

Taurine-Deficiency versus Diet-Associated Dilated Cardiomyopathy in Dogs: A Mechanistic and Comparative Critical Review

Prithwish Mukherjee ^{1, 2,*}

¹ Small Animal Nutritionist, Kolkata, India.

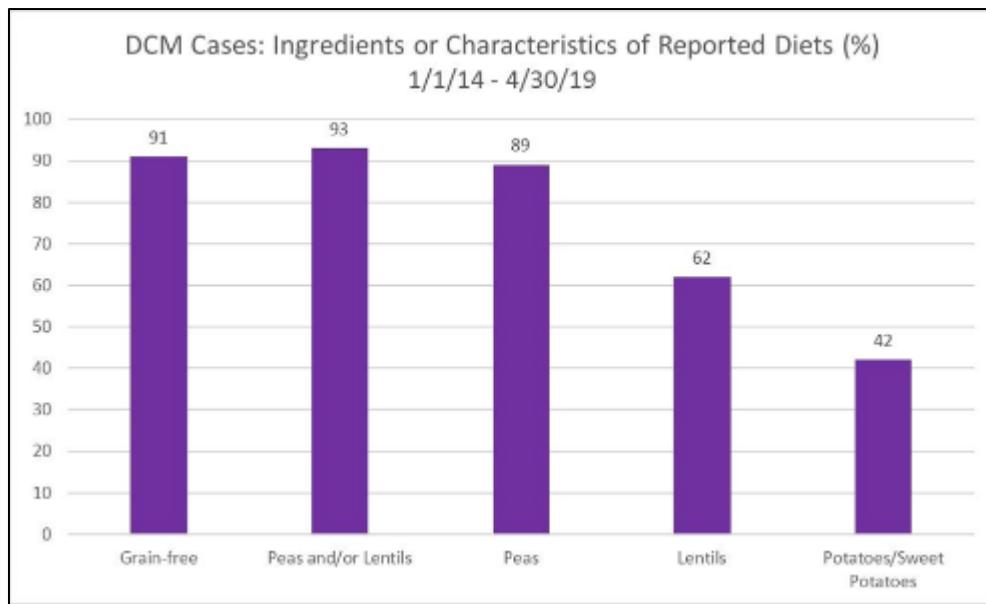
² CPD Scholar, Hill's Pet Nutrition Academy, Topeka, Kansas, USA.

World Journal of Advanced Research and Reviews, 2025, 28(03), 1704-1712

Publication history: Received on 11 November 2025; revised on 20 December 2025; accepted on 23 December 2025

Article DOI: <https://doi.org/10.30574/wjarr.2025.28.3.4215>

Abstract


Taurine-deficiency dilated cardiomyopathy (TD-DCM) is a well-characterized, reversible myocardial disorder in dogs, mechanistically driven by impaired sulfur amino acid (SAA) metabolism, taurine depletion, and subsequent disruption of calcium homeostasis, mitochondrial function and antioxidant capacity. In contrast, diet-associated dilated cardiomyopathy (da-DCM) is a multifactorial syndrome reported in dogs consuming certain commercial diets, many of which are high in legumes or labelled as "grain-free", frequently occurring in the absence of taurine deficiency. This review provides an advanced mechanistic comparison between TD-DCM and da-DCM, emphasizing biochemical, metabolic, mitochondrial, genetic, microbiome-mediated and nutrient digestibility pathways. The analysis highlights both overlapping and diverging mechanisms, critiques the robustness of current evidences, and outlines the limitations in FDA reports. A modern framework is proposed that unifies taurine-dependent and taurine-independent pathways, focusing on SAA bioavailability, anti-nutritional factors, bile acid turnover, mitochondrial energy failure and altered cardiac substrate metabolism. Improved diet formulation, metabolomic profiling and long term studies are essential for clarifying causality and refining clinical management

Keywords: Taurine; Dilated Cardiomyopathy; Sulfur Amino Acids; Legumes; Cardiac Energy Metabolism; Dogs

