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Abstract

Accurate water quality assessment is critical for sustainable water resources management under growing
environmental pressures. The Water Quality Index (WQI) provides a practical framework for summarizing complex
water quality data into a single indicator. This review examines recent advances in artificial intelligence and
optimization techniques for WQI prediction, with a focus on machine learning, ensemble models, deep learning, and
hybrid approaches. Existing studies demonstrate strong predictive capabilities but remain largely model-centric and
limited by localized datasets and weak system integration. This review identifies methodological limitations and
outlines key components required for future integrated monitoring frameworks, including data acquisition, model
interpretability, and uncertainty-aware decision support. The findings provide guidance for advancing toward scalable
and transparent water quality assessment systems.
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1. Introduction

The sustainable management of freshwater resources is a critical global challenge in the face of accelerating
urbanization, industrial development, and climate variability. Water quality monitoring plays a fundamental role in
safeguarding ecosystems, protecting public health, and ensuring the availability of clean water for diverse human and
ecological needs [1]. The Water Quality Index (WQI) has become a widely used tool for simplifying complex
physicochemical, biological, and ecological measurements into a single interpretable score. By translating raw
measurements into a composite index, the WQI provides an accessible framework for both policymakers and the public
to assess water suitability for domestic, agricultural, and industrial purposes [2, 3].

Despite its usefulness, traditional WQI calculation methods suffer from significant limitations. They rely on fixed
parameter weights and static thresholds that fail to capture seasonal variability, local conditions, and nonlinear
dynamics of water chemistry [4]. These rigid approaches limit their sensitivity to emerging contamination issues and
reduce their capacity for adaptive water management. Recent advances in artificial intelligence (Al) and machine
learning (ML) have demonstrated the ability to model nonlinear interactions and temporal patterns, with studies
reporting high predictive accuracy and robustness across multiple contexts [5, 6]. Complementary optimization
techniques, such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO), further refine predictive models
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by optimizing parameter selection and enhancing efficiency. Yet, despite these promising advances, current Al-based
WQI solutions remain fragmented, often tied to case-specific datasets and rarely embedded within real-time monitoring
infrastructures such as IoT sensor networks or cloud platforms [7]. This lack of integration hinders scalability and
operational adoption at regional or national levels.

The increasing maturity of Al and optimization techniques, coupled with the proliferation of [oT and cloud technologies,
presents a timely opportunity for synthesis. While individual reviews exist on Al models or WQI methods, few studies
have systematically examined how predictive modeling, optimization strategies, and system architectures can be
combined into end-to-end frameworks for water quality assessment. A comprehensive review is therefore needed to
consolidate methodological advances, identify limitations, and chart a pathway toward scalable, real-time, and
explainable monitoring systems. This review contributes to the broader challenge of water resource management by
framing WQI prediction not only as a modeling problem but as part of a full-stack architecture that includes data
acquisition, processing, analytics, and decision support.

The objectives of this review are threefold. First, it aims to synthesize recent developments in Al-based techniques for
Water Quality Index (WQI) prediction, with particular emphasis on deep learning, hybrid models, and ensemble
learning approaches. Second, it seeks to evaluate the role of optimization algorithms, including Genetic Algorithms (GA),
Particle Swarm Optimization (PSO), and Multi-Gene Genetic Programming (MGGP), in enhancing both the performance
and the practical deplorability of predictive models. Finally, the review examines emerging architectural frameworks
that integrate [oT sensing, edge and cloud processing, explainable Al (XAI), and decision-support systems to enable real-
time water quality monitoring. By addressing these objectives, this review aims to clarify the current state of research,
highlight persistent challenges, and provide a roadmap for future work toward modular, scalable, and interoperable
architectures for intelligent water resource management.

2. Materials And Methods

This review provides a systematic overview of artificial intelligence (Al) and optimization techniques applied to Water
Quality Index (WQI) prediction and their role in broader water resource monitoring architectures. The methodology
combined structured literature retrieval, screening, and qualitative synthesis with supplementary bibliometric and
architectural analysis.

