conformity assessments have limited experience with AI-specific validation 
challenges. 

6.2. Economic Barriers and Misaligned Incentives 

Economic factors powerfully shape AI development priorities, often incentivizing practices that perpetuate bias and 
poor generalizability. Understanding these economic barriers reveals why sustainable equity requires restructuring 
financial incentives. 

6.2.1. Development Costs and Resource Constraints 

Creating AI diagnostic systems requires substantial financial investment. Developing a single AI model can cost upwards 
of $1 million, and because models do not always work correctly, not every model makes it to deployment. More 
comprehensive estimates suggest implementing AI in healthcare ranges from $40,000 for simple functionality to 
$100,000 or more for complex solutions. 

These costs create strong incentives to minimize expenses wherever possible. Collecting diverse, representative 
datasets from multiple institutions across geographic regions is expensive and time-consuming. Using readily available 
data from single well-resourced institutions dramatically reduces costs and accelerates development timelines (Kelly 
et al., 2019). Similarly, comprehensive external validation requires substantial resources. When external validation is 
not mandated by regulators, economic rationality suggests minimizing validation costs by testing only on readily 
available datasets. 

6.2.2. Competitive Pressures and Time-to-Market 

Medical AI represents a competitive commercial market where first-mover advantages confer significant benefits. 
Companies race to demonstrate impressive performance metrics, secure regulatory approval, and establish market 
presence before competitors. These pressures create strong incentives to prioritize speed over comprehensive 
validation (Shaw et al., 2019). 

Collecting diverse data, conducting multi-site validation, and implementing bias mitigation strategies all extend 
development timelines. In fast-moving competitive markets, delays measured in months can mean the difference 
between market leadership and obsolescence. When regulatory frameworks do not mandate comprehensive diversity 
and validation, competitive dynamics systematically favour companies that minimize these time-consuming activities. 

6.2.3. Deployment Costs and Implementation Barriers 

Beyond development, substantial costs arise during clinical deployment. Continuously running AI models is costly, 
creating a financial barrier to widespread use. Healthcare institutions face expenses for software licensing, hardware 
infrastructure, system integration, staff training, workflow redesign, and ongoing maintenance. 

These deployment costs create particularly acute barriers for under-resourced facilities serving marginalized 
populations. Rural hospitals and community centres lack resources to develop these tools, to evaluate them effectively, 
or to implement them into their computer systems, making accessibility and equity critical concerns (Reddy et al., 2020). 
This resource disparity creates a vicious cycle: AI systems are developed primarily at well-resourced institutions using 
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their data, optimized for their contexts, and validated in their settings. Under-resourced facilities serving diverse, 
marginalized populations lack both the representation in training data and the resources for effective deployment, 
perpetuating the equity paradox. 

6.2.4. Misaligned Value Propositions 

Current AI business models often misalign with equity goals. Value propositions typically emphasize aggregate 
efficiency gains reducing radiologist reading time, accelerating diagnoses, minimizing false positives. These benefits 
accrue most reliably in contexts similar to development settings serving similar populations. 

When AI systems perform poorly for specific demographic groups or in under-resourced settings, the economic case for 
deployment weakens in precisely those contexts. Facilities serving predominantly marginalized populations may find 
AI tools less effective, generating fewer benefits while requiring equal or greater implementation costs. This creates 
perverse incentives where commercial viability depends on deployment in already well-served contexts rather than 
where improved diagnostic access is most needed. 

Healthcare reimbursement structures compound these misalignments. When payment models reward volume and 
efficiency rather than equity and outcomes, AI tools that improve throughput in privileged settings generate clearer 
financial returns than tools addressing disparities. Without reimbursement mechanisms explicitly valuing equity, 
economic incentives systematically favour development and deployment patterns that exacerbate rather than reduce 
healthcare disparities. 

6.3. Organizational and Workflow Integration Challenges 

Even when AI diagnostic systems demonstrate adequate performance and receive regulatory approval, organizational 
and clinical workflow barriers impede effective deployment—particularly in ways that ensure equitable, generalizable 
use. 

6.3.1. Clinical Workflow Disruption and Resistance 

Integrating AI into clinical workflows requires fundamental changes to established practices. Medical associations have 
identified data accessibility and operational infrastructure as significant barriers to AI integration, affecting 74% of 
respondents (Shaw et al., 2019). Clinicians face additional workload during implementation phases, and in already 
overburdened healthcare settings facing clinician burnout, this creates resistance even when AI promises long-term 
efficiency gains. 

Trust represents a critical barrier. Clinicians must trust AI recommendations to incorporate them into clinical decision-
making. When systems produce unexplained predictions, generate occasional obvious errors, or demonstrate 
inconsistent performance, clinician trust erodes (Char et al., 2018). Experiences with biased predictions or poor 
generalizability spread through professional networks, creating resistance that affects adoption. 

Beyond general trust, two specific human-factor barriers critically impede safe deployment: automation bias and alert 
fatigue. Automation bias describes clinicians' tendency to over-rely on AI recommendations, accepting algorithmic 
outputs without sufficient scrutiny. This creates risks when models exhibit hidden biases. Simultaneously, alert fatigue 
emerges when AI systems generate excessive false positives, causing clinicians to become desensitized and potentially 
ignore critical warnings. These psychological dynamics mean that even technically accurate AI can produce negative 
clinical outcomes through its interaction with human decision-makers. 

6.3.2. Data Infrastructure and Interoperability 

Effective AI deployment requires robust data infrastructure that many healthcare facilities lack. Systems must integrate 
with electronic health records, imaging archives, laboratory information systems, and clinical workflows—integration 
that proves technically complex and expensive. 