1 Introduction

Dilated cardiomyopathy (DCM) in dogs is a myocardial disease characterized by progressive ventricular dilation and systolic dysfunction. While traditionally considered genetic, specially in large breeds such as Doberman Pinschers and Great Danes, a wave of DCM cases reported between 2014 and 2019 brought attention to possible nutritional etiologies. Many affected dogs were consuming commercial diets rich in legumes, potatoes or labelled "grain-free", prompting hypotheses that taurine deficiency might underlie these cases. However, unlike classic TD-DCM, a substantial portion of dogs with da-DCM exhibited normal levels of whole-blood taurine, suggesting additional or alternative mechanisms. This complexity generated confusion, public fear and scientific debate. This review compares the mechanistic foundations of TD-DCM and da-DCM, focusing on biochemical pathways, metabolic stressors, amino acid digestibility, microbiome interactions, mitochondrial dysfunction and genetic susceptibilities

* Corresponding author: Prithwish Mukherjee

Figure 1 A bar graph representation of ingredient characteristics of diets consumed by dogs reported to develop DCM between 2014-2019, as released by FDA

2 Taurine Biosynthesis, Metabolism and Cardiac Functions

2.1 Taurine biosynthesis from sulfur amino acids

Dogs can synthesize taurine from methionine and cysteine via hepatic pathways involving-

- Cysteine dioxygenase (CDO)
- Cysteine sulfenic acid decarboxylase (CSAD)

These enzymes convert cysteine to hypotaurine, and then to taurine. Enzyme activity is highly dependent on SAA availability [1]

Large breeds and certain genetic lines demonstrate lower CSAD efficiency, increasing vulnerability to marginal SAA intake [2]

2.2 Taurine's role in myocardial physiology

Taurine is essential for-

- Calcium homeostasis
- Mitochondrial function [3]
- Antioxidant defence
- Membrane stabilization
- Regulation of osmotic balance

Taurine depletion disrupts mitochondrial respiration, impairs ATP synthesis and increases oxidative stress. All these are hallmarks of DCM pathology

2.3 Enterohepatic cycling and bile acid losses

Dogs conjugate bile acid with taurine. Very high dietary fibre or poor digestibility increases fecal bile acid excretion, raising taurine demand [4]

Taurine status is therefore sensitive to-

- Dietary SAA intake
- Protein digestibility
- Fibre and fat composition

- Microbiome-mediated bile acid deconjugation

3 Taurine-Deficiency DCM (TD-DCM): Mechanisms and Characteristics

TD-DCM is a reversible cardiomyopathy with well-described mechanisms

3.1 Pathophysiological mechanisms in TD-DCM

3.1.1 Impaired calcium handling

Taurine depletion alters sarcoplasmic reticulum calcium transport, reducing contractility [5]

