

Renewable Energy Transition and Challenges: Solar and Wind Energy Systems Optimization Through Battery Storage Technology and Grid Integration Strategies

Lambert Ekene Anyanwu ^{1,*}, Ayodeji Felix Ogunsina ², Queendaline Fichi Ohiri ³ and Isdore Onyewuchi Anyanwu ⁴

¹ Brandenburg University of Technology Cottbus-Senftenberg, Faculty of Environment and Natural Science. Germany.

² Department of Agricultural Economics, Faculty of Agricultural sciences, Ladoke Akintola University, Ilorin Road, 210214 Ogbomosho, Oyo State, Nigeria.

³ Department of Agricultural economics, Faculty of Agricultural Science, Federal University of Technology Owerri, P.M.B 1526 Imo State, Nigeria.

⁴ Department of Agricultural economics, Faculty of Agricultural Science, Abia State University Uturu, Nigeria Faculty of Environmental Science. Nigeria.

World Journal of Advanced Research and Reviews, 2025, 28(03), 1938-1952

Publication history: Received on 12 November 2025; revised on 25 December 2025; accepted on 27 December 2025

Article DOI: <https://doi.org/10.30574/wjarr.2025.28.3.4226>

Abstract

The shift to renewable energy sources is a radical change in the power generation paradigm in the world and is supported by the necessity to reduce greenhouse gas emissions and spontaneously decrease climate change. This critical analysis looks at how the solar and wind energy systems can be optimized by using sophisticated battery storage technology and planning the integration of the systems within the grid. The discontinuous aspect of the renewable sources of energy is also a serious technical problem to the stability, power quality, and reliability of the grid. The battery energy storage system has become one of the most important enablers of renewable energy integration offering such important services as frequency regulation, voltages, and load balancing. The current work is comprehensive research on the modern trends in energy storage solutions, smart grid designs, and optimization of renewable energy solutions. The article analyses the different optimization methods such as artificial intelligence, predictive control system, and demand response. The findings indicate that battery storage systems that are integrated can improve the level of penetration of the renewable energy considerably without compromising the stability of the grid and the quality of power. The gaps in the research found in the study are in the fields of long-duration energy storage, grid-forming inverter technologies, and virtual power plant coordination.

Keywords: Renewable Energy Transition; Solar Photovoltaic Systems; Wind Energy Optimization; Grid Integration Strategies; Smart Grid Technology; Power System Stability

1. Introduction

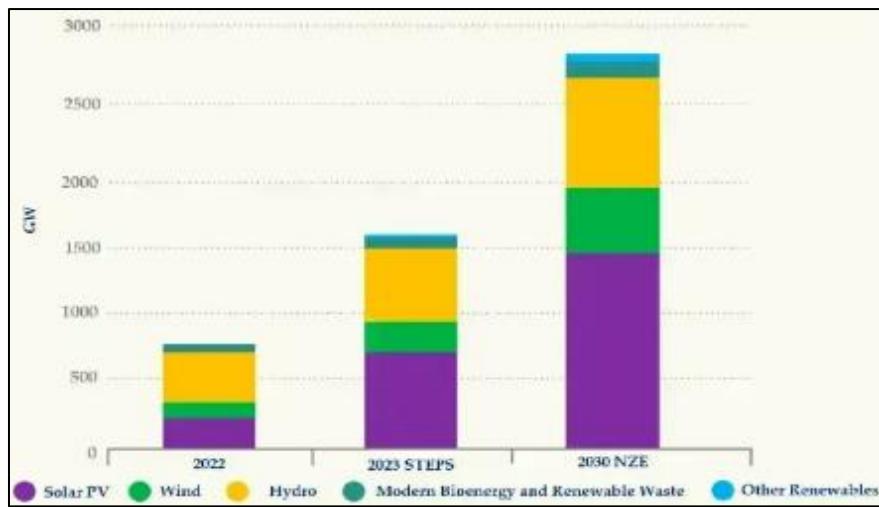
1.1. Background and Context of Renewable Energy Transition

The world energy environment is experiencing a radical change with countries around the globe speeding up their shift towards renewable energy sources as opposed to the fossil-powered generation. The move is one of the most dramatic transformations in technology and the economy that is the most important in modern history due to the twofold demands of climate change limitation and energy security (Nacer et al., 2024). The growing rate and intensity of climatic catastrophes made the decarbonization of the energy industry more urgent; it contributes to about 73 percent of global emissions of greenhouse gases today (Oyedepo, 2016).

* Corresponding author: Lambert Ekene Anyanwu

The cost savings and performance gains in renewable energy technologies have been truly phenomenal during the last ten years, and they have fundamentally changed the economics of power generation. Prices of solar photovoltaic modules have also reduced by about 90 percent since 2010 and wind turbines have dropped by about 70 percent since 2010 (Edenhofer et al., 2011). Such drastic cost savings have seen renewable energy sources have reached grid parity with traditional fossil fuel production in most markets across the globe. The solar and wind energy systems have reached a technological maturity level coupled with favorable policy landscapes and the growing involvement of the privately owned sectors, which have triggered the massive increment in renewable energy generation (Abdullah et al., 2024).

Along with these success stories, the incorporation of the variable renewable energy sources in the prevailing power grids poses serious technical challenges that need to be resolved to guarantee reliability and stability of the systems. The seasonal and unpredictable quality of solar and wind power present grid operators with enormous operational challenges, since they need to always maintain the balance between the supply and the demand of electricity (Faisal et al., 2024). The conventional power systems were modelled on the principle of dispatchable fossil fuel generators that could be increased or decreased depending on the fluctuations of demand.


1.2. Solar Photovoltaic Systems and Technology Development

The solar photovoltaic technology has become one of the most promising renewable energy solutions where semiconductor material is used to convert sunlight into electrical energy directly using the photovoltaic effect. The basic working mechanism of solar cells is to produce electron-holes pairs which occur when photons hit the semiconductor substance and produces electrical current when the charge carriers are separated by an inherent electric field at the p-n junction (Dufo-Lopez et al., 2007). Modern solar PV designs have attained impressive increases in efficiency, and in commercial crystalline silicon and modules quintessentially over 20% conversion efficiency is now standard and even perovskite tandem cell designs show laboratory efficiencies in the 30 per cent range.

The use of solar PV systems has a wide application spectrum, both in small-scale residential rooftop systems and utility-scale solar farms (more than 1 GW). Rooftop solar system as a form of distributed generation has made the generation of electricity to be democratic, making end-users to become prosumers who produce and consume electrical energy. The impacts of this paradigm shift on the utility business models, the grid operations, and the structure of the energy market are significant (Abdullah et al., 2024). The economies of scale in acquiring, setting up and operating huge solar farms are also economical and the levelized cost of electricity obtained is competitive or lower than fossil fuel generation in most locations. The PV technology is modular and this allows flexibility in sizing systems and can be easily deployed, which makes solar energy especially applicable to supporting the escalating electricity demand in developing countries with limited existing infrastructure (Oyedepo, 2016).