2.1. Literature search strategy

Relevant studies were retrieved from major scientific databases, including Scopus, Web of Science, IEEE Xplore,
ScienceDirect, and SpringerLink. The search covered the years 2000-2025, with emphasis on the last 15 years to
capture recent advances. Keywords and Boolean combinations included: “Water Quality Index”, “WQI prediction”,

“Artificial Intelligence”, “Machine Learning”, “Optimization algorithms”, “IoT water monitoring”, “cloud computing”, and
“Explainable AI".

2.2. Inclusion and exclusion criteria

Studies were included if they applied Al or optimization techniques to WQI prediction or related indices, and reported
sufficient methodological detail (e.g.,, model description, dataset characteristics, and evaluation metrics such as RMSE,
R2, or MAE). Works ad- dressing the integration of WQI models into broader architectures (e.g., loT-enabled monitoring,
edge computing, or cloud-based frameworks) were also retained. By contrast, studies relying solely on deterministic or
statistical approaches without Al or optimization components were excluded. Papers lacking methodological
transparency, performance outcomes, or peer-reviewed publication status were also omitted.

2.3. Study selection process

The initial database search yielded 150 records. After removing duplicates and screening titles and abstracts, 141
articles remained. A further abstract assessment excluded 29 studies that did not meet the inclusion criteria, such as
relying solely on deterministic models or lacking methodological transparency. Ultimately, 112 studies were retained
for qualitative synthesis and comparative analysis. Table. 1 illustrates the study selection process.

2094



World Journal of Advanced Research and Reviews, 2025, 28(03), 2093-2107

Table 1 Flow diagram of the study selection process

Step | Description Number (n)
1 Records identified through database searching 150

2 Duplicates removed 9

3 Records screened 141

4 Records excluded after abstract assessment 29

5 Studies included in bibliometric/comparative analysis | 112

2.4. Data extraction and synthesis

From each eligible study, bibliographic details, study context, and methodological characteristics were systematically
extracted. Key descriptors included publication year, geographical focus, type of water body, and the Al or optimization
techniques employed. Where available, performance indicators such as accuracy, RMSE, MSE, and R2 were recorded.
Extraction followed a standardized form to ensure comparability across studies. The synthesized data were analyzed
narratively to identify methodological trends, recurring challenges, and opportunities for integration into full-stack
monitoring systems.

2.5. Bibliometric and comparative analysis

A bibliometric overview was conducted using metadata (titles, abstracts, and keywords) to identify research hotspots
and emerging themes (e.g., optimization, [oT, explainability). Word clouds and clustering analysis were used to highlight
patterns, while comparative figures evaluated the strengths, weaknesses, and performance of Al and optimization
techniques across different case studies.

2.6. Architecture analysis

In parallel, system-level architectures were examined to assess how Al models were integrated into operational
monitoring frameworks. Specific components analyzed included IoT sensor networks, edge/cloud computing layers,
data pipelines, and decision-support interfaces. These architectural features were compared against common
limitations identified in the literature, such as fragmentation, interpretability, and scalability.

2.7. Conceptual framework development

Finally, insights from the review were synthesized into a conceptual end-to-end pipeline for WQI prediction. The
proposed framework emphasizes real-time data acquisition, cloud/edge-based processing, Al-driven optimization,
explainability, and decision-support mechanisms, highlighting the need for modular and interoperable architectures in
future water resource monitoring.

3. Results

3.1. Global keyword trends

To obtain an overall picture of the thematic orientation of the reviewed literature, a word cloud was generated using
titles, abstracts, and keywords of all retained studies (Fig. 1). Generic terms such as water, quality, and index were
excluded to highlight more specific technical and methodological concepts. The visualization reveals the prominence of
terms such as prediction, system, monitoring, optimization, IoT, networks, cloud computing, and explainable, which
collectively underline the intersection of artificial intelligence, optimization strategies, and real-time architectures in
water quality monitoring.
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Figure 1 Global word cloud summarizing the most frequent terms from titles, abstracts, and keywords in the
reviewed corpus

3.2. Overview of the selected literature

The systematic search yielded a total of 150 records, of which 112 were retained after screening and eligibility checks
(Table. 1). These studies span the period 2000-2025, with a noticeable increase in publications after 2015, reflecting
the growing interest in applying artificial intelligence (Al) and optimization to water quality monitoring. Fig. 2 illustrates
the distribution of publications per year, showing a marked acceleration in the last decade.