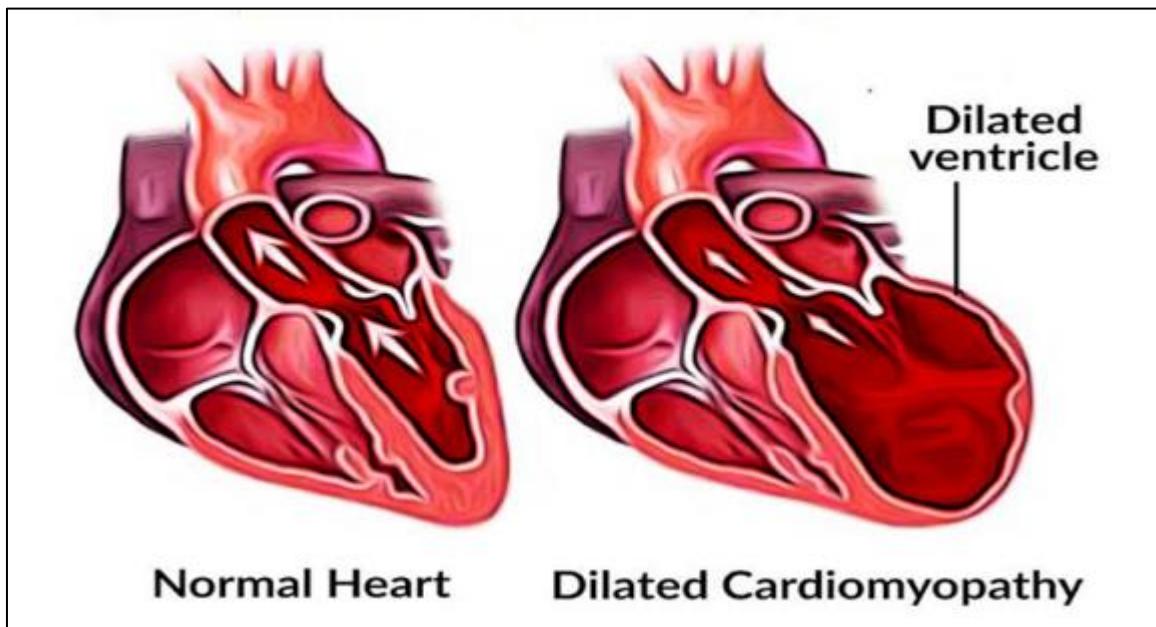
3.1.2 Mitochondrial dysfunction

Taurine deficiency decreases mitochondrial tRNA taurine modification, impairing electron transport chain complexes I and III [3]. This reduces ATP availability and increases reactive oxygen species (ROS) production

3.1.3 Oxidative stress

Loss of taurine weakens antioxidant buffering, leading to increased lipid peroxidation and myocardial cell death

3.1.4 Impaired myocardial energy metabolism


Heart shifts from fatty acid oxidation to less efficient glucose metabolism, worsening systolic dysfunction

3.2 Clinical presentation

TD-DCM is commonly characterized with-

- Dilated ventricles
- Low fractional shortening
- Arrhythmias variably present
- Low plasma or whole-blood taurine
- Rapid improvement post taurine supplementation

Reversal of cardiac abnormalities after taurine supplementation is a defining feature of TD-DCM [2]

Figure 2 Comparison between a normal canine heart (left side) and a canine heart with DCM (right side), with highlighted dilated ventricles

3.3 Dietary factors leading to TD-DCM

TD-DCM generally arises from-

- Low SAA intake
- Poor protein digestibility of food
- Altered bile acid recirculation
- Very high-fibre diets increasing bile acid loss

Traditional TD-DCM is essentially a nutritional deficiency disease

4 Diet-Associated DCM (da-DCM): A Multifactorial Syndrome

Unlike TD-DCM, many dogs with da-DCM have normal taurine levels, indicating additional mechanisms

4.1 The dietary link

Diets associated with DCM reports often share features such as-

- High legume inclusions (peas, lentils, chickpeas, etc.)
- Pea protein isolates, concentrates or fractions
- Lower animal protein contribution
- Exotic protein sources
- Very high fibre content
- Exclusion of grains

4.2 Mechanistic pathways independent of taurine

4.2.1 Amino acid dilution and imbalance

High legume content can reduce absolute intake of methionine, cysteine, lysine and taurine precursors despite adequate crude protein on label [6]

4.2.2 Anti-nutritional factors

Legumes contain trypsin inhibitors, lectins, tannins and phytates that-

- Can impair proteolytic digestion
- Can reduce SAA absorption
- May alter intestinal permeability

Even after extrusion process, residual anti-nutritional activity may remain [7]

4.2.3 Heat processing and maillard reactions

Extrusion damages lysine availability and may reduce methionine bioavailability, compromising taurine synthesis despite having adequate total SAA [8]

4.2.4 Microbiome-mediated mechanisms

Dietary shifts may increase abundance of bacteria capable of degrading taurine or altering bile acid deconjugation [9]

4.2.5 Carnitine metabolism disruption

Carnitine synthesis depends on methionine and lysine availability. Marginal SAA reduces myocardial fatty acid oxidation capacity [10]

4.2.6 Mitochondrial dysfunction without taurine deficiency

Mitochondrial failure may occur from-

- Inadequate SAA supply
- Oxidative stress from poorly balanced diets
- Altered fatty acid profiles

This resembles TD-DCM but occurs without measurable taurine deficiency

4.2.7 *Genetic susceptibility*

Breeds with predispositions (Golden Retrievers, Dobermanns, etc.) may develop DCM when exposed to marginal diets even with normal blood taurine levels [11]

5 Comparative Pathophysiology: TD-DCM vs da-DCM

This section highlights the core comparative analysis between TD-DCM and da-DCM

5.1 Taurine status

Table 1 Taurine related differential features between TD-DCM and da-DCM

Feature	TD-DCM	da-DCM
Whole-blood taurine	Low	Often normal
Response to taurine supplementation	High and rapid	Sometimes
SAA adequacy in diet	Low	Variable