But when high percentages of solar PV generation are incorporated into power grids, they cause various technical issues which must be handled with care. Solar PV systems have variable output with diurnal and seasonal trends with maximum energy output occurring in the midday period and zero output in the evening. This type of generation does not often conform to the usual demand patterns of electricity, which often show their highest point in the evening hours when the solar generation is dropping or inaccessible (Faisal et al., 2024).

Solar PV generation requires advanced forecasting methods and complex control systems that will help to make the most out of solar PV power generation as well as reduce the issues linked with grid integration. Forecasting of solar irradiance in the short term with the help of numerical weather prediction models, satellite images, and machine learning algorithms can also be used to make predictions of PV output that are more accurate in day-ahead and intraday operational planning (Rajaperumal & Columbus, 2025). These projections assist in optimized scheduling of traditional generation resources and energy storage systems, eliminating the necessary expensive reserves, but maintaining the reliability of the systems.

Figure 1 Installed renewable capacity by technology in emerging technology scenarios for 2022-2030, showing solar PV and wind leading capacity additions, followed by hydropower and modern bioenergy systems

1.3. Wind Energy Systems and Technological Advancements

Wind energy is one of the oldest and most affordable renewable energy technologies, whereby the wind energy is used to produce electricity using aerodynamic wind turbine blades and attached to electrical generators. The development of modern wind turbines has advanced over time since primitive designs with the modern utility-scale wind turbines having a rotor diameter of over 150 meters, and rated capacity of up to 15 MW in an offshore setting (Thirunavukkarasu et al., 2023). Wind speed is proportional to the cube of power output of a wind turbine, and site selection and resources evaluation is a key determinant to project economics. The offshore wind farms enjoy the advantage of increased and steady wind speed than onshore farms but are associated with increased installation and maintenance costs because of the marine environmental conditions (Khosravi et al., 2025).

Development of wind turbines technology has been based on enhancing efficiency in energy capture, enhanced reliability as well as decreasing the levelized costs by innovative aerodynamic, material science and power electronics. Pitch controlled variable-speed turbines maximize energy recovery in a broad area of wind conditions to maximize annual power output and minimizing the mechanical loads in high wind scenarios (Abere et al., 2025). The development of the advanced blade design models with the use of the computational fluid dynamics modeling and aerodynamic optimization methods have enhanced the efficiency of the rotor, as well as minimized the noise emissions. The ability to integrate into the grid has been improved by the replacement of fixed-speed turbines with directly connected induction generators with variable-speed turbines using full-power converters, which can operate through fault ride-through capacity, and provide ancillary services (Prieto-Herráez et al., 2025).

The incorporation of wind energy in power plants has its own unique difficulties in terms of variability in power output, predictability, and geographic concentration of resources. Wind generation is characterized by a high temporal variation on a variety of timescales, such as second-to-second variations due to turbulence to seasonality due to atmospheric circulation patterns (Li et al., 2022). This fluctuation would require variable generation sources or energy storage system to sustain power balance and stability of the system, especially in the grids that have high wind penetration rates. The impacts of geographic aggregation of wind farms into different locations can help partially to reduce the variability of the output with the spatial smoothing effects, whereas wind patterns are not usually perfectly correlated in different areas.

Wind power forecasting is now a necessary resource in grid running systems with large penetration of wind energy to facilitate better and more economical unit commitment and economic dispatching decisions. The latest forecast systems are the ones that are based on the integration of the numerical weather prediction models, statistical post-processing, and the machine learning algorithms to generate probabilistic forecasts across multiple time scales, covering the minutes to days ahead (Pinson & Kariniotakis, 2010). Short-term forecasts assist in real-time running as well as automatic generation control whereas long-term forecasts guide maintenance planning and energy market action plans. Uncertainty quantification by probability forecasting allows taking risky decisions and distributing balancing reserves in the most optimized way (Rajaperumal & Columbus, 2025).

1.4. Battery Energy Storage Technologies and Applications

Battery energy storage systems have emerged as critical enabling technologies for renewable energy integration, providing flexible capacity that can absorb excess generation during periods of high renewable output and discharge stored energy when generation is insufficient to meet demand. The use of lithium-ion batteries has emerged as the most important technology in grid-scale energy storage purposes due to the multifaceted investments in research and development related to the adoption of electric vehicles (Zhang et al., 2025). These electrochemical storage systems have desirable properties such as high energy density, high roundtrip efficiency which is usually over 85 percent, fast response times which allow delivery of power in under a second and declining costs that have helped to make grid-scale deployments economically feasible.

Battery storage systems have a wide range of value streams that can be offered to various segments of the power system, which increases their economic justification of deployment. At the transmission scale, utility-scale battery installations can be used to offer frequency regulation services, operating reserves, and capacity firming to variable renewable generation (Alharthi et al., 2024). The applications use the rapid response properties of battery systems which can switch between charging and discharging states in milliseconds, much faster than the ramping response of traditional thermal generators. Distribution level battery storage assists in the process of voltage regulation, peak demand alleviation as well as postponement of conventional infrastructure development in substations and transmission lines. The residential and commercial versions of the battery systems operated behind-the-meter provide the customers with the ability to manage their energy, back-up power supply in case of grid outages, and even take part in demand response programs (García-Triviño et al., 2023).

Although battery storage technologies have been found to have significant advantages, they have several technical and economic constraints that limit their application and operational variations. The small size of battery systems in comparison with their power ratings hinder the possibility of delivering sustained energy services in the long run, and they are more effective in short-duration jobs that usually last between 2 and 4 hours (International Renewable Energy Agency, 2019). The cycling and calendar aging of battery leads to battery degradation, decreasing the system lifetime and raising costs of replacement, requiring advanced control measures balancing short-term and long-term goals related to operational characteristics and preservation of the assets. The safety concerns associated to thermal runaway in lithium-ion cells involve effective thermal control, as well as protection, protocols especially in large scale installations (Zhang et al., 2025).

1.5. Research Objectives and Scope

This comprehensive review examines the optimization of solar and wind energy systems through advanced battery storage technologies and strategic grid integration approaches, synthesizing recent developments in renewable energy technologies, energy storage systems, and smart grid operations. The research objectives guiding this investigation include:

- To analyses contemporary developments in solar photovoltaic and wind energy technologies, evaluating their technical characteristics, economic performance, and operational capabilities for grid integration applications.
- To examine battery energy storage technologies suitable for renewable energy integration, assessing their technical specifications, performance characteristics, degradation mechanisms, and economic viability across different applications and operational scenarios.
- To investigate grid integration strategies and smart grid technologies that enable high penetrations of variable renewable energy while maintaining power system stability, reliability, and efficiency.
- To evaluate optimization techniques and control strategies for coordinating renewable generation, energy storage, and flexible loads to maximize renewable energy utilization and minimize system operational costs.
- To identify critical research gaps and recommend future research directions that will advance the state of knowledge in renewable energy systems optimization and grid integration.

