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Abstract 

Accurate water quality assessment is critical for sustainable water resources management under growing 
environmental pressures. The Water Quality Index (WQI) provides a practical framework for summarizing complex 
water quality data into a single indicator. This review examines recent advances in artificial intelligence and 
optimization techniques for WQI prediction, with a focus on machine learning, ensemble models, deep learning, and 
hybrid approaches. Existing studies demonstrate strong predictive capabilities but remain largely model-centric and 
limited by localized datasets and weak system integration. This review identifies methodological limitations and 
outlines key components required for future integrated monitoring frameworks, including data acquisition, model 
interpretability, and uncertainty-aware decision support. The findings provide guidance for advancing toward scalable 
and transparent water quality assessment systems.  
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1. Introduction

The sustainable management of freshwater resources is a critical global challenge in the face of accelerating 
urbanization, industrial development, and climate variability. Water quality monitoring plays a fundamental role in 
safeguarding ecosystems, protecting public health, and ensuring the availability of clean water for diverse human and 
ecological needs [1]. The Water Quality Index (WQI) has become a widely used tool for simplifying complex 
physicochemical, biological, and ecological measurements into a single interpretable score. By translating raw 
measurements into a composite index, the WQI provides an accessible framework for both policymakers and the public 
to assess water suitability for domestic, agricultural, and industrial purposes [2, 3]. 

Despite its usefulness, traditional WQI calculation methods suffer from significant limitations. They rely on fixed 
parameter weights and static thresholds that fail to capture seasonal variability, local conditions, and nonlinear 
dynamics of water chemistry [4]. These rigid approaches limit their sensitivity to emerging contamination issues and 
reduce their capacity for adaptive water management. Recent advances in artificial intelligence (AI) and machine 
learning (ML) have demonstrated the ability to model nonlinear interactions and temporal patterns, with studies 
reporting high predictive accuracy and robustness across multiple contexts [5, 6]. Complementary optimization 
techniques, such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO), further refine predictive models 
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by optimizing parameter selection and enhancing efficiency. Yet, despite these promising advances, current AI-based 
WQI solutions remain fragmented, often tied to case-specific datasets and rarely embedded within real-time monitoring 
infrastructures such as IoT sensor networks or cloud platforms [7]. This lack of integration hinders scalability and 
operational adoption at regional or national levels. 

The increasing maturity of AI and optimization techniques, coupled with the proliferation of IoT and cloud technologies, 
presents a timely opportunity for synthesis. While individual reviews exist on AI models or WQI methods, few studies 
have systematically examined how predictive modeling, optimization strategies, and system architectures can be 
combined into end-to-end frameworks for water quality assessment. A comprehensive review is therefore needed to 
consolidate methodological advances, identify limitations, and chart a pathway toward scalable, real-time, and 
explainable monitoring systems. This review contributes to the broader challenge of water resource management by 
framing WQI prediction not only as a modeling problem but as part of a full-stack architecture that includes data 
acquisition, processing, analytics, and decision support. 

The objectives of this review are threefold. First, it aims to synthesize recent developments in AI-based techniques for 
Water Quality Index (WQI) prediction, with particular emphasis on deep learning, hybrid models, and ensemble 
learning approaches. Second, it seeks to evaluate the role of optimization algorithms, including Genetic Algorithms (GA), 
Particle Swarm Optimization (PSO), and Multi-Gene Genetic Programming (MGGP), in enhancing both the performance 
and the practical deplorability of predictive models. Finally, the review examines emerging architectural frameworks 
that integrate IoT sensing, edge and cloud processing, explainable AI (XAI), and decision-support systems to enable real-
time water quality monitoring. By addressing these objectives, this review aims to clarify the current state of research, 
highlight persistent challenges, and provide a roadmap for future work toward modular, scalable, and interoperable 
architectures for intelligent water resource management. 

2. Materials And Methods 

This review provides a systematic overview of artificial intelligence (AI) and optimization techniques applied to Water 
Quality Index (WQI) prediction and their role in broader water resource monitoring architectures. The methodology 
combined structured literature retrieval, screening, and qualitative synthesis with supplementary bibliometric and 
architectural analysis. 

2.1. Literature search strategy 

Relevant studies were retrieved from major scientific databases, including Scopus, Web of Science, IEEE Xplore, 
ScienceDirect, and SpringerLink. The search covered the years 2000–2025, with emphasis on the last 15 years to 
capture recent advances. Keywords and Boolean combinations included: “Water Quality Index”, “WQI prediction”, 
“Artificial Intelligence”, “Machine Learning”, “Optimization algorithms”, “IoT water monitoring”, “cloud computing”, and 
“Explainable AI”. 