Data quality, standardization, and accessibility create persistent challenges. Medical associations reported that 
accessing health data for training AI algorithms and the complexities in training, testing, and validating AI algorithms 
were the most prominent barriers to AI adoption (Shaw et al., 2019). When data exist in incompatible formats or remain 
siloed across systems, deploying AI tools requiring integrated multi-modal data becomes prohibitively difficult. 
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6.3.3. Organizational Governance and Decision-Making 

Healthcare organizations face challenges establishing appropriate governance structures for AI adoption. Decisions 
about which AI tools to deploy, how to validate their performance, when to update systems, and how to monitor for bias 
require expertise spanning clinical medicine, data science, ethics, and informatics—combinations rarely available in 
integrated governance teams. 

A 2024 survey of 43 U.S. health systems found AI adoption and perceptions of success varied significantly, with only 
19% reporting high degrees of success with AI in imaging and radiology despite most having deployed such systems. 
This disconnect suggests governance and implementation challenges beyond technical performance. 

6.3.4. Training and Change Management 

Successful AI deployment requires comprehensive training for clinical and technical staff training that proves expensive 
and time-consuming. The time required for training AI systems and certainly in early stages following implementation 
is likely to remain a barrier (Shaw et al., 2019). When clinical schedules already operate at capacity, finding time for 
comprehensive AI training without compromising patient care proves extremely difficult. 

Change management more broadly communicating benefits, addressing concerns, managing resistance, and building 
organizational commitment requires dedicated resources and expertise. Without effective change management, even 
technically sound AI implementations can fail due to insufficient user engagement or cultural resistance. 

6.4. Performance Monitoring and Accountability Gaps 

Even after successful deployment, ensuring AI systems maintain equitable, effective performance requires ongoing 
monitoring monitoring that current practices inadequately support. 

6.4.1. Lack of Real-World Performance Tracking 

Most deployed AI diagnostic systems lack robust infrastructure for continuous performance monitoring in real-world 
settings. AI system performance can be influenced by changes in clinical practice, patient demographics, data inputs, 
and healthcare infrastructure, with data drift, concept drift, and model drift potentially leading to performance 
degradation, bias, or reduced reliability (FDA, 2025). Yet systematic tracking of these dynamics remains rare. 

Measuring accuracy continuously requires ongoing access to ground truth labels confirmed diagnoses for patients 
receiving AI-based recommendations. Obtaining these labels is resource intensive. For some applications, true 
outcomes may not be known for months or years, making timely detection of performance degradation impossible. 

6.4.2. Absence of Disaggregated Monitoring 

Even when performance monitoring occurs, it rarely includes systematic disaggregation by demographic subgroups or 
comparison across deployment contexts. Aggregate performance metrics can mask systematic bias or context-specific 
failures. A model maintaining 85% overall accuracy might show 90% accuracy for well-represented groups but only 
70% for minorities a critical disparity invisible in aggregate statistics. 

Recent research examining healthcare AI systems deployed across multiple institutions found only 23% had undergone 
rigorous bias testing before deployment, while fewer than 15% had established clear accountability structures for 
addressing errors. When systems produce disparate outcomes, there exist no systematic mechanisms for patients to 
seek recourse or for institutions to implement corrections quickly. 

6.4.3. Technical Challenges in Drift Detection 

Detecting when AI performance degrades requires distinguishing meaningful changes from normal variation. 
Distribution shifts creating performance problems may be subtle and gradual. Detecting these changes while avoiding 
false alarms requires sophisticated monitoring systems that few healthcare institutions have implemented. 

Alternative monitoring approaches using proxy metrics can alert to potential problems without requiring ground truth 
labels. However, these methods cannot definitively confirm whether performance has degraded, only that conditions 
have changed in ways that might affect performance. Healthcare institutions must then decide whether to adjust, 
retrain, or suspend AI systems based on uncertain signals—decisions with significant resource implications and 
potential patient safety impacts. 
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6.5. Knowledge Gaps and Capacity Limitations 

Implementing equitable, generalizable AI diagnostic systems requires expertise spanning multiple domains—clinical 
medicine, machine learning, health equity, implementation science, and informatics. This expertise remains scarce, 
creating human capital barriers to sustainable AI deployment. 

Many healthcare institutions, particularly smaller community hospitals and under-resourced facilities, lack in-house 
expertise to independently evaluate AI systems, conduct local validation studies, or customize models for their specific 
contexts. They depend on vendor claims and regulatory approvals, unable to critically assess whether systems will work 
well for their patient populations and clinical workflows (Reddy et al., 2020). 

Even well-resourced institutions face challenges. Trust was found to be a significant catalyst of adoption, impacted by 
several barriers, with governance structures identified as key facilitators (Shaw et al., 2019). Yet establishing effective 
governance requires understanding complex technical, ethical, and clinical considerations that exceed expertise 
available in many healthcare organizations. 

6.6. Structural Analysis: How Barriers Reinforce Problematic Practices 

Examining these barriers collectively reveals how current structures systematically reinforce development practices 
that perpetuate bias and poor generalizability rather than addressing them. Regulatory frameworks that do not 
mandate comprehensive external validation allow systems with limited evidence of equity and generalizability to enter 
clinical practice (Wu et al., 2021). Economic incentives that reward speed, narrow accuracy metrics, and deployment in 
well-served markets systematically discourage investments in diversity and comprehensive validation (Kelly et al., 
2019). Organizational structures that separate developers from deployment contexts create information asymmetries 
and misaligned incentives. Resource disparities between well-funded and under-resourced institutions concentrate 
both AI development and successful deployment in privileged settings (Reddy et al., 2020), actively reinforcing the 
equity paradox. 

These barriers are not isolated problems but interconnected elements of a system that makes problematic development 
practices economically rational and practically feasible. Developers face strong incentives to use convenient data 
sources, minimize validation costs, and prioritize impressive performance metrics over robust generalizability. 
Regulators lack frameworks to effectively require comprehensive diversity and validation. Healthcare institutions lack 
resources to conduct independent assessment. Patients lack information and recourse when systems perform poorly. 