This review will cover the utility-scale and distributed renewable energy systems, with a specific interest in solar photovoltaic and wind energy technology since the two technologies represent most present-day renewable energy applications and future outlooks. The particular focus on battery energy storage systems is based on a critical enabling role in renewable integration and consideration of the lithium-ion technologies with an eye to newer alternatives. The discussion is based on technical, economic, and operational aspects of the integration of renewable energy, which addresses issues and solutions at various timescales between sub-second controlling power quality and seasonal energy balancing. The review is a synthesis of the results of peer-reviewed academic articles, industry reports, and experience of the operation to give practical advice to the researcher, policy-makers, and practitioners in the further development of the goals of deploying renewable energy resources.

2. Methodology

This literature review is very comprehensive, as it is based on systematic identification, evaluation, and synthesis of scholarly works on optimizing renewable energy systems by use of battery storage and grid integration strategies. The methodology considers a few stages, namely literature search and selection, data extraction and categorization, critical analysis and synthesis and identification of research gaps and future directions.

The literature search involved the use of various scholarly databases such as ScienceDirect, IEEE Xplore, SpringerLink, and MDPI that contain peer-reviewed journal articles, conference proceedings, and technical reports which were published in 2007-2025. Keywords that were also combined like renewable energy, solar photovoltaic, wind energy, battery storage, grid integration, smart grid, energy management, optimization, and power system stability were also used as search terms. Preliminary searches produced more than 500 possibly useful publications, which were filtered according to relevance as per the research objectives, as indicated by the title and abstract. The screening procedure narrowed the list of candidates to about 150 publications that would be reviewed in detail (Abdullah et al., 2024).

Published articles were carefully reviewed according to methodological rigor, suitability to the purpose of the research and value to the field. The inclusion criteria favored empirical studies, extensive reviews and theoretical studies that covered technical, economic, or operational issues of renewable energy integration. Paltration criteria were used to filter out publications that specifically dealt with non-solar/wind renewable technologies, publications that do not provide enough technical information, and the ones that are just a description but no analysis (Nasser et al., 2024). The process of data extraction identified major information such as study objectives, methodologies used, technologies, study findings, and limitations. The publications were divided in the main areas of focus, including solar PV systems, wind energy technologies, battery storage systems, grid integration strategies, optimization techniques, and case studies (Faisal et al., 2024).

Synthesis stage entailed cross-comparison of results among the different studies to extract the commonalities, conflicting results, and areas of knowledge gaps. The performance of technology, its costs, and other characteristics of operation data were gathered and processed to identify the tendencies and associations.

3. Solar Photovoltaic Energy Systems

3.1. Fundamental Principles and Technology Classifications

A solar photovoltaic system uses photovoltaic effect to change sunlight directly to electricity, a quantum mechanical effect first discovered by Edmond Becquerel in 1839. The photons that are energetic enough can cause the electrons in the valence band to occupy the conduction band to form electron-hole pairs, which produce electrical current under the effect of an internal electric field (Dufu-Lopez et al., 2007). The effectiveness of this energy conversion process is determined by several factors such as semiconductor band gap, optical absorption properties, recombination, and mobility of the charge carriers. The current salt cells do this by using p-n junctions created by doping semiconductor materials with either donor or acceptor atoms to generate built-in electric fields that cause photogenerated carriers to move towards collection electrodes (Oyedepo, 2016).

Solar PV modules are nonlinear with the intensity of irradiance, cell temperature, and spectral distribution of incident light with the power output depending on these factors making it difficult to design systems and predict performance. The relationship between the current and voltage characteristic of a solar cell is exponential and is described by the single-diode model, and is given by:

$$I = I_{ph} - I_0 \left[\exp \left(\frac{V + IR_s}{nV_T} \right) - 1 \right] - \frac{V + IR_s}{R_{sh}}$$

with I meaning cell current, I_{ph} means photogenerated current, which is proportional to irradiance, I_0 is dark I where I is cell current, I_{ph} is photogenerated current proportional to irradiance, I_0 is dark saturation current, V is cell voltage, R_s and R_{sh} are series and shunt resistances, n is ideality factor, V_T is thermal voltage (Faisal et al., 2024). This relationship comes with a peak of the power point in which the product of current and voltage will be the best and varies with changing environmental conditions. Solar inverters with embedded algorithms to track maximum power points can continually change operating voltage to achieve optimal power output under different irradiance and temperature conditions to increase the amount of energy collected by 20-30% relative to constant voltage output operation.

The efficiency of modules reduces with time of use by various mechanisms such as UV induced degradation of encapsulant materials, potential induced degradation, light induced degradation and it also lead to the corrosion of interconnects and metallization. Average crystalline silicon module degradation is between 0.5% and 0.8% per year, but some of the best crystalline silicon modules by major manufacturers have lower degradation rates of less than 0.5 per year (Zhang et al., 2025). This degradation should be included in the long-term energy production projections and economic models because it has a direct effect on the revenues of the project throughout its 25–30-year operational period that is typical of utility-scale installations.

3.2. System Components and Balance of System Equipment

Full solar PV systems contain numerous additional elements in addition to the solar modules, collectively known as balance of system (BOS) equipment which has a significant impact on the total cost, performance, and stability of the system. Inverters are the key component between DC solar cells and AC electrical loads or grid links and include power conditioning, maximum power point tracking and grid interconnection capabilities (Nasser et al., 2024). String inverters are used in series-connected strings of modules connected to AC output to provide cost-effective value as well as easy installation in residential and small commercial applications. Central inverters are used on large utility scale systems, and process megawatts of power at a single unit, with the advantage of economies of scale, and a single point of failure.

Modern solar inverters incorporate sophisticated control capabilities that extend beyond basic DC-AC conversion to provide grid support functions previously available only from synchronous generators. Advanced inverter features include:

- Voltage and frequency ride-through: Maintaining grid connection during transient disturbances rather than immediately disconnecting, preventing widespread loss of solar generation during grid faults
- Dynamic reactive power support: Providing voltage regulation through real-time adjustment of reactive power output based on grid voltage measurements or utility commands
- Frequency-watt control: Reducing active power output in response to over-frequency conditions, contributing to primary frequency response without requiring energy storage
- Ramp rate control: Limiting the rate of power output changes to reduce impact on system operations during cloud transients or generation startup/shutdown

These properties make solar PV active sources of grid assets that can deliver the ancillary services, which, in essence, can enhance their value to power system operations (Faisal et al., 2024). In numerous jurisdictions new solar installations now have their advanced features required by regulatory requirements; this is an indication that the advanced features are legitimized and acknowledged as having a role in ensuring grid stability with high renewable penetrations.