2.2. Inclusion and exclusion criteria 

Studies were included if they applied AI or optimization techniques to WQI prediction or related indices, and reported 
sufficient methodological detail (e.g., model description, dataset characteristics, and evaluation metrics such as RMSE, 
R2, or MAE). Works ad- dressing the integration of WQI models into broader architectures (e.g., IoT-enabled monitoring, 
edge computing, or cloud-based frameworks) were also retained. By contrast, studies relying solely on deterministic or 
statistical approaches without AI or optimization components were excluded. Papers lacking methodological 
transparency, performance outcomes, or peer-reviewed publication status were also omitted. 

2.3. Study selection process 

The initial database search yielded 150 records. After removing duplicates and screening titles and abstracts, 141 
articles remained. A further abstract assessment excluded 29 studies that did not meet the inclusion criteria, such as 
relying solely on deterministic models or lacking methodological transparency. Ultimately, 112 studies were retained 
for qualitative synthesis and comparative analysis. Table. 1 illustrates the study selection process.  
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Table 1 Flow diagram of the study selection process 

Step Description Number (n) 

1 Records identified through database searching 150 

2 Duplicates removed 9 

3 Records screened 141 

4 Records excluded after abstract assessment 29 

5 Studies included in bibliometric/comparative analysis 112 

2.4. Data extraction and synthesis 

From each eligible study, bibliographic details, study context, and methodological characteristics were systematically 
extracted. Key descriptors included publication year, geographical focus, type of water body, and the AI or optimization 
techniques employed. Where available, performance indicators such as accuracy, RMSE, MSE, and R2 were recorded. 
Extraction followed a standardized form to ensure comparability across studies. The synthesized data were analyzed 
narratively to identify methodological trends, recurring challenges, and opportunities for integration into full-stack 
monitoring systems. 

2.5. Bibliometric and comparative analysis 

A bibliometric overview was conducted using metadata (titles, abstracts, and keywords) to identify research hotspots 
and emerging themes (e.g., optimization, IoT, explainability). Word clouds and clustering analysis were used to highlight 
patterns, while comparative figures evaluated the strengths, weaknesses, and performance of AI and optimization 
techniques across different case studies. 

2.6. Architecture analysis 

In parallel, system-level architectures were examined to assess how AI models were integrated into operational 
monitoring frameworks. Specific components analyzed included IoT sensor networks, edge/cloud computing layers, 
data pipelines, and decision-support interfaces. These architectural features were compared against common 
limitations identified in the literature, such as fragmentation, interpretability, and scalability. 

2.7. Conceptual framework development 

Finally, insights from the review were synthesized into a conceptual end-to-end pipeline for WQI prediction. The 
proposed framework emphasizes real-time data acquisition, cloud/edge-based processing, AI-driven optimization, 
explainability, and decision-support mechanisms, highlighting the need for modular and interoperable architectures in 
future water resource monitoring. 

3. Results 

3.1. Global keyword trends 

To obtain an overall picture of the thematic orientation of the reviewed literature, a word cloud was generated using 
titles, abstracts, and keywords of all retained studies (Fig. 1). Generic terms such as water, quality, and index were 
excluded to highlight more specific technical and methodological concepts. The visualization reveals the prominence of 
terms such as prediction, system, monitoring, optimization, IoT, networks, cloud computing, and explainable, which 
collectively underline the intersection of artificial intelligence, optimization strategies, and real-time architectures in 
water quality monitoring. 
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Figure 1 Global word cloud summarizing the most frequent terms from titles, abstracts, and keywords in the 
reviewed corpus 

3.2. Overview of the selected literature 

The systematic search yielded a total of 150 records, of which 112 were retained after screening and eligibility checks 
(Table. 1). These studies span the period 2000–2025, with a noticeable increase in publications after 2015, reflecting 
the growing interest in applying artificial intelligence (AI) and optimization to water quality monitoring. Fig. 2 illustrates 
the distribution of publications per year, showing a marked acceleration in the last decade. 