5.2 Mitochondrial dysfunction: conserved vs distinct features

TD-DCM:

- Primary defect due to loss of taurine modified tRNAs
- Electron transport chain dysfunction from insufficient taurine
- Predictable improvement with taurine repletion

da-DCM:

- Mitochondrial dysfunction secondary to poor amino acid availability, altered myocardial fatty acid oxidation, low carnitine or oxidative stress from poor quality diets
- Improvement depends on overall diet correction, not taurine alone

5.3 Digestibility and amino acid absorption

TD-DCM:

- Taurine deficiency primarily arises from low SAA supply in the diet

da-DCM:

- Taurine supply may be normal on paper, but bioavailability can be reduced due to anti-nutritional factors, heat damage and protein-limiting formulations

5.4 Reversibility

TD-DCM:

- Highly reversible after taurine supplementation

da-DCM:

- Reversibility depends on severity. Recovery may occur after diet change, even without taurine supplementation [12]

5.5 Pathological similarities and differences

Similarities:

- Systolic dysfunction
- Myocardial lipid accumulation
- Mitochondrial swelling
- Oxidative stress

Differences:

- TD-DCM shows hallmark taurine deficiency markers
- da-DCM is heterogeneous and does not map to one mechanism

6 Critical Evaluation of the Current Evidences

6.1 Evidence supporting TD-DCM

The evidence for TD-DCM is robust, mechanistically coherent and reproducible. Multiple studies have demonstrated low whole-blood or plasma taurine concentrations in affected dogs, accompanied by echocardiographic abnormalities that improve rapidly following taurine supplementation [2]. This temporal reversibility strongly supports causality rather than association. The biological plausibility is further reinforced by experimental data linking taurine depletion to disrupted calcium handling, mitochondrial dysfunction and oxidative stress in myocardial tissue [1,5]. In contrast to da-DCM, TD-DCM behaves as a classical nutritional deficiency disorder, with predictable biochemical markers and clinical responses [2,15]

6.2 Evidence supporting da-DCM

Evidence implicating diet in da-DCM is heterogeneous and highly associative. FDA investigations and subsequent reviews documented correlations between certain commercial diets and DCM diagnoses, but these data sets lack control groups, standardized diagnostics, and nutrient bioavailability analyses [12]. Importantly, many reported dogs had normal taurine concentrations, undermining a unifying taurine-deficiency hypothesis [3]. Some dogs demonstrated improvement following diet change alone, suggesting that broader nutritional correction, rather than taurine supplementation alone was important [12]. This observation supports the hypothesis that diet quality, amino acid bioavailability and protein digestibility, rather than ingredient categories are central contributors [6,13]

6.3 Evidence contradicting a causal da-DCM relationship

Controlled feeding trials and prospective observational studies have repeatedly shown that well-formulated grain-free or legume-containing diets do not consistently impair taurine status or cardiac function when sulfur amino acids are adequate and digestibility is maintained [13,14]. These findings directly challenge the narrative that grain exclusion itself poses inherent cardiac risk. Furthermore, population-level analyses have failed to demonstrate a higher overall prevalence of DCM among dogs consuming grain-free diets compared with grain-inclusive controls [14], indicating that reported cases may reflect formulation-specific or brand-specific issues rather than category-wide effects

7 Methodological Limitations and Sources of Bias

Several limitations constrain interpretation of the da-DCM literature:

- Short study durations — Most feeding trials last weeks to months, whereas DCM may develop over years [13]
- Inadequate nutrient characterization — Diets are often classified by ingredient lists rather than digestible amino acid profiles [6]
- Absence of digestibility data — True ileal digestibility of methionine and cysteine is rarely assessed [8]
- Variable taurine measurement methods — Plasma taurine is less reliable than whole-blood taurine [3]
- Owner recall bias — Diet histories frequently omit treats, supplements, or prior diets [12]
- Genetic confounding — Breed predisposition is inconsistently controlled [11]

Collectively, these limitations increase uncertainty and encourage oversimplified causal interpretations

8 Integrated Mechanistic Model of da-DCM

A unifying framework for da-DCM must integrate taurine-dependent and taurine-independent mechanisms. The most biologically plausible model includes:

- Marginal sulfur amino acid intake relative to metabolic demand [15]
- Reduced amino acid bioavailability from anti-nutritional factors and heat damage [7,8]
- Increased taurine utilization due to bile acid losses in high-fiber diets [4]
- Altered myocardial energy metabolism, including reduced fatty-acid oxidation and carnitine availability [10]
- Mitochondrial dysfunction and oxidative stress arising from nutrient imbalance [1,5]

- Microbiome-mediated modulation of taurine metabolism and bile acid recycling [9]
- Genetic susceptibility, lowering the threshold for dietary inadequacy [11]

Within this framework, taurine deficiency represents one extreme, whereas da-DCM occupies a broader, heterogeneous middle spectrum

9 Clinical and Formulation Implications

9.1 Diagnostic approach

Clinicians evaluating suspected da-DCM should prioritize:

- Whole-blood taurine measurement [3]
- Echocardiographic assessment of systolic function [12]
- Detailed long-term diet histories
- Evaluation of diet formulation quality, not ingredient labels alone [6]
- Normal blood taurine does not exclude dietary involvement, nor does low blood taurine confirm taurine as the sole causal factor

9.2 Nutritional management

Dietary intervention should emphasize on:

- Adequate and digestible sulfur amino acids sources [15]
- Sufficient animal derived protein
- Moderation of legumes [6]
- Avoidance of excessive fermentable fiber [4]
- Consideration of taurine supplementation in deficient or high-risk dogs [2]

Indiscriminate taurine supplementation without correcting underlying diet quality may fail to resolve myocardial dysfunction in da-DCM [12]

9.3 Implications for pet food formulation

The da-DCM controversy highlights the need for:

- Formulation guided by qualified veterinary nutritionists
- Routine amino acid digestibility testing [8]
- Transparency regarding protein sources and processing
- Reduced reliance on marketing driven ingredient trends

Nutrient-centric evaluation must replace ingredient-centric assumptions

10 Future Research Priorities

Key research needs include:

- Long-term controlled feeding trials spanning years
- Metabolomic profiling distinguishing TD-DCM from da-DCM [5]
- Microbiome studies linking diet, bile acids, and taurine metabolism [9]
- Nutrigenomic investigations identifying breed-specific vulnerabilities [11]
- Regulatory evolution toward bioavailability-based nutritional standards [16]

11 Conclusion

Taurine-deficiency dilated cardiomyopathy is a clearly defined, mechanistically coherent, and largely reversible nutritional disease [2]. Diet-associated DCM, by contrast, represents a heterogeneous syndrome driven by complex interactions among sulfur amino acid bioavailability, digestibility, bile acid metabolism, mitochondrial energy failure, and genetic susceptibility [11,12]. While taurine plays a central role in myocardial physiology, its deficiency alone does not explain the full spectrum of diet-associated cases

The prevailing focus on grain-free labelling oversimplifies the issue and diverts attention from the true determinants of risk- diet formulation quality and nutrient bioavailability [6]. A mechanistic, nutrient-centric approach is essential for advancing both clinical management and pet food formulation

Compliance with ethical standards

Disclosure of conflict of interest

Author has declared that no competing interests exist

Disclaimer (Artificial Intelligence)

Author hereby declares that NO generative AI technologies such as Large Language Models (ChatGPT, COPILOT, etc.) and text-to-image generators have been used during writing or editing of this manuscript