3.3. Performance Modelling and Energy Production Forecasting

Correct forecasting of solar PV energy generation is crucial in financial analysis, grid integration, as well as operational decision-making. To model performance, solar resource availability must be carefully characterized, system design parameters must be captured and environmental conditions that influence the efficiency of energy conversion must be taken into consideration (Rajaperumal & Columbus, 2025). Solar resource files obtained by satellite measurements, ground measurements, or numerical weather forecasts will give hourly or sub-hourly irradiance and meteorological inputs over several years to measure inter-annual variability. Plane-of-array irradiance on tilted modules, unlike horizontal measurements, takes geometric relationships into consideration to consider the sun position, surface orientation, and diffuse/reflected components of the radiation.

Power output is very dependent on module temperature and efficiency drops around 0.4-0.5 percent per degree Celsius above standard test conditions at 25 °C. Operating temperatures of cells are dependent on ambient temperature, the intensity of irradiance, velocity of the wind, and mounting setups, and in most cases, they can reach 40-50 °C in the clear sunshine (Pinson & Kariniotakis, 2010). Temperature model The Sandia PV module temperature model of the like uses the meteorological data and module specifications to estimate operating temperatures. DC power output is then determined as a factor of irradiance, temperature and module electrical parameters including spectral response errors and low irradiance performance errors. There are many loss mechanisms that are explained by subsequent derate factors:

- Soiling losses (2-5%): Accumulation of dust, pollen, or other contaminants on module surfaces reducing light transmission
- Shading losses (0-10%): Obstruction of modules by nearby objects during certain times of day or year

- Mismatch losses (1-3%): Output reductions due to parameter variations among series-connected modules
- DC wiring losses (1-2%): Resistive losses in cables connecting modules to inverters
- Inverter losses (2-5%): Conversion losses and auxiliary consumption during DC-AC conversion
- AC wiring and transformer losses (1-2%): Losses in collection system and interconnection equipment
- Availability losses (1-3%): Energy not generated due to scheduled maintenance or forced outages

These cumulative derates, typically totaling 15-25%, substantially reduce energy production below ideal nameplate capacity values, necessitating careful accounting in performance projections (Abere et al., 2025). Uncertainty quantification through probabilistic analysis captures variability in resource data, system performance, and long-term degradation, producing energy production estimates with associated confidence intervals that support risk assessment and financial modelling.

3.4. Economic Analysis and Financial Performance Metrics

Economic feasibility of the projects of solar PV is defined by the capital costs, operating expenses, generation of energy and the revenue mechanisms relative to the regulatory and market conditions. The cost of capital has decreased significantly in the last ten years, and even in good markets, utility-scale installations now have a total installed cost of less than one thousand dollars per kilowatt, compared to more than 5000 dollars per kilowatt in 2010 (Nacer et al., 2024). This tremendous low cost is due to scale economies of module manufacturers, optimization of supply chain, increase in the labor productivity of the installation process and streamlining of the process of development of the project. Small scale residential cost is still expensive at around 2,000-3,000/kW including customer acquisition and permitting costs. The regional differences in costs incorporate the disparities in labor rates, permitting requirements, incentive structures, and market maturity (Oyedepo, 2016).

The operation and maintenance costs of solar PV systems are not expensive in comparison to the traditional generation technologies, which have fuel costs and minimal maintenance routine. Utility-scale plants also have typical O&M cost of between 10-20/kW-year that cover module cleaning, vegetation management, inverter repairs, monitoring systems and insurance (Edenhofer et al., 2011). Replacement of inverters after 10-15 years is the most expensive maintenance undertaking which will be compensated by the anticipated costs of equipment falling over the project life timelines. The performance monitoring systems also allow proactive maintenance and fast fault detection to reduce the energy wastage due to equipment failures. Module warranty and insurance coverage cover the case of manufacturing defects or disastrous events (Abdullah et al., 2024).

4. Wind Energy Technologies and Systems

4.1. Wind Resource Characteristics and Assessment Methodologies

The source of wind energy is attributed to the different heating of the surface of the earth causing atmospheric pressure differences that cause the flow of air to the low-pressure areas against a high pressure one. The global circulation patterns have been caused by uneven distribution of solar radiation and depend on the latitude, surface properties, and topography as factors, which form prevailing wind regimes at regional scales (Thirunavukkarasu et al., 2023). These large-scale patterns are modulated by local parameters such as roughness of the terrain, elevation variations, closeness to water bodies and vegetation cover to form intricate spatial variations in wind speed and direction. The strength of the wind generally increases with elevation above the ground level, due to the decreased surface friction by surface features, in both vertical distributions, which are in logarithmic or power-law relationships. This height effect encourages the use of wind turbines in towers that raise rotors to 80-150 meters above the ground where the wind potential is the strongest and most reliable (Abere et al., 2025).

Full evaluation of wind resources necessitates gathering and evaluations of site-particular meteorological information over a series of years to define the normal circumstances as well as measure inter-annual variability. Measurement campaigns place measuring towers or remote measurements like SODAR systems or LIDAR systems that detect the speed, direction, temperature, and pressure of the wind at various heights in accordance with the area covered by the turbine hub and rotor (Prieto-Herráez et al., 2025). Measurements of the data are statistically analyzed to demonstrate diurnal and seasonal variations, optimal locations of turbines placement, and approximate output of their energy.

4.2. Wind Turbine Technologies and Operating Principles

Modern horizontal-axis wind turbines convert wind kinetic energy into rotational mechanical energy through aerodynamic forces on blades, subsequently transformed into electrical energy by generators. The power available in wind flow through area A is given by:

$$P_{wind} = \frac{1}{2} \rho A v^3$$

where ρ represents air density and v is wind speed (Thirunavukkarasu et al., 2023). The cubic relationship between wind speed and power means doubling wind speed increases available power eightfold, making site selection and hub height optimization critical design considerations. The Betz limit establishes the maximum theoretical power extraction coefficient of 16/27 (approximately 59.3%), representing the fraction of wind power that can be captured without completely stopping air flow through the rotor (Abere et al., 2025). Modern turbines achieve power coefficients of 0.45-0.50 under optimal conditions through careful blade aerodynamic design and pitch control optimization.