 

Figure 2 Publications per year in AI-based WQI and optimization studies (2000–2025) 

The corpus includes diverse types of contributions. The majority of references are journal papers, followed by books 
chapters, conference papers, thesis, and technical reports (Fig. 3). This distribution highlights the predominance of 
peer-reviewed journal research, but also underscores the role of conference proceedings in reporting emerging AI 
methods before journal publication. Publication sources are also concentrated in a limited number of outlets. Fig. 4 
summarizes the top contributing journals and, showing that environmental and computational venues dominate the 
dissemination of this research. 
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Figure 3 Distribution of reference types in the reviewed corpus 

 

 

Figure 4 Top publication sources of the selected studies 

3.3. Thematic clustering of the literature 

To uncover thematic structures within the reviewed corpus, a clustering analysis of titles and keywords was performed 
using TF–IDF vectorization and Keans grouping. Six clusters emerged, each representing distinct but complementary 
research streams in the field of AI-driven water quality assessment. Word clouds were generated to visualize the most 
frequent terms in each cluster (Fig. 5). 
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Figure 5 Word cloud representation of each Cluster 

Cluster 0 (IoT and Edge Computing): This cluster is dominated by terms such as IoT, edge, computing, smart, sensor, 
wireless, network. It reflects research on real-time monitoring platforms, emphasizing distributed architectures where 
edge devices handle data preprocessing before transmission to cloud servers. Such approaches address latency and 
efficiency challenges in large-scale monitoring deployments. 

Cluster 1 (Prediction and Explainable AI): Characterized by terms such as pre- diction, rainfall, ensemble, neural, SVR, 
explainable, SHAP (Shapley Additive explanations), this cluster represents work on predictive modeling and model 
interpretability. The prominence of explainability-related keywords indicates a growing emphasis on transparent and 
trustworthy AI for water quality applications, especially in hydrological forecasting contexts. 

Cluster 2 (Environmental Monitoring and Pollution Studies): With terms such as pollution, Morocco, river, irrigation, 
management, optimization, this cluster includes regional applications of AI to pollution assessment and water quality 
indices. Optimization appears here as a supporting component in case studies where model calibration and feature 
selection are required for localized datasets. 

Cluster 3 (Water Treatment and Smart Systems): This cluster is defined by terms including treatment, smart, 
technology, management, optimization, highlighting AI-based frameworks for water treatment, aquaculture, and 
municipal systems. Optimization is particularly visible in this cluster, reflecting its role in designing efficient control 
strategies and improving operational reliability. 

Cluster 4 (Environmental Engineering and Regional Indices): Terms such as environmental, basin, resilience, entropy, 
Maaouya, indices reveal a focus on basin-specific studies and advanced index development. This cluster illustrates how 
AI models are ap- plied in conjunction with novel indices to capture spatiotemporal dynamics and support resilience-
oriented water management. 

Cluster 5 (Hybrid and Genetic Programming Approaches): Featuring terms like monitoring, IoT, fuzzified, multi, gene, 
genetic, reservoir, aquaculture, this cluster reflects studies employing metaheuristic and hybrid optimization methods. 
Multi-Gene Genetic Programming (MGGP), genetic algorithms, and fuzzified approaches are recurrent themes, 
particularly in aquaculture and recirculating water systems. This confirms that optimization techniques, while less 
frequent overall, are crucial in niche applications requiring computational efficiency and adaptability. 

Overall, the clustering results demonstrate that while predictive modeling and IoT monitoring dominate the literature, 
optimization terms are consistently associated with hybrid, treatment, and aquaculture-focused studies (Clusters 2, 3, 
and 5). This reinforces the conclusion that optimization plays a targeted but significant role in improving the 
adaptability and performance of AI-based water quality monitoring systems. 
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3.4. AI techniques in WQI calculation 

The reviewed literature demonstrates the increasing application of artificial intelligence methods to Water Quality 
Index (WQI) prediction over the last decade, moving from fuzzy logic approaches to advanced deep learning. Early work 
by researchers proposed a hybrid probabilistic WQI model for the Jajrood River in Iran, integrating probabilistic neural 
networks (PNNs), Bayesian networks (BNs), and fuzzy inference systems (FIS) [8]. This framework addressed 
uncertainty and expert judgment, offering more flexible and robust evaluations compared to deterministic indices. 

Later, another study evaluated the Adaptive Neuro-Fuzzy Inference Systems (ANFIS) on the Yamuna River, India, 
comparing them against conventional Multi- Linear Regression (MLR) [9]. Both ANFIS and ANN models outperformed 
MLR by up to 10% during validation, while showing negligible differences between ANN and ANFIS, confirming their 
reliability for WQI prediction. 