Addressing these structural barriers requires coordinated changes across regulatory policy, economic incentives, 
organizational practices, and knowledge infrastructure. Technical solutions addressing algorithmic bias or poor 
generalizability cannot succeed within a system that actively disincentivizes the very practices necessary for equity and 
generalizability. The following section examines concrete strategies for restructuring these systems to centre equity 
and generalizability as fundamental requirements throughout the AI lifecycle. 

Table 3 Structural Root Causes and Their Manifestations 

Structural Root Cause Primary Manifestation Secondary 
Consequences 

Compounding Effect 

Unrepresentative Training 
Data (Geographic 
concentration, demographic 
homogeneity) 

Algorithmic Bias: 
Differential performance 
across groups 

Poor Generalizability: 
Failure in new contexts 

Populations facing healthcare 
disparities experience both 
worse individual care AND 
systemic tool failure 

Narrow Optimization 
Priorities (Focus on 
aggregate accuracy metrics) 

Development of models 
that sacrifice minority 
performance for overall 
metrics 

Validation frameworks 
that obscure subgroup 
disparities 

Tools appear successful in 
development but fail 
catastrophically for specific 
populations in deployment 

Inadequate Validation 
Frameworks (Lack of 
mandatory multi-site, 
disaggregated testing) 

Regulatory approval 
based on limited 
evidence 

Deployment of systems 
with unknown 
performance 
boundaries 

Healthcare institutions 
conduct uncontrolled 
experiments on patients 
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Economic Incentives for 
Speed (Time-to-market over 
robustness) 

Use of convenient, non-
representative datasets 

Avoidance of 
comprehensive 
validation due to 
cost/time 

Well-resourced settings get 
functional tools first; under-
resourced settings get hand-
me-down failures 

Resource Disparities in 
Development (AI expertise 
concentrated in privileged 
institutions) 

Development by teams 
lacking diverse 
perspectives 

Tools optimized for 
contexts familiar to 
developers 

 

7. Solutions and best practices: reorienting the development pipeline 

The preceding analysis establishes that algorithmic bias and poor generalizability are not technical anomalies but 
predictable outputs of a flawed development paradigm. Addressing these interconnected challenges requires moving 
beyond isolated technical fixes to fundamentally restructure how AI diagnostic systems are conceived, built, validated, 
and deployed. This section proposes an Equity-centred Development Lifecycle—a concrete framework that embeds 
diversity, equity, and generalizability as non-negotiable core requirements at every stage, from initial planning to post-
market surveillance. 

7.1. Proactive Data Diversity: From Convenience to Comprehensiveness 

The foundation of equitable AI is representative data. Current reliance on convenience sampling systematically excludes 
populations and contexts essential for robust performance. Reorienting toward proactive data diversity requires 
mandatory, structured strategies. 

7.1.1. Mandating Diverse Data Collection 

Diversity must transition from an aspirational goal to a mandatory regulatory and funding prerequisite. This requires 
setting explicit, minimum thresholds for demographic (race, ethnicity, gender, age, socioeconomic status), geographic, 
and institutional representation in training datasets. Initiatives like STANDING Together are developing consensus-
driven standards for equitable health data, emphasizing that representation alone is insufficient—data must also be 
accurate and ethically sourced from minoritized groups (STANDING Together, 2024). Regulatory bodies could require 
developers to demonstrate compliance with such standards prior to approval. Economic incentives, such as targeted 
grants, must reward comprehensive data collection over sheer volume. 

7.1.2. Community-Engaged Data Curation 

True representation requires engaging the communities represented in the data. Community-engaged approaches 
involve affected populations in defining what data is collected, how it is used, and how benefits are shared. Research 
Centres in Minority Institutions (RCMI) are uniquely positioned to lead this work, ensuring AI tools are designed with 
input from the communities they aim to serve (AIM-AHEAD, 2024). This participatory model helps capture not just 
demographic checkboxes, but the lived experiences, disease presentations, and healthcare contexts of diverse 
communities, building trust and legitimacy. 

7.1.3. Federated Learning for Privacy-Preserving Diversity 

Privacy concerns and data governance are major barriers to sharing patient information. Federated learning (FL) offers 
a paradigm-shifting solution by enabling model training across multiple institutions without centralizing raw patient 
data (Rieke et al., 2020). In FL, data remains within each hospital's secure infrastructure; only encrypted model updates 
are shared. This approach facilitates collaboration across diverse and under-resourced settings while maintaining 
compliance with regulations like HIPAA and GDPR. When combined with privacy-enhancing techniques like differential 
privacy, FL can build a technical foundation for the inclusive data ecosystems equitable AI requires. 

7.2. Equity-centred Development Practices 

With diverse data as a foundation, the development process itself must be re-engineered to optimize for fairness and 
robustness as primary objectives. 
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7.2.1. Fairness-Aware Optimization 

Standard optimization minimizes average error, which can mask poor performance for minority groups. Equity-
cantered development employs fairness-aware optimization techniques that treat worst-case subgroup performance as 
the key metric. This includes distributionally robust optimization, adversarial debiasing to remove demographic 
information from latent representations, and fairness constraints integrated directly into loss functions (Barocas et al., 
2019). The goal is to build models for which high performance is a guarantee for all, not an average skewed by privilege. 

7.2.2. Involving Diverse Development Teams 

The underrepresentation of women and people of colour in AI research means the perspectives needed to identify 
equity concerns are often absent from the design process (Buolamwini & Gebru, 2018). Building diverse teams is not 
merely a matter of justice but of technical necessity. This requires intentional recruitment, support for researchers at 
minority-serving institutions, inclusive mentorship pipelines, and governance structures that ensure diverse voices 
have decision-making authority. Initiatives like AIM-AHEAD explicitly link workforce diversity to the development of 
equitable AI (AIM-AHEAD, 2024). 