The design of turbines has been developed in several generations that have changed the fixed-speed stall-regulated machines to variable-speed pitch-controlled machines with advanced power electronics. The early turbines used squirrel-cage induction generators fixed directly on the grid, and they operated at a basically constant frequency based on the grid frequency (Khosravi et al., 2025). Stall control curtailed power production in high wind conditions by passive aerodynamic stall of blade surface giving both hardy but less efficient performance. Modern variable-speed turbines are based on doubly-fed induction generators or full-power converters that allow the best possible rotor speed control over a broad range of wind speed to maximize energy capture at minimal mechanical loads (Prieto-Herráñez et al., 2025). Blade pitch control is a proactive axial rotation of the blades as needed to keep the rated power as the wind exceeds the rated and the mechanical components do not have to be overloaded.

Offshore wind turbines have become a significant growth market with a great source of superior wind over the ocean waters without the land use issues and the visual impacts issues. Oceanic locations have elevated and more predictable winds compared to most onshore locations, capacity factors that are usually more than 45-50 percent as opposed to 30-40 percent in onshore sites (Li et al., 2022). Nevertheless, capital costs are significantly increased in offshore installations by specialized ships, sea foundations, and offshore electrical infrastructure. Offshore turbine has increased in size quite remarkably to harness the economies of scale and the latest commercial solutions are over 15 MW rated with a rotor diameter greater than 220 meters. Offshore floating platforms allow them to be implemented in deep waters inaccessible to the fixed-bottom foundation, harnessing the rich wind in deep ocean zones.

4.3. Grid Integration Challenges and Solutions

Wind energy addition to the power systems comes with numerous technical challenges which are not like the traditional dispatchable generation. The variability of wind generation is large at many different timescales, ranging between short-term variability (turbulence-induced variability on a second-to-second scale) and long-term variability (caused by weather systems on a daily and seasonal scale) (Faisal et al., 2024). This variability increases demands of other system resources to keep power balanced. Auto generation control and frequency regulation services are susceptible to short term variability, which chose quicker responding reserves or energy storage structures. The variability over the longer period affects the commitment of the unit and economic dispatch optimization, and appropriate forecasting is required to reduce the reserve requirement without compromising the reliability (Rajaperumal and Columbus, 2025).

The wind turbines cause the rapid movement of the synchronous generators, which lowers the system rotational inertia, which may lead to deterioration of frequency stability when there is a large disturbance. Physically rotating masses traditional generators inherently oppose changes in the frequency with inertia, which injects or absorbs energy instantly during the imbalance between supply and demand (Nasser et al., 2024). Full power converter Wind turbines electronically decouple the generator to the grid and provide no inherent inertial response. After the generation or load changes are large enough, system frequency rates of change may increase significantly, which may cause protective relays and cascading failures. Solutions include:

- Synthetic inertia from wind turbines: Control algorithms detecting frequency deviations and extracting additional power from turbine rotational energy or temporarily operating turbines below maximum power point
- Fast frequency response from battery storage: Grid-scale batteries providing immediate active power injection within cycles of disturbance onset

- Increased deployment of synchronous condensers: Rotating machines providing inertia without fuel consumption
- Coordination with remaining synchronous generation: Optimizing commitment and dispatch of conventional units to maintain minimum inertia thresholds

These strategies involve the need to carefully coordinate and possibly new market mechanisms to assess inertia provision (Abdullah et al., 2024). Further studies are done on grid-forming converters, which actively set voltage and frequency reference levels instead of reacting to grid behavior, which can potentially allow autonomous operation of systems based on converters with no synchronous generation (Alharthi et al., 2024).

4.4. Wind Power Forecasting and Operational Integration

Effective integration of wind generation in the operations of the power system has necessitated the accurate wind power forecasting. Forecasting systems can be used to predict the output of the wind farms in various time horizons between minutes into the future and several days into the future, which can be used in various applications such as unit commitment, economic dispatch, reserve scheduling, and real-time operations (Pinson & Kariniotakis, 2010). Physical prediction systems: This applies the mathematical weather prediction models that are based on the equations of fluid dynamics in the atmosphere to predict the weather conditions at the turbine sites. Statistical post-processing eliminates systematic model bias, and translates weather predictions into power predictions based upon statistical relationships of past weather data with production data.

State of the art forecasting systems combine various sources of data and prediction algorithms in the context of ensembles. Numerical weather prediction ensembles are computer simulations of meteorological uncertainty using several scenarios forecasting with different initial and model physics. The use of statistical ensembles is based on predictions with different algorithms that complement each other and enhance their robustness (Li et al., 2022). Probabilistic forecasts do not give predicted values at points but give full uncertainty distributions, to make risk-informed decisions about the operation and to optimize the allocation of reserve. The forecast skill is quite variable by both prediction horizon and meteorological regime, with a normalized mean absolute error of the day-ahead forecasts ranging from 5-8% of installed capacity and the 6-hour ahead predictions ranging between 3-5% of installed capacity at favorable forecast conditions (Abere et al., 2025).

Wind forecasts would need advanced decision support systems and processes to be incorporated into system processes. Unit commitment optimization Day-ahead unit commitment optimization Day-ahead unit commitment optimization employs wind forecasts to plan the use of the generation resources, imports, and exports to reduce the cost of production and maintain sufficient reserves in case of forecast error (Prieto-Herráez et al., 2025). The commitment decisions are also updated intra-day as the forecasts are improved and renewable output uncertainty is reduced. Real-time economic dispatch apportions generation between committed generation according to present forecasts and system measurements in which automatic generation control responds to the difference between forecast and actual wind production (Thirunavukkarasu et al., 2023). The reserve requirements are dynamically adjusted depending on the uncertainty of forecasts with higher reserve requirements kept during periods of high uncertainty.

5. Battery Energy Storage Systems

5.1. Electrochemical Storage Principles and Battery Technologies

During charging, electric power is transformed into chemical potential energy in battery energy store systems and during discharge, the opposite happens, allowing electricity generation and consumption to be time-shifted. Electrochemical cells have two electrodes (anode and cathode) and an electrolyte (a substance that allows transport of ions but does not allow electrons to flow) between the electrodes, thus forcing the electrons to pass through external circuits to do useful work (Zhang et al., 2025). At the time of discharge, the oxidation reactions at the anode emit electrons which move through the external circuit to the cathode where reduction reactions take place with ionic current through the electrolyte closing the circuit. Recharging reverses these reactions, and forms the electrical energy as chemical potential. The cell voltage is dictated by the difference in electrochemical potential between cells and electrochemical materials in contact with each other, whereas capacity is dictated by the amount of active material and the number of electrons that is transferred per reaction.