ANN-based models remained a focus in subsequent research. A study applied a forward and backpropagation ANN to 
the Brahmani River, achieving regression coefficients greater than 0.9 across stations. The study demonstrated the 
strong generalization of neural networks when trained on large datasets with appropriate data partitioning [10]. In the 
same year, another research advanced this line of work with a hybrid Random Tree–ANN (RT-ANN) model for North 
Pakistan, which combined decision trees with ANN learning. The hybrid approach improved predictive performance, 
reaching RMSE = 2.319 and NSE = 0.945, outperforming standalone ANN or tree models [11]. 

Parallel developments also explored Support Vector Machines (SVM). A previous work enhanced SVM by combining it 
with the Differential Evaluation and Gray Wolf Optimization (DE-GWO) algorithm, significantly improving predictive 
accuracy [12]. More recently, researchers demonstrated that SVM combined with sensitivity analysis remains effective 
even with missing water quality parameters, reinforcing the robustness of SVM-based frameworks [13]. 

Also, a study applied Deep Capsule Crystal Edge Graph neural networks to WQI modeling, reporting MSE = 6.7 and 99% 
accuracy [14]. Similarly, other work employed deep neural networks (DNNs) to predict multiple water quality indices, 
achieving correlation coefficient R = 0.9994 and RMSE = 0.0020. These results under- line the increasing potential of 
deep learning to capture nonlinearities in complex environmental datasets, enabling highly accurate real-time 
assessments [6]. A summary of the main AI-based techniques reviewed, their features, and performance is presented in 
Table.  2. 

Table 2 Performance evaluation of AI-based WQI prediction approaches 

Model Key Features Performance Metrics Reference 

Fuzzy/Probabilistic 

(PWQI) 

Combines FIS, BN and PNN Real-time probabilistic assessment [8] 

ANFIS Neuro-fuzzy learning +10% accuracy vs. MLR [9] 

ANN Forward/ Backpropagate training R2 > 0.9 [10] 

RT-ANN (Hybrid) Random Tree + ANN RMSE = 2.319, NSE= 0.945 [11] 

SVM DE-GWO optimization, sensitivity analysis RMSE = 0.0020, R = 0.9994 [12,13] 

Deep Learning 

(Capsule GNN, DNN) 

Optimized activation MSE = 6.7, Accuracy = 99% [6,14] 

Overall, the reviewed AI-based models illustrate a clear chronological trajectory of increasing sophistication, from early 
probabilistic frameworks (2011) to neuro-fuzzy systems (2020), hybrid ANN-based models (2022), enhanced SVMs 
(2022–2023), and deep learning architectures (2024). Each stage builds on prior approaches, progressively im- proving 
predictive accuracy and model adaptability. This trend suggests that future re- search will need to balance accuracy 
with interpretability and efficiency. 

3.5. Optimization techniques in WQI Calculation 

Alongside the development of AI models, optimization algorithms have become essential for tuning parameters, 
selecting features, and improving computational efficiency. Genetic Algorithms (GA) were among the first widely 
applied methods. Authors combined GA with Multiple Linear Regression (GA–MLR) to estimate the Comprehensive 
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Pollution Index (CPI) for the Shatt Al-Arab River in Iraq [15]. Their GA–MLR framework optimized the selection and 
weighting of predictor variables, achieving a minimum CPI of 0.3777 and highlighting GA’s role in refining predictions 
through evolutionary search. 

Around the same time, Particle Swarm Optimization (PSO) was explored as a complementary technique. Additionally, 
another study tested PSO in combination with machine learning classifiers, developing a PSO–NBC model that reached 
92.8% accuracy, outperforming a PSO–SVM model (77.6%) [16]. These results demonstrated the ability of PSO-
enhanced learning models to improve predictive performance, particularly when paired with lightweight classifiers. 

Hybrid optimization methods were subsequently proposed to combine the strengths of multiple approaches. In 
Malaysia, authors applied the Hybrid Particle Swarm Optimization and Genetic Algorithm (HPSOGA) to WQI prediction 
in the Klang River [17]. The hybrid outperformed standalone algorithms, illustrating how multi-strategy optimization 
increases precision and efficiency in complex modeling tasks. 