7.2.3. Human-centred Design and Continuous Stakeholder Engagement 

AI systems are socio-technical interventions whose success depends on seamless integration into human workflows 
and decision-making. Human-cantered design logic must involve clinicians, patients, and healthcare administrators 
throughout the development lifecycle—from defining requirements to evaluating prototypes (Sendak et al., 2020). This 
engagement is critical for mitigating automation bias (over-reliance on AI) and alert fatigue. Interfaces should be 
designed to support, not replace, clinical reasoning by displaying confidence scores, forcing consideration of AI outputs, 
and highlighting potential demographic mismatches where model performance may be weaker. 

7.3. Comprehensive External Validation Requirements 

Robust validation is the bridge between laboratory performance and real-world utility. Current practices are 
inadequate. Comprehensive, mandatory external validation must become the gatekeeper for clinical deployment. 

7.3.1. Multi-Site, Multi-Population Validation Protocols 

Regulatory approval should require demonstrable performance across a spectrum of independent sites that reflect real-
world diversity: different institution types (academic, community, rural, safety-net), geographic regions, equipment, 
and patient demographics. Validation must move beyond single-site "internal" tests to prove external generalizability. 
Protocols should be standardized to allow for meaningful comparison across studies and systems. 

7.3.2. Transparency and Disaggregated Reporting 

Transparency is non-negotiable. The publication of "model facts" or "algorithmic impact assessments" should be 
required, detailing training data demographics, known limitations, and—critically—disaggregated performance 
metrics across race, ethnicity, sex, age, and socioeconomic status (Sendak et al., 2020). Aggregate metrics like overall 
AUC must be supplemented with subgroup-specific sensitivity, specificity, and PPV. This transparency enables 
regulators, healthcare systems, and the public to assess fairness and fitness-for-purpose. 

7.3.3. Collaborative Validation Networks 

Establishing independent, collaborative validation networks—consortia of diverse healthcare institutions—would 
provide trusted infrastructure for pre-deployment testing. These networks, funded through public-private 
partnerships, would use standardized protocols to evaluate AI systems on local data, generating essential evidence of 
generalizability while protecting patient privacy through federated approaches. 

7.4. Regulatory Reform for Equity and Generalizability 

Regulatory bodies hold the most direct leverage to enforce higher standards. Reform must make equity and 
generalizability central pillars of the approval process. 

7.4.1. Mandating Diversity and External Validation 

The FDA and other regulators must evolve guidance into requirement. This includes mandating minimum diversity 
thresholds in training data, compulsory multi-site external validation with disaggregated results, and post-market 
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surveillance plans that track real-world performance across subgroups (FDA, 2025; Wu et al., 2021). Approval should 
be conditional on meeting predefined equity benchmarks, not just technical accuracy. 

7.4.2. Adaptive Regulation for Continuously Learning Systems 

For AI systems that learn after deployment, the Predetermined Change Control Plan (PCCP) framework must explicitly 
guard against equity degradation. It must require ongoing, disaggregated performance monitoring as part of the 
"predetermined" plan, with clear triggers for mandatory reassessment if performance gaps emerge. Regulations must 
ensure continuous learning improves systems equitably for all patients (FDA, 2025). 

7.4.3. International Harmonization and Global Equity 

With global AI deployment, regulatory harmonization is essential to prevent "equity dumping"—the deployment of 
systems failing fairness standards in high-income countries into lower-regulation markets. International collaboration 
on core standards for data diversity, validation, and monitoring can help ensure AI benefits are global, not just Western 
(European Commission, 2024). 

7.5. Economic Restructuring and Aligned Incentives 

Sustainable change requires altering the economic calculus to make equity the rational choice for developers and 
healthcare systems. 

7.5.1. Funding Models Prioritizing Equity 

Public research funding (e.g., from NIH, NSF) must prioritize projects that demonstrate proactive commitments to data 
diversity, community engagement, and multi-site validation. Grant applications should be evaluated on their equity 
plans as rigorously as their technical innovation. Dedicated funding streams should support data collection from 
underrepresented settings and capacity building at under-resourced institutions. 

7.5.2. Reimbursement Tied to Equity Outcomes 

Payment structures must reward equitable outcomes. Centres for Medicare & Medicaid Services (CMS) and private 
insurers could develop value-based purchasing models that offer higher reimbursement for AI tools demonstrating 
proven, equitable performance across populations, or that are successfully deployed in underserved areas. Conversely, 
reimbursement could be penalized for tools deployed without adequate validation evidence. 

7.5.3. Shared Development Models Reducing Barriers 

High development costs incentivize corner cutting. Public-good AI models, developed through open-source consortia or 
public-private partnerships and validated across diverse sites, could reduce costs and democratize access. Frameworks 
like the Personal Health Train demonstrate how federated infrastructure can enable collaborative development while 
preserving data sovereignty (Personal Health Train, 2023). 

7.6. Organizational Best Practices for Deployment 

Healthcare institutions are the final gatekeepers. They must develop the capacity to critically evaluate and responsibly 
deploy AI. 

7.6.1. Local Validation and Customization 

Even broadly validated systems require local assessment. Before full deployment, institutions should conduct internal 
validation studies to confirm performance on their specific patient population and clinical workflows. This requires 
investment in local data science and clinical informatics expertise—a capacity that must be built, particularly at 
community and safety-net hospitals. 

7.6.2. Disaggregated Performance Monitoring 

Post-deployment, institutions must implement continuous monitoring of AI performance, disaggregated by key 
demographic groups. This system should track not just algorithmic metrics (sensitivity, specificity) but also clinical 
outcomes, ensuring the tool is improving care equitably. Mechanisms for clinicians and patients to report suspected 
errors or biases are essential. 
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7.6.3. Governance Structures and Accountability 

Effective governance requires multidisciplinary committees—including clinicians, data scientists, ethicists, and patient 
advocates to oversee AI procurement, deployment, and monitoring. These committees must establish clear policies on 
appropriate use, human oversight, and procedures for addressing adverse events or performance disparities. 
Accountability must be clear when systems fail. 