23 1

20

15

Count

10

2001
2003
2005
20048
2009
2011
2013
2014
2015
20185
2018
2019
2020
2021
2022
2023
2024
2025

Tear

Figure 2 Publications per year in Al-based WQI and optimization studies (2000-2025)

The corpus includes diverse types of contributions. The majority of references are journal papers, followed by books
chapters, conference papers, thesis, and technical reports (Fig. 3). This distribution highlights the predominance of
peer-reviewed journal research, but also underscores the role of conference proceedings in reporting emerging Al
methods before journal publication. Publication sources are also concentrated in a limited number of outlets. Fig. 4
summarizes the top contributing journals and, showing that environmental and computational venues dominate the
dissemination of this research.
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Figure 4 Top publication sources of the selected studies

3.3. Thematic clustering of the literature

To uncover thematic structures within the reviewed corpus, a clustering analysis of titles and keywords was performed
using TF-IDF vectorization and Keans grouping. Six clusters emerged, each representing distinct but complementary
research streams in the field of Al-driven water quality assessment. Word clouds were generated to visualize the most
frequent terms in each cluster (Fig. 5).
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Cluster 0 (IoT and Edge Computing): This cluster is dominated by terms such as 10T, edge, computing, smart, sensor,
wireless, network. It reflects research on real-time monitoring platforms, emphasizing distributed architectures where
edge devices handle data preprocessing before transmission to cloud servers. Such approaches address latency and
efficiency challenges in large-scale monitoring deployments.

Cluster 1 (Prediction and Explainable Al): Characterized by terms such as pre- diction, rainfall, ensemble, neural, SVR,
explainable, SHAP (Shapley Additive explanations), this cluster represents work on predictive modeling and model
interpretability. The prominence of explainability-related keywords indicates a growing emphasis on transparent and
trustworthy Al for water quality applications, especially in hydrological forecasting contexts.

Cluster 2 (Environmental Monitoring and Pollution Studies): With terms such as pollution, Morocco, river, irrigation,
management, optimization, this cluster includes regional applications of Al to pollution assessment and water quality
indices. Optimization appears here as a supporting component in case studies where model calibration and feature
selection are required for localized datasets.

Cluster 3 (Water Treatment and Smart Systems): This cluster is defined by terms including treatment, smart,
technology, management, optimization, highlighting Al-based frameworks for water treatment, aquaculture, and
municipal systems. Optimization is particularly visible in this cluster, reflecting its role in designing efficient control
strategies and improving operational reliability.

Cluster 4 (Environmental Engineering and Regional Indices): Terms such as environmental, basin, resilience, entropy,
Maaouya, indices reveal a focus on basin-specific studies and advanced index development. This cluster illustrates how
Al models are ap- plied in conjunction with novel indices to capture spatiotemporal dynamics and support resilience-
oriented water management.

Cluster 5 (Hybrid and Genetic Programming Approaches): Featuring terms like monitoring, loT, fuzzified, multi, gene,
genetic, reservoir, aquaculture, this cluster reflects studies employing metaheuristic and hybrid optimization methods.
Multi-Gene Genetic Programming (MGGP), genetic algorithms, and fuzzified approaches are recurrent themes,
particularly in aquaculture and recirculating water systems. This confirms that optimization techniques, while less
frequent overall, are crucial in niche applications requiring computational efficiency and adaptability.

Overall, the clustering results demonstrate that while predictive modeling and IoT monitoring dominate the literature,
optimization terms are consistently associated with hybrid, treatment, and aquaculture-focused studies (Clusters 2, 3,
and 5). This reinforces the conclusion that optimization plays a targeted but significant role in improving the
adaptability and performance of Al-based water quality monitoring systems.
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3.4. Al techniques in WQI calculation

The reviewed literature demonstrates the increasing application of artificial intelligence methods to Water Quality
Index (WQI) prediction over the last decade, moving from fuzzy logic approaches to advanced deep learning. Early work
by researchers proposed a hybrid probabilistic WQI model for the Jajrood River in Iran, integrating probabilistic neural
networks (PNNs), Bayesian networks (BNs), and fuzzy inference systems (FIS) [8]. This framework addressed
uncertainty and expert judgment, offering more flexible and robust evaluations compared to deterministic indices.