More recently, researchers demonstrated the potential of Multi-Gene Genetic Programming (MGGP) integrated with 
IoT-enabled aquaculture systems. Their model achieved R2 = 0.9112 and RMSE = 0.6441 while remaining 
computationally efficient for deployment on constrained IoT platforms [18]. This case shows how optimization 
contributes not only to accuracy but also to practical feasibility in real-time monitoring systems. A comparative 
overview of the reviewed optimization techniques is provided in Table.  3. 

Table 3 Comparison of optimization techniques applied in WQI prediction 

Method Application Performance Metrics  Reference 

Genetic Algorithm 

(GA) 

GA–MLR, CPI estimation (Shatt Al- 
Arab River) 

Min. CPI = 0.3777 [15] 

Particle Swarm Optimization 
(PSO) 

PSO–NBC and 

PSO–SVM 

Accuracy: 

(NBC), (SVM) 

92.8% 

77.6% 

[16] 

Hybrid PSO + GA 

(HPSOGA) 

Klang River prediction Outperformed standalone 
methods 

[17] 

MGGP IoT-enabled aquaculture systems R2 = 0.9112, RMSE 

= 0.6441 

[18] 

The reviewed optimization studies reveal the complementary role of metaheuristic techniques in strengthening WQI 
models. Genetic Algorithms have proven effective for feature selection and parameter calibration, while Particle Swarm 
Optimization enhances classifier performance, particularly for lightweight models such as NBC. Hybrid approaches like 
HPSOGA outperform individual methods, suggesting that multi-strategy optimization can further boost accuracy and 
efficiency. Finally, MGGP demonstrates how optimization can be adapted for IoT-based real-time monitoring, combining 
accuracy with computational feasibility. Taken together, these methods illustrate that optimization is less about 
replacing AI models and more about ensuring their adaptability, stability, and deployability in real-world systems. 

3.6. Architectural frameworks for water resource monitoring 

Beyond individual models, recent studies emphasize the importance of system-level architectures for water quality 
monitoring. The integration of IoT sensors, satellite data, wireless networks, and cloud–edge infrastructures enables 
the deployment of optimized AI models in real time, moving from isolated case studies toward scalable environmental 
observatories. In this subsection, we synthesize the architectural frameworks reviewed in the literature, organized into 
functional layers. 

3.6.1. Data acquisition layer 

The foundation of any monitoring system is the continuous collection of reliable environmental data. IoT-enabled 
sensors deployed in rivers, reservoirs, and treatment facilities measure critical parameters such as pH, turbidity, 
dissolved oxygen, and flow rate at high temporal resolutions [19, 20]. Remote sensing platforms, including satellites 
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and UAVs, extend this capacity by providing basin-scale perspectives and supporting hydrological modeling [21]. 
Wireless Sensor Networks (WSNs), based on Lo Ra WAN, Zigbee, or NB-IoT, provide distributed and fault-tolerant data 
collection, ensuring resilience even in remote areas [22]. A notable implementation is the Online Monitoring System 
(OMS), which combines low-power WSNs with alerting mechanisms (SMS alarms) to authorities when thresholds are 
exceeded [23]. 

3.6.2. Data transmission and integration 

Collected data must flow securely and efficiently from field nodes to processing systems. Edge devices are increasingly 
used to perform preliminary preprocessing and com- pression, reducing latency and bandwidth use [24]. Depending on 
local infrastructure, transmission employs LPWAN, 3G/4G/5G, or Wi-Fi protocols [25]. Middleware and standardized 
APIs are essential to integrate heterogeneous data streams, promoting interoperability and scalability across devices 
and systems [26]. 

3.6.3. Data storage and processing 

This layer ensures that raw data are cleansed, transformed, and prepared for modeling. Automated pipelines handle 
outlier detection, normalization, and synchronization [27]. Stream-processing tools such as Apache Kafka and Flink 
support real-time data handling, while batch frameworks like Spark provide efficient scheduled processing [28]. Hybrid 
storage solutions balance scalability and latency: MongoDB or S3 for cloud repositories, and InfluxDB at the edge for 
fast queries [29]. A previous study proposed a three-tier IoT–edge–cloud framework that dynamically assigns 
processing tasks based on network conditions, computational load, and privacy needs [30]. 