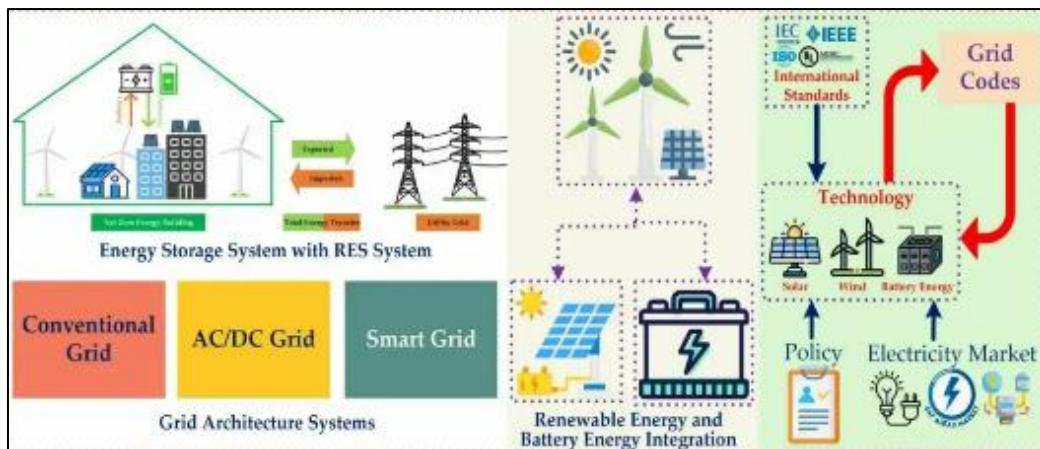
Lithium-ion batteries are now the standard technology in grid-scale energy storage systems, where they take advantage of the wide range of development by consumer electronics and electric vehicle markets. The energy is stored in these

systems by a reversible intercalation of lithium ions into layered metal oxide cathodes and graphitic carbon anodes (Alharthi et al., 2024). The cathode chemistries include the below common cathode:

- Lithium nickel manganese cobalt oxide (NMC): Balanced performance with high energy density of 150-220 Wh/kg and good cycle life of 2000-3000 cycles
- Lithium nickel cobalt aluminum oxide (NCA): Very high energy density of 200-260 Wh/kg but more expensive and less thermally stable
- Lithium iron phosphate (LFP): Lower energy density of 90-160 Wh/kg but excellent safety, cycle life exceeding 5000 cycles, and reduced cost
- Lithium manganese oxide (LMO): Good thermal stability and power capability but lower energy density and cycle life

The choice of chemistry is a trade-off of the energy density, power capability, cycle life, safety, and cost depending on the requirements of an application (Kumar et al., 2025). Grid storage applications are also showing interest in LFP chemistry as the chemistry has good cycle life and safety properties despite low energy density in comparison with NMC or NCA.

5.2. Battery System Design and Performance Characteristics


Complete battery energy storage systems incorporate several cells in modules and arrays that produce the required voltage, current and power capacity, power conversion equipment, thermal management equipment, and control hardware. Cell level voltages are normally 3-4 V across lithium-ion chemistries which require such a combination of cells to reach realistic system voltages of 400-1500 VDC (Alharthi et al., 2024). Parallel cell strings give demanded current capacity and energy substance. To ensure that individual cell voltages, temperatures and states are within the limits of safety of operation and carry out cell balancing to maintain uniform state of charge across series strings, battery management systems monitor these parameters. Thermal management at module/pack level allocates heating and cooling to cells to ensure them to operate in optimum cells temperatures 15-35C, which maximizes performance and longevity (Zhang et al., 2025).

Power conversion systems transform DC battery voltage to AC grid voltage, performing functions including:

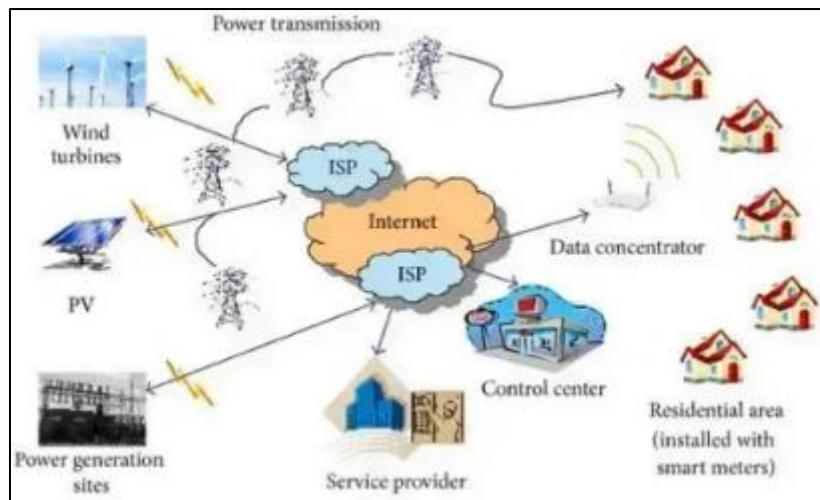
- Bidirectional power flow: Enabling both charging from grid and discharging to grid through appropriate switching control
- Maximum efficiency operation: Optimizing conversion at partial loads spanning expected operating range
- Grid code compliance: Providing fault ride-through, reactive power support, and power quality functions
- Harmonic filtering: Minimizing harmonic current injection into grid through appropriate switching techniques and filter designs

System efficiency from AC terminals typically exceeds 85% round-trip, accounting for both power conversion losses and battery self-discharge (Kumar et al., 2025). Auxiliary systems including cooling, monitoring, and communications consume additional energy, reducing effective system efficiency by 2-5% depending on climate and design.

The performance of battery reduces with time in a variety of processes that influence the capacity and power capability. Side reactions (even in the absence of cycling), which lead to the loss of lithium inventory and elevated internal resistance, are the cause of calendar aging. The rates of calendar aging are highly sensitive to temperature and state of charge and exponentially increase with temperature and at high states of charge. The effect of recycled charge-discharge cycles, age electrode materials and lead to mechanical degradation and resistance increase. The cycle life is also dependent on depth of discharge, and the shallow cycles of 20-30% discharge allow a lot more cycles than the deep discharges of 80-90% (García-Triviño et al., 2023).

Figure 2 Comprehensive framework showing energy storage system integration with renewable energy sources (solar and wind), demonstrating the relationship between grid codes, international standards, technology components, and policy/market structures for successful grid integration

5.3. Grid-Scale Energy Storage Applications


High renewable energy penetrations in power systems are supplied by battery storage systems which offer various valuable services to such power systems, enhancing reliability, efficiency, and economics. One of the most valuable is frequency control, which makes use of the rapid response ratio of batteries to counterbalance moment-to-moment generation and load mismatches (International Renewable Energy Agency, 2019). Batteries can switch between full discharge and full charge in milliseconds, which is far faster than the ramping ability of thermal generators that normally take 10-60 seconds to have a significant effect on output. This quick reply lessens the amount of regulation reserves needed and enhances the precision of frequency control, that is, its value in the market is vast when suitable compensation systems are present (Palensky and Dietrich, 2011). The two-way regulation can be delivered by a single battery storage since the storage is symmetrical and can provide both down and up regulation, making it even more valuable as compared to generation only resources.