References

- [1] Hayes K. C. (1988). Taurine nutrition. *Nutrition research reviews*, 1(1), 99–113. <https://doi.org/10.1079/NRR19880009>
- [2] Fascetti, A. J., Reed, J. R., Rogers, Q. R., & Backus, R. C. (2003). Taurine deficiency in dogs with dilated cardiomyopathy: 12 cases (1997-2001). *Journal of the American Veterinary Medical Association*, 223(8), 1137–1141. <https://doi.org/10.2460/javma.2003.223.1137>
- [3] Ontiveros, E. S., Whelchel, B. D., Yu, J., Kaplan, J. L., Sharpe, A. N., Fousse, S. L., Crofton, A. E., Fascetti, A. J., & Stern, J. A. (2020). Development of plasma and whole blood taurine reference ranges and identification of dietary features associated with taurine deficiency and dilated cardiomyopathy in golden retrievers: A prospective, observational study. *PLoS one*, 15(5), e0233206. <https://doi.org/10.1371/journal.pone.0233206>
- [4] Ko, K. S., & Fascetti, A. J. (2016). Dietary beet pulp decreases taurine status in dogs fed low protein diet. *Journal of animal science and technology*, 58, 29. <https://doi.org/10.1186/s40781-016-0112-6>
- [5] Schaffer, S. W., Jong, C. J., Ito, T., & Azuma, J. (2014). Role of taurine in the pathologies of MELAS and MERRF. *Amino acids*, 46(1), 47–56. <https://doi.org/10.1007/s00726-012-1414-8>
- [6] Mansilla, W. D., Marinangeli, C. P. F., Ekenstedt, K. J., Larsen, J. A., Aldrich, G., Columbus, D. A., Weber, L., Abood, S. K., & Shoveller, A. K. (2019). Special topic: The association between pulse ingredients and canine dilated cardiomyopathy: addressing the knowledge gaps before establishing causation. *Journal of animal science*, 97(3), 983–997. <https://doi.org/10.1093/jas/sky488>
- [7] Khokhar, Santosh & Owusu-Apenten, Richard. (2003). Antinutritional factors in food legumes and effects of processing. 4. 82-116
- [8] Tran, Q.D., Hendriks, W.H. and van der Poel, A.F. (2008), Effects of extrusion processing on nutrients in dry pet food. *J. Sci. Food Agric.*, 88: 1487-1493. <https://doi.org/10.1002/jsfa.3247>
- [9] Yu, H., Guo, Z., Shen, S., & Shan, W. (2016). Effects of taurine on gut microbiota and metabolism in mice. *Amino acids*, 48(7), 1601–1617. <https://doi.org/10.1007/s00726-016-2219-y>
- [10] Keene, B. W., Panciera, D. P., Atkins, C. E., Regitz, V., Schmidt, M. J., & Shug, A. L. (1991). Myocardial L-carnitine deficiency in a family of dogs with dilated cardiomyopathy. *Journal of the American Veterinary Medical Association*, 198(4), 647–650
- [11] Gaar-Humphreys, K. R., Spanjersberg, T. C. F., Santarelli, G., Grinwis, G. C. M., Szatmári, V., Roelen, B. A. J., Vink, A., van Tintelen, J. P., Asselbergs, F. W., Fieten, H., Harakalova, M., & van Steenbeek, F. G. (2022). Genetic Basis of Dilated Cardiomyopathy in Dogs and Its Potential as a Bidirectional Model. *Animals: an open access journal from MDPI*, 12(13), 1679. <https://doi.org/10.3390/ani12131679>
- [12] Freeman, L. M., Stern, J. A., Fries, R., Adin, D. B., & Rush, J. E. (2018). Diet-associated dilated cardiomyopathy in dogs: what do we know?. *Journal of the American Veterinary Medical Association*, 253(11), 1390–1394. <https://doi.org/10.2460/javma.253.11.1390>
- [13] Quilliam C, Reis LG, Ren Y, Ai Y, Weber LP (2023) Effects of a 28-day feeding trial of grain-containing versus pulse-based diets on cardiac function, taurine levels and digestibility in domestic dogs. *PLoS ONE* 18(5): e0285381. doi:10.1371/journal.pone.0285381

- [14] Owens, E. J., LeBlanc, N. L., Freeman, L. M., & Scollan, K. F. (2023). Comparison of echocardiographic measurements and cardiac biomarkers in healthy dogs eating nontraditional or traditional diets. *Journal of veterinary internal medicine*, 37(1), 37–46. <https://doi.org/10.1111/jvim.16606>
- [15] Ko, K. S., Backus, R. C., Berg, J. R., Lame, M. W., & Rogers, Q. R. (2007). Differences in taurine synthesis rate among dogs relate to differences in their maintenance energy requirement. *The Journal of nutrition*, 137(5), 1171–1175. <https://doi.org/10.1093/jn/137.5.1171>
- [16] National Research Council (NRC). Nutrient Requirements of Dogs and Cats. Washington DC: National Academies Press; 2006