Later, another study evaluated the Adaptive Neuro-Fuzzy Inference Systems (ANFIS) on the Yamuna River, India,
comparing them against conventional Multi- Linear Regression (MLR) [9]. Both ANFIS and ANN models outperformed
MLR by up to 10% during validation, while showing negligible differences between ANN and ANFIS, confirming their
reliability for WQI prediction.

ANN-based models remained a focus in subsequent research. A study applied a forward and backpropagation ANN to
the Brahmani River, achieving regression coefficients greater than 0.9 across stations. The study demonstrated the
strong generalization of neural networks when trained on large datasets with appropriate data partitioning [10]. In the
same year, another research advanced this line of work with a hybrid Random Tree-ANN (RT-ANN) model for North
Pakistan, which combined decision trees with ANN learning. The hybrid approach improved predictive performance,
reaching RMSE = 2.319 and NSE = 0.945, outperforming standalone ANN or tree models [11].

Parallel developments also explored Support Vector Machines (SVM). A previous work enhanced SVM by combining it
with the Differential Evaluation and Gray Wolf Optimization (DE-GWO) algorithm, significantly improving predictive
accuracy [12]. More recently, researchers demonstrated that SVM combined with sensitivity analysis remains effective
even with missing water quality parameters, reinforcing the robustness of SVM-based frameworks [13].

Also, a study applied Deep Capsule Crystal Edge Graph neural networks to WQI modeling, reporting MSE = 6.7 and 99%
accuracy [14]. Similarly, other work employed deep neural networks (DNNs) to predict multiple water quality indices,
achieving correlation coefficient R = 0.9994 and RMSE = 0.0020. These results under- line the increasing potential of
deep learning to capture nonlinearities in complex environmental datasets, enabling highly accurate real-time
assessments [6]. A summary of the main Al-based techniques reviewed, their features, and performance is presented in
Table. 2.

Table 2 Performance evaluation of Al-based WQI prediction approaches

Model Key Features Performance Metrics Reference
Fuzzy/Probabilistic | Combines FIS, BN and PNN Real-time probabilistic assessment | [8]

(PWQI)

ANFIS Neuro-fuzzy learning +10% accuracy vs. MLR [9]

ANN Forward/ Backpropagate training R2>0.9 [10]
RT-ANN (Hybrid) Random Tree + ANN RMSE = 2.319, NSE= 0.945 [11]

SVM DE-GWO optimization, sensitivity analysis | RMSE =0.0020, R = 0.9994 [12,13]
Deep Learning Optimized activation MSE = 6.7, Accuracy = 99% [6,14]
(Capsule GNN, DNN)

Overall, the reviewed Al-based models illustrate a clear chronological trajectory of increasing sophistication, from early
probabilistic frameworks (2011) to neuro-fuzzy systems (2020), hybrid ANN-based models (2022), enhanced SVMs
(2022-2023), and deep learning architectures (2024). Each stage builds on prior approaches, progressively im- proving
predictive accuracy and model adaptability. This trend suggests that future re- search will need to balance accuracy
with interpretability and efficiency.

3.5. Optimization techniques in WQI Calculation

Alongside the development of Al models, optimization algorithms have become essential for tuning parameters,
selecting features, and improving computational efficiency. Genetic Algorithms (GA) were among the first widely
applied methods. Authors combined GA with Multiple Linear Regression (GA-MLR) to estimate the Comprehensive

2099



World Journal of Advanced Research and Reviews, 2025, 28(03), 2093-2107

Pollution Index (CPI) for the Shatt Al-Arab River in Iraq [15]. Their GA-MLR framework optimized the selection and
weighting of predictor variables, achieving a minimum CPI of 0.3777 and highlighting GA’s role in refining predictions
through evolutionary search.