3.6.4. Analytics and AI integration layer 

At the analytics layer, AI models transform processed data into actionable insights. Classical machine learning (ANNs, 
SVMs, Random Forests) and deep learning (CNNs, LSTMs, Capsule Graph Networks) have been deployed to capture 
nonlinear dynamics of WQI [10, 12,14]. Hybrid and optimized models (ANFIS, RT-ANN, MGGP) further enhance 
adaptability through metaheuristics such as GA and PSO [11, 15, 16,18]. Deployment strategies increasingly rely on 
containerized microservices (e.g., Docker) to enable real-time retraining and version control in cloud dashboards [31]. 
An illustrative pipeline is described by a study that integrated SVM with sensitivity analysis for robust prediction despite 
missing inputs [13]. 

3.6.5. Explainability layer 

To address the opacity of complex AI models, explainable AI (XAI) has been introduced. Techniques such as SHAP 
Shapley Additive explanations, LIME (Local Interpretable Model-agnostic Explanations), and feature importance plots 
clarify how physicochemical parameters (e.g., NO3−, NH4+, PO43−) drive predictions, thus improving transparency and 
trust [32]. Fig. 6 illustrates a comparison between black-box and explainable frameworks [33]. 

 

Figure 6 Illustrative comparison between the concept of conventional ML and XAI approach 
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3.6.6. Decision support and visualization 

The final layer translates analytical outputs into actionable decisions. Interactive dashboards, GIS-integrated maps, and 
automated alerts provide real-time visualization and early warning for policymakers [34]. Scenario modeling supports 
adaptive governance, allowing managers to test interventions virtually before implementation. Feedback loops enhance 
resilience by updating models and thresholds dynamically, aligning monitoring with Sustainable Development Goals on 
clean water and climate adaptation. 

4. Discussion 

The synthesis of 112 studies highlights both significant progress and persistent barriers in AI-driven Water Quality 
Index (WQI) prediction. By organizing the results into three main dimensions; AI models, optimization techniques, and 
architectural frameworks; this review contributes a structured perspective on the state of the art. In this section, we 
critically interpret these findings in light of existing literature and outline remaining challenges and future directions. 

4.1. From local model optimization to integrated architectures 

While individual AI models achieve remarkable predictive accuracy, they remain largely confined to local or case-
specific studies. Neural networks, support vector machines, and neuro-fuzzy hybrids consistently outperform 
traditional regression methods, with deep learning achieving near-perfect accuracy in some cases [6,14]. Yet their 
deployment is rarely linked to real-time infrastructures or standardized pipelines, limiting transferability across 
regions. This echoes earlier critiques in environmental informatics, where methodological advances outpace practical 
system integration [35, 36]. 

Optimization techniques further improve predictive accuracy and adaptability. Genetic Algorithms and Particle Swarm 
Optimization enhance parameter tuning and feature selection, while hybrid approaches (HPSOGA, MGGP) demonstrate 
superior flexibility [15–18]. However, their benefits remain tied to isolated prediction tasks rather than embedded 
within operational frameworks. The IoT–MGGP system is one of the few examples linking optimization to live 
monitoring workflows [18]. This suggests that optimization is not an endpoint but a facilitator of deployable AI, 
provided it is integrated into end-to-end architectures. 

4.2. Infrastructural and data limitations 

Despite technical advances, persistent infrastructural challenges hinder the scalability of AI-based WQI systems. Data 
availability and quality are an important concern. AI models require large volumes of high-resolution labeled data, but 
monitoring net- works are often sparse, sensor calibrations inconsistent, and data formats fragmented [5,37]. Missing 
values and seasonal gaps introduce bias and reduce generalizability, especially in underrepresented or remote regions. 
These issues confirm earlier observations that the” data bottleneck” is the main barrier to operational AI in 
environmental monitoring [38,39]. 

Transparency and interpretability also remain critical limitations. Complex architectures such as deep neural networks 
and ensembles often operate as” black boxes”, making it difficult for stakeholders and regulators to validate predictions 
[37]. Without explainability mechanisms, trust and adoption remain limited. 

Computational costs compound these challenges. High-performing models, particularly deep and hybrid architectures, 
often require GPUs and continuous cloud connectivity. This creates barriers for agencies in resource-constrained 
settings, reinforcing digital inequalities [6,18]. 

Finally, the field lacks standardized protocols for preprocessing, feature engineering, and benchmarking. Variability in 
metrics and the scarcity of open-source implementations make reproducibility and cross-study comparisons difficult 
[37]. Addressing these gaps is vital for building globally credible tools. 