7.7. Workforce Development and Capacity Building 

The equitable AI ecosystem requires a workforce with new, hybrid skills. 

7.7.1. Training for Clinicians and Healthcare Leaders 

Clinicians need education on AI fundamentals, how to interpret AI outputs critically, and how to recognize potential 
bias. This training should be integrated into medical school curricula and continuing education. Healthcare leaders need 
training on procuring, governing, and monitoring AI systems, with a focus on equity implications. 

7.7.2. Developing AI Expertise in Under-Resourced Settings 

Bridging the digital divide requires dedicated programs to build AI evaluation and implementation capacity at 
community hospitals, rural facilities, and safety-net institutions. This could involve partnerships with academic centres, 
specialized training fellowships, and funding for embedded data science roles. 

7.7.3. Building Diverse AI Research Pipelines 

Long-term solutions require diversifying the AI research pipeline itself. This means sustained investment in STEM 
education at minority-serving institutions, creation of mentorship and career pathways for underrepresented scholars 
in AI-for-health, and recognition of equity-cantered research in academic promotion. 

7.8. Emerging Technologies and Innovative Approaches 

Technical innovation, when guided by equity principles, can provide powerful new tools. 

7.8.1. Differential Privacy and Advanced Cryptographic Methods 

Beyond federated learning, techniques like differential privacy (adding statistical noise to data or outputs) and 
homomorphic encryption (computation on encrypted data) can provide stronger privacy guarantees, enabling broader 
and more secure participation in collaborative data ecosystems (Kairouz et al., 2021). 

7.8.2. Synthetic Data Generation for Augmentation 

Generative AI can create synthetic medical data representing underrepresented populations, helping to balance training 
sets. However, synthetic data carries the risk of perpetuating biases in the source data and must be used cautiously as 
an augmentation to, not a replacement for, real-world data collection. 

7.8.3. Explainable AI for Bias Detection and Trust 

Explainable AI (XAI) methods that reveal the features influencing a model's decision are vital for debugging bias, 
building clinician trust, and providing recourse to patients. Research should focus on XAI techniques specifically 
designed to uncover discriminatory reasoning patterns. 

7.9. Integrated Framework: The Equity-centred Development Lifecycle 

The solutions above are not a menu of options but interconnected components of an integrated framework. The Equity-
centred Development Lifecycle envisions a continuous process where equity is assessed and enforced at every phase: 

7.9.1. Planning Phase 

• Engagement with diverse stakeholders and affected communities 
• Equity impact assessment before development begins 
• Explicit equity goals alongside technical objectives 
• Resource allocation for comprehensive diversity and validation 
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7.9.2. Data Phase 

• Proactive collection from diverse sources 
• Community-engaged data curation 
• Federated approaches for privacy-preserving diversity 
• Transparent documentation of data composition and limitations 

7.9.3. Development Phase 

• Diverse, multidisciplinary development teams 
• Fairness-aware optimization strategies 
• Continuous disaggregated performance monitoring 
• Iterative engagement with clinical end-users 

7.9.4. Validation Phase 

• Comprehensive multi-site external validation 
• Disaggregated reporting across demographics and contexts 
• Intersectional performance assessment 
• Transparent documentation of validation results 

7.9.5. Regulatory Phase 

• Evidence-based requirements for diversity and external validation 
• Disaggregated performance reporting to regulators 
• Conditional approval based on equity benchmarks 
• Ongoing post-market surveillance requirements 

7.9.6. Deployment Phase 

• Local institutional validation 
• Gradual rollout with continuous monitoring 
• Human oversight and clear governance 
• Patient and clinician transparency 

7.9.7. Monitoring Phase 

• Disaggregated real-world performance tracking 
• Early detection of degradation or bias 
• Mechanisms for user feedback and reporting 
• Regular equity audits and reassessment 



World Journal of Advanced Research and Reviews, 2025, 28(03), 2134-2179 

2170 

 

Figure 5 The Equity-Centered AI Development Lifecycle 

This framework provides a concrete blueprint for the paradigm shift from accuracy-focused to equity-cantered AI 
development. 

7.10. An Implementation Roadmap: From Theory to Practice 

Translating this comprehensive framework into reality requires a phased, pragmatic strategy with clear accountability. 

• Phase 1: Foundation (1-2 Years): Regulators mandate disaggregated performance reporting. Funders create 
grants for diverse data collection. Leading journals require fairness statements and external validation code. 
Hospitals establish AI governance committees. 

• Phase 2: Integration (3-5 Years): Mandatory multi-site external validation becomes a clearance requirement. 
Reimbursement models begin to incorporate equity bonuses/penalties. Collaborative validation networks 
become operational. AI equity training enters standard medical curricula. 

• Phase 3: Entrenchment (5+ Years): The equity-cantered lifecycle is the industry standard. Federated learning 
and privacy-preserving techniques are widespread. International regulatory harmonization on core equity 
standards is achieved. AI tools developed as public goods are widely accessible. 
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Table 4 Comparison of Current vs. Proposed Equity-centred Practices 

Development 
Stage 

Current Practice Proposed Equity-centred Practice Expected Impact 

Data Collection Convenience sampling 
from available academic 
centres 

Proactive diverse collection; minimum 
demographic thresholds; federated 
learning 

Training data reflects 
real-world patient 
diversity 

Model 
Optimization 

Minimize aggregate error 
(accuracy, AUC) 

Fairness-aware optimization; worst-case 
subgroup performance as primary 
metric 

Models perform reliably 
across all patient groups 

Validation Single-site internal 
validation; aggregate 
metrics 

Mandatory multi-site external validation; 
disaggregated reporting by 
demographics 

Pre-identification of bias 
and generalizability 
issues 

Regulatory 
Review 

Approval based on 
technical accuracy; 
limited post-market 
requirements 

Approval contingent on equity evidence; 
robust post-market surveillance with 
disaggregated monitoring 

Only equitable systems 
reach patients; 
continuous safety 
monitoring 

Deployment "One-size-fits-all" 
deployment; vendor 
claims as primary 
evidence 

Local validation required; clinician 
training on limitations; clear governance 
structures 

Tools fit local contexts; 
clinicians use AI 
appropriately 

Economic 
Models 

Reward speed-to-market 
and impressive lab 
metrics 

Funding/reimbursement tied to equity 
outcomes; public-good development 
models 

Economic incentives 
aligned with equitable 
health outcomes 

This roadmap provides stakeholders with a clear path forward, demonstrating that the proposed transformation is 
ambitious but achievable. 