Around the same time, Particle Swarm Optimization (PSO) was explored as a complementary technique. Additionally,
another study tested PSO in combination with machine learning classifiers, developing a PSO-NBC model that reached
92.8% accuracy, outperforming a PSO-SVM model (77.6%) [16]. These results demonstrated the ability of PSO-
enhanced learning models to improve predictive performance, particularly when paired with lightweight classifiers.

Hybrid optimization methods were subsequently proposed to combine the strengths of multiple approaches. In
Malaysia, authors applied the Hybrid Particle Swarm Optimization and Genetic Algorithm (HPSOGA) to WQI prediction
in the Klang River [17]. The hybrid outperformed standalone algorithms, illustrating how multi-strategy optimization
increases precision and efficiency in complex modeling tasks.

More recently, researchers demonstrated the potential of Multi-Gene Genetic Programming (MGGP) integrated with
IoT-enabled aquaculture systems. Their model achieved R2 = 0.9112 and RMSE = 0.6441 while remaining
computationally efficient for deployment on constrained IoT platforms [18]. This case shows how optimization
contributes not only to accuracy but also to practical feasibility in real-time monitoring systems. A comparative
overview of the reviewed optimization techniques is provided in Table. 3.

Table 3 Comparison of optimization techniques applied in WQI prediction

Method Application Performance Metrics Reference
Genetic Algorithm GA-MLR, CPI estimation (Shatt Al- | Min. CPI1=0.3777 [15]
(GA) Arab River)
Particle Swarm Optimization | PSO-NBC and Accuracy: [16]
(PSO) PSO-SVM (NBC), (SVM)
92.8%
77.6%
Hybrid PSO + GA Klang River prediction Outperformed standalone | [17]
(HPSOGA) methods
MGGP IoT-enabled aquaculture systems R2=0.9112, RMSE [18]
=0.6441

The reviewed optimization studies reveal the complementary role of metaheuristic techniques in strengthening WQI
models. Genetic Algorithms have proven effective for feature selection and parameter calibration, while Particle Swarm
Optimization enhances classifier performance, particularly for lightweight models such as NBC. Hybrid approaches like
HPSOGA outperform individual methods, suggesting that multi-strategy optimization can further boost accuracy and
efficiency. Finally, MGGP demonstrates how optimization can be adapted for loT-based real-time monitoring, combining
accuracy with computational feasibility. Taken together, these methods illustrate that optimization is less about
replacing Al models and more about ensuring their adaptability, stability, and deployability in real-world systems.

3.6. Architectural frameworks for water resource monitoring

Beyond individual models, recent studies emphasize the importance of system-level architectures for water quality
monitoring. The integration of IoT sensors, satellite data, wireless networks, and cloud-edge infrastructures enables
the deployment of optimized Al models in real time, moving from isolated case studies toward scalable environmental
observatories. In this subsection, we synthesize the architectural frameworks reviewed in the literature, organized into
functional layers.

3.6.1. Data acquisition layer

The foundation of any monitoring system is the continuous collection of reliable environmental data. IoT-enabled
sensors deployed in rivers, reservoirs, and treatment facilities measure critical parameters such as pH, turbidity,
dissolved oxygen, and flow rate at high temporal resolutions [19, 20]. Remote sensing platforms, including satellites
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and UAVs, extend this capacity by providing basin-scale perspectives and supporting hydrological modeling [21].
Wireless Sensor Networks (WSNs), based on Lo Ra WAN, Zigbee, or NB-1oT, provide distributed and fault-tolerant data
collection, ensuring resilience even in remote areas [22]. A notable implementation is the Online Monitoring System
(OMS), which combines low-power WSNs with alerting mechanisms (SMS alarms) to authorities when thresholds are
exceeded [23].

3.6.2. Data transmission and integration

Collected data must flow securely and efficiently from field nodes to processing systems. Edge devices are increasingly
used to perform preliminary preprocessing and com- pression, reducing latency and bandwidth use [24]. Depending on
local infrastructure, transmission employs LPWAN, 3G/4G/5G, or Wi-Fi protocols [25]. Middleware and standardized
APIs are essential to integrate heterogeneous data streams, promoting interoperability and scalability across devices
and systems [26].