Energy arbitrage refers to the process of charging a battery in low-price intervals and discharging a battery in high-price intervals to capture price differentials in wholesale electricity prices. Pure arbitrage requires the cycle costs and capital costs to be recovered by the existence of adequate price volatility and the magnitude of the spreads (Hu et al., 2009). Generally, price spreads tend to rise with the renewable penetration because varying generation produces strong daily price signals, positive prices when excess renewable generation occurs and price spikes when demand is high and the renewable supply is low.

6. Grid Integration Strategies for Renewable Energy

6.1. Smart Grid Architecture and Communication Infrastructure

Smart grid systems are an electrical grid framework that incorporates high-end sensing, communication, and control systems to allow real-time monitoring, automated control and coordinated optimization of distributed energy resources. Its architecture is a set of hierarchical communication networks with field devices, distribution automation devices, and centralized control systems (Faisal et al., 2024). Field devices such as smart meters, distributed generation units, energy storage systems, and controllable loads need bidirectional communication features with support of command-and-control signals, status reporting, and streaming data features.

Figure 3 The communication architecture of smart grid showing power generation sites (wind turbines, PV, power plants) connected through ISP networks and the Internet to control centres, service providers, and residential areas equipped with smart meters and data concentrators

There are several choices of communication network technologies, which are of different characters in terms of bandwidth, latency, reliability, and cost. Fiber optic networks have high bandwidth and low latency which can support time-constrained systems such as protective relays and real-time control, but installation is costly and can only be used in substations and other critical corridors (International Renewable Energy Agency, 2019). Cellular networks such as 4G LTE and new 5G services are widely-available with moderate bandwidth and latency that is acceptable to a variety of monitoring and control uses and has the advantage of the existing telecommunications infrastructure. Power line communication uses the available electrical infrastructure as its communication medium, which eliminates the cost of deploying a separate network but may encounter reliability issues in the form of electrical noise and signal attenuation (Palensky & Dietrich, 2011).

6.2. Advanced Distribution Management Systems

Distribution management systems provide centralized visibility and control over distribution network operations, integrating data from diverse sources including SCADA systems, smart meters, weather stations, and DER controllers.

These integrated capabilities enable coordinated optimization of network operations, replacing manual processes with automated analysis and control (Faisal et al., 2024). Machine learning algorithms identify patterns in operational data, improving outage prediction, load forecasting, and equipment maintenance scheduling.

Volt-VAR optimization (VVO) exemplifies the enhanced capabilities enabled by ADMS with DER integration. Traditional distribution voltage control relied on mechanical tap changers and switched capacitor banks operating based on local measurements with slow response times measured in seconds to minutes (International Renewable Energy Agency, 2019). VVO coordinates these legacy devices with modern DER inverters capable of continuous reactive power control, optimizing voltage profiles across the network while minimizing losses. The objective function typically minimizes system losses subject to voltage constraints and equipment limitations:

$$\min \sum_{i=1}^N \times P_{loss,i}$$

subject to: $V_{min} \leq V_i \leq V_{max}$ for all nodes, and equipment operational limits (Palensky & Dietrich, 2011). This optimization executes periodically or in response to system changes, computing optimal setpoints distributed to field devices. Studies demonstrate loss reductions of 2-5% and improved voltage regulation through VVO compared to conventional local control approaches (Nasser et al., 2024).

Distribution network hosting capacity analysis measures the maximum quantity of DER that can be incorporated at definite locations without contravening the operational constraints. Conductors and transformers have thermal limits to define maximum power flows, and voltage regulations are based on the required voltage maintenance within a

standard of between -5 and +5 of nominal (Faisal et al., 2024). The power quality requirements restrict harmonic distortion and flicker in the DER operations. Protection coordination provides fault clearance, non-destructive tripping and unsuccessful clearance. The important metric used to analyses these constraints systematically in the same manner as different scenarios of DER penetration is hosting capacity, which determines the limiting factors and possible mitigation measures (International Energy Agency, 2024).

7. Optimization Strategies for Hybrid Renewable Energy Systems

7.1. System Configuration and Component Sizing Optimization

Hybrid renewable energy systems combine multiple generation technologies, energy storage, and potentially backup generators to provide reliable electricity supply while maximizing renewable energy utilization. Optimal system design requires careful sizing of components to balance competing objectives including minimizing lifecycle costs, maximizing renewable fraction, ensuring reliability, and limiting emissions (Thirunavukkarasu et al., 2023). The design space encompasses discrete and continuous decision variables including:

- Solar PV array capacity (kW)
- Wind turbine selection and quantity
- Battery storage capacity (kWh) and power rating (kW)
- Diesel or biogas backup generator capacity (kW)
- Power conditioning equipment ratings (kW)

These variables interact in complex ways, with nonlinear relationships between component sizes and system performance metrics. Optimization formulations must capture these interactions while considering stochastic variability in renewable resources, load patterns, and component availability.

Multi-objective optimization frameworks accommodate inherent tradeoffs among conflicting design objectives that cannot be simultaneously optimized. Pareto-optimal solutions represent system configurations where no objective can be improved without degrading at least one other objective (Khosravi et al., 2025).

Reliability constraints ensure adequate system performance under variable renewable generation and load conditions. The loss of power supply probability quantifies the fraction of load that cannot be met, typically constrained below 1-5% for off-grid applications (Thirunavukkarasu et al., 2023). Renewable fraction specifies minimum percentage of load served by renewable generation, balancing emissions reduction goals against cost considerations. Battery depth of discharge limits protects storage systems from excessive degradation, constraining discharge extent based on manufacturer recommendations and lifetime optimization (García-Triviño et al., 2023). Minimum and maximum component capacities reflect practical limits from equipment availability, site constraints, and operational requirements.

7.2. Energy Management and Dispatch Optimization

Energy management systems coordinate the operation of hybrid renewable energy system components to maximize system performance while respecting technical constraints and operational limits. The EMS receives inputs including renewable generation forecasts, load predictions, electricity prices, battery state of charge, and component availability, computing optimal dispatch decisions for controllable resources (Faisal et al., 2024). Dispatch optimization operates across multiple timescales, from long-term planning horizons addressing seasonal patterns to real-time control responding to minute-scale fluctuations. A hierarchical control architecture typically implements:

- Long-term planning (days to months): Maintenance scheduling, reserve fuel procurement, seasonal storage management
- Day-ahead optimization (24-48 hours): Generator commitment, battery charge/discharge scheduling, demand response activation
- Intra-hour dispatch (5-60 minutes): Economic dispatch among committed resources, state of charge management
- Real-time control (seconds to minutes): Frequency regulation, voltage control, renewable variability compensation

This multi-timescale approach balances computational tractability against optimality, with longer horizon decisions providing guidance for shorter-term actions (Nasser et al., 2024).