4.3. Toward standardized, full-stack frameworks 

The reviewed evidence highlights the need to move beyond isolated models toward standardized, full-stack 
architectures for water resource assessment. As illustrated in Fig. 7, a robust pipeline should integrate real-time data 
acquisition (IoT sensors, satellite imagery), edge and cloud-based processing, optimized and explainable AI analytics, 
and decision-support dashboards for policymakers. Recent proposals for IoT–cloud integration frameworks [30,40] 
confirm that modular layered designs offer scalability, resilience, and adaptability, though few have been applied 
specifically to WQI. 
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Figure 7 Proposed AI and Optimization Pipeline for Water Resource Assessment 

Explainable AI (XAI) tools such as SHAP and LIME can bridge the interpretability gap, improving regulatory acceptance 
and stakeholder trust [32]. Decision-support dashboards connected to these systems facilitate adaptive governance, 
enabling early warning and scenario-based management [41]. 

Such architectures not only enhance technical reproducibility but also align with the Sustainable Development Goals 
(SDG 6: Clean Water, SDG 13: Climate Action) by ensuring scalable, transparent, and adaptive water quality monitoring. 

4.4. Research gaps and future directions 

This review identifies several research gaps. First, few studies incorporate spatiotemporal analytics and multi-source 
fusion (e.g., combining IoT, meteorological, and satellite data) for basin-scale WQI prediction. Second, interoperability 
standards remain underdeveloped, limiting data exchange across agencies. Third, computational efficiency, particularly 
edge-enabled lightweight models, needs greater emphasis to enable deployment in regions with constrained resources. 
Finally, benchmarking protocols and open-source toolkits are urgently required to improve reproducibility and 
comparability [37]. 

Future research should therefore prioritize modular, open, and interoperable architectures that embed optimized AI 
within continuous monitoring workflows. Pilot implementations in diverse hydrological contexts will be essential to 
validate real-world scalability. Addressing these gaps would transform AI-driven WQI prediction from an academic 
focus into an operational backbone of water resource management. 

4.5. Threats to validity 

As with any review study, certain limitations and potential biases may affect the validity of our findings. First, the search 
strategy, while comprehensive, was restricted to major databases (Scopus, Web of Science, IEEE Xplore, ScienceDirect, 
SpringerLink). Relevant studies indexed elsewhere or published in non-English sources may have been excluded, 
introducing a degree of publication bias. 

Second, although we applied clear inclusion and exclusion criteria, the heterogeneity of reporting practices across 
studies meant that some methodological details (e.g., dataset size, preprocessing steps, hyperparameter settings) were 
either incomplete or inconsistent. This may have influenced our ability to compare performance metrics directly. 

Third, bibliometric and clustering analyses were based on metadata (titles, abstracts, and keywords), which may not 
fully capture the conceptual depth of each article. While these methods provide valuable insights into research trends, 
they cannot substitute for detailed content analysis. 
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Finally, as the field of AI and water resource monitoring is rapidly evolving, recent advances published after our cut-off 
date (June 2025) may not be reflected in this synthesis. This inherent lag between literature review and publication is 
a known challenge in fast-moving domains. 

Despite these threats to validity, the methodological triangulation employed, combining structured literature review, 
bibliometric mapping, and comparative syn- thesis, provides confidence that the patterns and gaps identified in this 
study are representative of the state of the art. 

5. Conclusion 

This review has synthesized recent advances in artificial intelligence (AI) and optimization techniques for Water Quality 
Index (WQI) prediction. Models such as Artificial Neural Networks (ANN), Support Vector Machines (SVM), Adaptive 
Neuro-Fuzzy Inference Systems (ANFIS), and hybrid frameworks have demonstrated strong predictive performance, 
often surpassing traditional regression-based methods. Optimization approaches including Genetic Algorithms (GA), 
Particle Swarm Optimization (PSO), and Multi-Gene Genetic Programming (MGGP) further enhance accuracy by 
supporting feature selection and parameter tuning. Together, these advances highlight the growing maturity of AI- 
driven water quality assessment. 

Nevertheless, most existing solutions remain fragmented, confined to localized studies, and rarely embedded within 
real-time monitoring infrastructures. This limits their scalability and applicability in large-scale water resource 
management. A critical finding of this review is the need to move beyond isolated model development toward 
standardized, modular system architectures that integrate AI models with IoT sensors, edge computing, and cloud 
platforms. Such end-to-end frameworks would enable continuous monitoring, adaptive feedback, and early warning 
systems across diverse hydrological settings.  
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