8. Conclusion 

This thesis has examined the fundamental paradox of medical artificial intelligence: diagnostic systems that achieve 
exceptional performance in controlled laboratory settings consistently fail to translate into equitable, robust clinical 
tools. Through systematic analysis of algorithmic bias, poor generalizability, their intersection, and the structural 
barriers that sustain them, this research establishes that these translation failures are not isolated technical problems 
requiring incremental fixes, but predictable outcomes of a development paradigm misaligned with the realities of 
diverse healthcare ecosystems. The path forward requires nothing less than a fundamental reorientation—from 
accuracy-centric to equity-cantered AI development. 

8.1. Synthesis of Key Findings 

The evidence presented reveals a consistent and troubling pattern. AI diagnostic systems trained on geographically 
concentrated and demographically homogeneous datasets systematically underperform for marginalized populations. 
Dermatology algorithms show markedly worse accuracy on darker skin tones (Daneshjou et al., 2022), radiology models 
underdiagnose conditions in female, Black, and low-socioeconomic-status patients (Seyyed-Kalantari et al., 2021), and 
risk prediction tools assign lower risk scores to Black patients with equivalent health needs, restricting their access to 
care (Obermeyer et al., 2019). These are not aberrations but the predictable result of optimizing for narrow 
performance on data that reflects and amplifies existing healthcare disparities. 

Simultaneously, these systems demonstrate a critical inability to maintain performance across institutions and contexts. 
Models achieving over 94% accuracy within development hospitals see performance drop by 8 percentage points when 
deployed elsewhere (Wong et al., 2021). The geographic concentration of training data—with 71% of U.S. diagnostic AI 
studies using data exclusively from California, Massachusetts, or New York—produces systems optimized for privileged 
contexts while failing in the diverse settings where they are most needed (Larson et al., 2018). 
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Critically, this research demonstrates that bias and poor generalizability are not separate challenges but interconnected 
manifestations of the same root cause: development practices that prioritize aggregate accuracy on convenient datasets 
over robust performance for all. Their compounding creates the equity paradox: AI diagnostic tools work best for 
populations with the least need and worst for those who could benefit most from improved diagnostic access. This 
paradox is sustained by regulatory frameworks that lack mandatory diversity and validation requirements (Wu et al., 
2021), economic incentives that reward speed over equity (Kelly et al., 2019), and resource disparities that concentrate 
both AI development and successful deployment in already well-served settings (Reddy et al., 2020). 

8.2. Theoretical Contributions 

This thesis makes several distinct contributions to the scholarship on responsible AI in healthcare: 

8.2.1. Structural Analysis of Development Practices 

While existing literature extensively documents instances of bias or proposes technical mitigations, this work centres a 
structural analysis, demonstrating how fundamental choices in data sourcing, optimization priorities, and validation 
practices systematically produce inequitable systems. It argues that bias and poor generalizability are features, not 
bugs, of the current paradigm. 

8.2.2. The Interconnection of Bias and Generalizability 

The thesis establishes that these are not separate problems requiring distinct solutions but interconnected outcomes of 
unrepresentative data. It details the compounding mechanisms through which each problem worsens the other, 
creating particularly severe equity gaps for intersectionally marginalized populations. 

8.2.3. The Equity Paradox Framework 

The concept of the equity paradox provides a powerful lens for understanding how technological advancement can 
inadvertently amplify healthcare disparities. It captures the perverse outcome where AI’s benefits accrue to the already 
well-served, transforming a tool of potential democratization into one of further marginalization. 

8.2.4. The Equity-Centred Development Lifecycle 

Moving beyond critique, the thesis articulates a comprehensive, integrated framework for restructuring AI 
development. This lifecycle model embeds proactive diversity, fairness-aware optimization, mandatory multi-site 
validation, and continuous monitoring as non-negotiable requirements at every phase, from planning to post-market 
surveillance. 

8.3. Practical Implications and a Call to Action 

The findings demand urgent and coordinated action from all stakeholders in the AI healthcare ecosystem. The technical 
capacity to build equitable AI exists; what is lacking is the collective will to mandate it. 

8.3.1. For Researchers and Developers 

The pursuit of impressive accuracy on narrow benchmarks must be recognized as an academic and ethical dead-end. 
Research must prioritize the collection of diverse, community-engaged datasets, adopt fairness-aware optimization as 
standard practice, and demand rigorous external validation as a prerequisite for publication. Building on 
unrepresentative data is no longer scientifically defensible. 

8.3.2. For Regulatory Bodies (FDA, EMA, etc.) 

Guidance must evolve into requirement. Regulatory approval must be conditional on demonstrated compliance with 
minimum data diversity standards, evidence from comprehensive multi-site external validation, and robust plans for 
post-market surveillance with disaggregated performance tracking (FDA, 2025; Wu et al., 2021). The predicate-based 
510(k) pathway is inadequate for adaptive AI; new, equity-centred frameworks are needed. 