Model predictive control provides a systematic framework for dispatch optimization under uncertainty. At each decision epoch, the MPC controller solves a finite-horizon optimal control problem:

Only the first control action is implemented, with the optimization repeated at the next time step using updated state information and forecasts. This receding horizon strategy maintains near-optimal performance despite forecast errors and model mismatches (Palensky & Dietrich, 2011). Stochastic formulations explicitly represent uncertainty through scenario trees or probabilistic constraints, deriving robust decisions accounting for forecast error distributions.

Rule-based control strategies offer simpler alternatives to optimization-based approaches, particularly suitable for systems where computational resources are limited or where sufficient historical data to train optimization models is unavailable.

These rules can be tuned through simulation analysis or learned from operational data using machine learning techniques (Kumar et al., 2025). While generally suboptimal compared to model-based optimization, rule-based controllers offer transparency, ease of implementation, and robust performance across diverse operating conditions (García-Triviño et al., 2023).

8. Conclusion

In conclusion, the overall analysis shows that to ensure the effective implementation of renewable energy resources in smart grids, a holistic approach that will unite the development of advanced generation technologies, high-quality energy storage facilities and intelligent control infrastructure is important. The solar photovoltaic and wind energy have made a remarkable breakthrough in terms of cost reduction and technological maturity which place these energy sources as the main sources of electricity in the future of the sustainable energy agenda. Nonetheless, their very variability means that they require complementary solutions, and battery energy storage system becomes one of the important solutions to grid stability and renewable penetration. The smart grid technologies of the advanced metering infrastructure as well as distribution automation and energy management systems offer critical platforms through which the distributed resources can be coordinated and optimize the system tasks.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict-of-interest to be disclosed.

References

- [1] Nacer, T., Hamidat, A., Nadjemi, O., & Bey, M. (2024). Renewable energy as a solution to climate change: Insights from a comprehensive study across nations. *PLOS Climate*, 3(6), e0000358.
- [2] Zhang, Y., Wang, X., & Li, H. (2025). Electrochemical storage systems for renewable energy integration: A comprehensive review of battery technologies and grid-scale applications. *Journal of Power Sources*, 625, 235688.
- [3] Oyedepo, S. O. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. *Cogent Engineering*, 3(1), 1167990.
- [4] Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., & von Stechow, C. (Eds.). (2011). *Renewable energy sources and climate change mitigation: Special report of the Intergovernmental Panel on Climate Change*. Cambridge University Press. <https://doi.org/10.1017/CBO9781139151153>
- [5] Faisal, M., Hannan, M. A., Ker, P. J., Hussain, A., Mansor, M. B., & Blaabjerg, F. (2024). Smart grids and renewable energy systems: Perspectives and grid integration challenges. *Renewable Energy Focus*, 48, 100516.
- [6] Nasser, A., Azar, E., & Al-Khaykan, A. (2024). A comprehensive review of the current status of smart grid technologies for renewable energies integration and future trends: The role of machine learning and energy storage systems. *Energies*, 17(16), 4128.
- [7] Rajaperumal, T. A., & Columbus, C. C. (2025). Enhanced wind power forecasting using machine learning, deep learning models and ensemble integration. *Scientific Reports*, 15, Article 20572.

- [8] Abdullah, M. A., Muttaqi, K. M., Sutanto, D., & Agalgaonkar, A. P. (2024). Feasibility of future transition to 100% renewable energy: Recent progress, policies, challenges, and perspectives. *Journal of Cleaner Production*, 483, 144283.
- [9] Prieto-Herráez, D., Martínez-García, C., González-Aguilera, D., & Finat, J. (2025). State of the art for solar and wind energy-forecasting methods for sustainable grid integration. *Current Sustainable/Renewable Energy Reports*, 12, Article 262-z.
- [10] Khosravi, A., Machado, L., & Nunes, R. O. (2025). Hybrid renewable energy systems—A review of optimization approaches and future challenges. *Applied Sciences*, 15(4), 1744.
- [11] Thirunavukkarasu, M., Sawle, Y., & Lala, H. (2023). A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques. *Renewable and Sustainable Energy Reviews*, 176, Article 113192.
- [12] Kumar, S., Sharma, M., & Singh, R. (2025). Techno-economic optimization of hybrid renewable systems for sustainable energy solutions. *Scientific Reports*, 15, Article 08171-3.
- [13] Abere, B. T., Geleta, T. N., & Worku, G. B. (2025). A comprehensive review of machine learning applications in forecasting solar PV and wind turbine power output. *Journal of Electrical Systems and Information Technology*, 12, Article 239-4.
- [14] Li, J., Ward, J. K., Tong, J., Collins, L., & Platt, G. (2022). Solar and wind power data from the Chinese State Grid Renewable Energy Generation Forecasting Competition. *Scientific Data*, 9, Article 577. *Nature* <https://doi.org/10.1038/s41597-022-01696-6>
- [15] Alharthi, M., Alanazi, A., Alghassab, M., & Alsubaie, A. (2024). Towards renewables development: Review of optimization techniques for energy storage and hybrid renewable energy systems. *Scientific Reports*, 14, Article 22969.
- [16] Pinson, P., & Kariniotakis, G. (2010). Conditional prediction intervals of wind power generation. *IEEE Transactions on Power Systems*, 25(4), 1845-1856.
- [17] Abdullah, M. A., Muttaqi, K. M., Sutanto, D., & Agalgaonkar, A. P. (2024). A comprehensive review of recent developments in smart grid through renewable energy resources integration. *Renewable Energy Focus*, 48, e100561.
- [18] García-Triviño, P., Llorens-Iborra, F., García-Vázquez, C. A., Gil-Mena, A. J., Fernández-Ramírez, L. M., & Jurado, F. (2023). A review of hybrid renewable energy systems: Architectures, battery systems, and optimization techniques. *Journal of Energy Storage*, 4(2), 84.
- [19] International Energy Agency. (2024). Demand response: Balancing electricity supply and demand. *IEA Energy System*.
- [20] Hu, M. C., Lu, S. Y., & Chen, Y. H. (2009). Stochastic programming and market equilibrium analysis of microgrids energy management systems. *Energy*, 113, 662-670.
- [21] International Renewable Energy Agency. (2019). Smart grids and renewables: A guide for effective deployment. *IRENA Working Paper*.
- [22] Palensky, P., & Dietrich, D. (2011). Demand side management: Demand response, intelligent energy systems, and smart loads. *IEEE Transactions on Industrial Informatics*, 7(3), 381-388.