8.3.3. For Healthcare Institutions and Clinicians 

FDA clearance cannot be equated with clinical readiness for your specific population. Institutions must build 
governance capacity, conduct local validation studies, and demand transparent, disaggregated performance data from 
vendors. Clinicians must be trained as informed, critical users of AI, aware of its potential biases and their role as the 
final arbiters of patient care. 
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8.3.4. For Policymakers and Funders 

Public investment must be strategically aligned to dismantle the equity paradox. Funding agencies should prioritize 
grants that demonstrate commitments to data diversity and community partnership. Policymakers should explore 
reimbursement models that reward equitable outcomes and invest in infrastructure (like federated learning networks) 
that lower barriers for under-resourced institutions to participate in and benefit from AI. 

Limitations and Future Research 

This analysis, while comprehensive, points toward necessary future work. The focus has been primarily on diagnostic 
AI within U.S. and European contexts; research must expand to examine therapeutic AI, clinical decision support, and 
the unique challenges of deployment in low- and middle-income countries. The proposed Equity-centred Lifecycle 
requires empirical validation through longitudinal implementation studies. Furthermore, the rapid emergence of large-
scale foundation models and generative AI presents a critical new frontier. These models, trained on internet-scale data 
that embeds societal biases, risk scaling the structural inequities described here to unprecedented levels. Future 
research must proactively develop frameworks for auditing, validating, and governing these powerful tools to ensure 
they advance, rather than undermine, global health equity. 

8.4. Final Reflection: From Promise to Practice 

The journey from laboratory bench to patient bedside is one of validation, trust, and demonstrated value for all. For AI 
diagnostics, this journey remains incomplete. The translation gap is not a minor technical hurdle, but the direct output 
of a system optimized for the wrong metrics a system that produces the equity paradox. 

The choice before us is stark. We can continue current practices, producing ever-more sophisticated tools that work 
best for the healthiest and wealthiest, thereby encoding present-day inequities into the healthcare infrastructure of the 
future or, we can undertake the deliberate, coordinated work of structural reorientation. 

This thesis has charted the course for that reorientation: the Equity-centred Development Lifecycle. It is a blueprint for 
building AI that earns the trust of every community, functions reliably in every clinic, and truly democratizes diagnostic 
excellence. The promise of AI in medicine is real, but it is a conditional promise. It will be realized not through algorithms 
alone, but through our collective commitment to build those algorithms justly. The future of AI in healthcare—whether 
it amplifies or reduces inequity—is not predetermined. It is a choice. We must choose equity.  
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Appendices 

APPENDIX A: Proposed Multi-Site External Validation Protocol Template 

Purpose 

This template operationalizes the comprehensive validation requirements proposed in Section 7.3. It provides a 
concrete example of the standardized protocol that regulatory bodies (e.g., FDA) could mandate or that collaborative 
validation networks could adopt to rigorously assess algorithmic bias and generalizability prior to clinical deployment. 

Study Objective 

To evaluate the diagnostic performance and fairness of [AI System Name/Version] across diverse clinical sites, patient 
populations, and imaging equipment, assessing its generalizability and identifying any performance disparities across 
predefined demographic subgroups. 

Participating Site Requirements 

A minimum of five (5) independent clinical sites must be included, encompassing the following diversity: 
o Institutional Types: At least one (1) academic medical centre, one (1) community hospital, and one (1) 

safety-net or rural hospital. 
o Geographic Distribution: Sites must represent at least three (3) distinct U.S. Census regions or two (2) 

different countries if seeking international validation. 
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o Equipment Variance: Data must be acquired from at least two (2) different manufacturer models of the 
primary imaging modality (e.g., Siemens vs. GE CT scanners). 

Dataset Composition & Minimum Sample Sizes 

The validation dataset must be prospectively assembled or sourced from retrospectively collected, site-specific data not 
used in model training. 

o Overall Minimum: N = [To be determined by intended use and statistical power calculation, e.g., 1000 
independent cases]. 

o Disaggregated Minimums: Each major demographic subgroup must be represented with sufficient 
power for statistical analysis. Minimum per site: 

▪ Race/Ethnicity: n≥100 per self-reported category (e.g., Asian, Black, White, Hispanic). 
▪ Sex: n≥200 for male and female categories. 
▪ Age: n≥100 for age brackets (e.g., 18-40, 41-65, 65+). 

• Intersectional Consideration: The study must report on feasibility of assessing intersectional categories (e.g., 
Black females 65+) and note if sample sizes are insufficient. 

Primary & Secondary Outcomes 

• Primary Outcomes: Overall sensitivity, specificity, and AUC of the AI system across the entire pooled 
validation set. 

• Secondary (Equity) Outcomes: Disaggregated performance metrics (sensitivity, specificity, PPV, NPV) for all 
demographic categories listed in Section 3.0. The primary fairness metric is the maximum performance gap 
(the largest absolute difference in sensitivity or specificity between any two demographic subgroups). 

Statistical Analysis Plan 

• Performance metrics will be reported with 95% confidence intervals. 
• Generalizability will be assessed by comparing performance (AUC) across sites using a mixed-effects model, 

with site as a random effect. 
• Algorithmic bias will be assessed by testing for significant differences (p<0.05, adjusted for multiple 

comparisons) in secondary outcomes across subgroups within and across sites. 
• A sample size justification based on the precision of estimating the maximum performance gap must be 

provided. 

Reporting Requirements 

Results must be reported in accordance with a modified TRIPOD+AI statement and must include: 
• A site-performance matrix showing outcomes per participating institution. 
• A disaggregated performance table for all demographic subgroups. 
• An analysis of failure modes, including case reviews of false negatives/positives stratified by subgroup. 
• A clear statement of clinical contexts and populations for which performance was and was not validated. 

APPENDIX B: Model Fact Sheet (Algorithmic Impact Assessment) Template 

Purpose 

This Model Fact Sheet template exemplifies the transparency documentation proposed in Section 7.3.2. It serves as an 
illustrative "nutrition label" for AI diagnostic models—a framework to be completed by developers and required for 
regulatory submission and hospital procurement. The example values demonstrate the type and granularity of 
information needed to assess fairness and generalizability risks. 

AI Diagnostic Model Fact Sheet 

Version: 1.0 | For Model: [Model Name & Version] 

• Section 1: Intended Use & Scope 

o Intended Use: [e.g., Triage of pneumothorax on chest X-rays] 



World Journal of Advanced Research and Reviews, 2025, 28(03), 2134-2179 

2177 

o Target Population: [e.g., Adult patients (18+) presenting to emergency departments in the United 
States] 

o Clinical Context: [e.g., Use as a second reader for board-certified radiologists] 
o Explicitly Out-of-Scope: [e.g., Paediatric patients, portable X-rays, use as a fully autonomous 

diagnostic tool] 

• Section 2: Training Data Provenance 

Table B1. Example of Required Training Data Transparency Documentation 

Illustrative example populated with synthetic data to demonstrate the required level of transparency. 

 

Demographic Factor Composition % Source(s) & Notes 

Race/Ethnicity e.g., White: 75%, Black: 12%, Asian: 8%, 
Other/Unknown: 5% 

Derived from Site A (2015-2020), Site B 
(2018-2021). Labels based on EHR self-
report. 

Sex Assigned at Birth Female: 45%, Male: 55% -- 

Age Mean: 58 ± 16 years -- 

Geographic Origin e.g., Data from 3 hospitals in Massachusetts 
and 1 in California. 

 

Clinical Setting e.g., 100% from inpatient academic medical 
centres. 

 

Data Source & Curation Total N: 50,000 images. Curation Note: 
Images with technically poor quality were 
excluded by a radiologist. 

 

• Section 3: Known Performance Characteristics & Gaps 

o Overall Performance (Internal Test Set): Sensitivity: 88% (CI: 85-90%), Specificity: 94% (CI: 92-95%). 
o Disaggregated Performance (Internal): See Table B1. [*Example: Sensitivity for Black patients was 82% 

(CI: 75-88%) vs. 90% (CI: 87-92%) for White patients. *] 

o External Validation Status: ☐ Not Performed ☐ Performed on 1 external site ☐ Performed per Appendix 
A protocol. 

o If performed, attach summary report. 
o Known Performance Gaps: [e.g., "Performance degraded on data from Hospital Z using Brand Y X-ray 

machines. Sensitivity for patients over 80 was lower in internal testing."] 
• Section 4: Bias Mitigation & Fairness Measures 

o During Training: [e.g., "Class-balanced sampling was used. Adversarial debiasing was attempted to reduce 
correlation with race."] 

o During Validation: [e.g., "Disaggregated testing was conducted. The model was evaluated against 
equalized odds difference, which was <0.05."] 

o Post-Deployment: [e.g., "The PCCP includes monthly monitoring of sensitivity by race/ethnicity."] 
 

• Section 5: Recommended Monitoring & Governance 
o Key Equity Metrics to Monitor in Production: Sensitivity by race, age, and sex; site-specific AUC. 
o Recommended Audit Frequency: Quarterly disaggregated review. 
o Recommended Clinical Governance: This model should not be used as the sole diagnostic criterion. 

Clinicians should be made aware of the potential for reduced sensitivity in elderly and Black patient 
populations. 
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APPENDIX C: Semi-Structured Interview Guide for Stakeholder Analysis 

Purpose 

This guide outlines the methodological approach for the qualitative research component proposed in Sections 7.2.3 and 
7.6.3. It is designed to elicit in-depth insights from key stakeholders (developers, regulators, clinicians) about the 
perceived barriers and facilitators to implementing an equity-centred lifecycle, grounding the theoretical framework in 
practical realities. 

Study Aim 

To understand stakeholder perspectives on the operational, economic, and ethical challenges of developing, validating, 
and deploying equitable and generalizable AI diagnostic systems. 

Participant Groups 

o AI Developers/Researchers (n=10-15): From industry and academia. 
o Regulatory Affairs Professionals (n=5-10): From FDA and notified bodies. 
o Clinician End-Users & Healthcare Executives (n=10-15): Radiologists, cardiologists, and hospital 

CIOs/CMOs. 

Informed Consent & Introduction 

o Explain study purpose, confidentiality, recording procedures. 
o Opening Question: "Can you describe your role and experience with AI diagnostic tools in healthcare?" 

Interview Domains and Questions 

• Domain 1 Perceptions of the Problem 

o How significant do you believe the problems of algorithmic bias and poor generalizability are in today's 
AI diagnostics? 

o What do you see as the primary root causes of these issues? (Probe: data, incentives, regulation, speed-
to-market). 

 

• Domain 2: Barriers to Equitable Development 

o From your perspective, what are the biggest practical barriers to collecting more diverse and 
representative training data? 

o What are the main disincentives (economic, competitive, regulatory) for conducting comprehensive 
multi-site external validation? 

o How do current product development timelines and funding models help or hinder a focus on fairness 
and robustness? 

• Domain 3: Feasibility of Proposed Solutions 

o I will describe a few proposed interventions (e.g., mandatory validation templates—Appendix A, 
required model fact sheets Appendix B). What is your reaction to their feasibility and potential 
effectiveness? 

o What would be the single most impactful change a regulator (like the FDA) could make to improve 
equity in AI diagnostics? 

o What would a hospital need, in terms of resources and expertise, to properly validate and monitor an 
AI tool for equitable performance locally? 

• Domain 4: Responsibility & Governance 

o Who do you believe should hold primary responsibility for ensuring an AI diagnostic tool performs 
fairly across all patient groups? 
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o What does effective institutional governance of AI look like in a clinical setting? 

Closing Question 

• Is there anything we haven’t discussed that you feel is critical for achieving equitable AI diagnostics? 
• Do you have any recommendations for this research project? 

Proposed Analysis Plan 

Interviews will be transcribed, de-identified, and analyzed using thematic analysis to identify convergent and divergent 
themes across stakeholder groups, which will directly inform the refinement of the proposed Equity-Centred Lifecycle 
framework. 