3.6.3. Data storage and processing

This layer ensures that raw data are cleansed, transformed, and prepared for modeling. Automated pipelines handle
outlier detection, normalization, and synchronization [27]. Stream-processing tools such as Apache Kafka and Flink
support real-time data handling, while batch frameworks like Spark provide efficient scheduled processing [28]. Hybrid
storage solutions balance scalability and latency: MongoDB or S3 for cloud repositories, and InfluxDB at the edge for
fast queries [29]. A previous study proposed a three-tier loT-edge-cloud framework that dynamically assigns
processing tasks based on network conditions, computational load, and privacy needs [30].

3.6.4. Analytics and Al integration layer

At the analytics layer, Al models transform processed data into actionable insights. Classical machine learning (ANNs,
SVMs, Random Forests) and deep learning (CNNs, LSTMs, Capsule Graph Networks) have been deployed to capture
nonlinear dynamics of WQI [10, 12,14]. Hybrid and optimized models (ANFIS, RT-ANN, MGGP) further enhance
adaptability through metaheuristics such as GA and PSO [11, 15, 16,18]. Deployment strategies increasingly rely on
containerized microservices (e.g.,, Docker) to enable real-time retraining and version control in cloud dashboards [31].
Anillustrative pipeline is described by a study that integrated SVM with sensitivity analysis for robust prediction despite
missing inputs [13].

3.6.5. Explainability layer

To address the opacity of complex Al models, explainable Al (XAI) has been introduced. Techniques such as SHAP
Shapley Additive explanations, LIME (Local Interpretable Model-agnostic Explanations), and feature importance plots
clarify how physicochemical parameters (e.g., NO3—, NH4+, PO43-) drive predictions, thus improving transparency and
trust [32]. Fig. 6 illustrates a comparison between black-box and explainable frameworks [33].

Conventional machine learning

‘ ‘ This is a dog

Data Machine
learning

Machine learning + Explainable Al

| ‘ ‘ ‘ S 7] ‘ This is a dog
. l{xpl;ni;;'ll;lc Al

Improves
Machine R domain experts
learning Why? and end users’

‘ trust
Because it has

Figure 6 Illustrative comparison between the concept of conventional ML and XAI approach
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3.6.6. Decision support and visualization

The final layer translates analytical outputs into actionable decisions. Interactive dashboards, GIS-integrated maps, and
automated alerts provide real-time visualization and early warning for policymakers [34]. Scenario modeling supports
adaptive governance, allowing managers to test interventions virtually before implementation. Feedback loops enhance
resilience by updating models and thresholds dynamically, aligning monitoring with Sustainable Development Goals on
clean water and climate adaptation.

4. Discussion

The synthesis of 112 studies highlights both significant progress and persistent barriers in Al-driven Water Quality
Index (WQI) prediction. By organizing the results into three main dimensions; Al models, optimization techniques, and
architectural frameworks; this review contributes a structured perspective on the state of the art. In this section, we
critically interpret these findings in light of existing literature and outline remaining challenges and future directions.

4.1. From local model optimization to integrated architectures

While individual AI models achieve remarkable predictive accuracy, they remain largely confined to local or case-
specific studies. Neural networks, support vector machines, and neuro-fuzzy hybrids consistently outperform
traditional regression methods, with deep learning achieving near-perfect accuracy in some cases [6,14]. Yet their
deployment is rarely linked to real-time infrastructures or standardized pipelines, limiting transferability across
regions. This echoes earlier critiques in environmental informatics, where methodological advances outpace practical
system integration [35, 36].

Optimization techniques further improve predictive accuracy and adaptability. Genetic Algorithms and Particle Swarm
Optimization enhance parameter tuning and feature selection, while hybrid approaches (HPSOGA, MGGP) demonstrate
superior flexibility [15-18]. However, their benefits remain tied to isolated prediction tasks rather than embedded
within operational frameworks. The IoT-MGGP system is one of the few examples linking optimization to live
monitoring workflows [18]. This suggests that optimization is not an endpoint but a facilitator of deployable Al,
provided it is integrated into end-to-end architectures.

4.2. Infrastructural and data limitations

Despite technical advances, persistent infrastructural challenges hinder the scalability of Al-based WQI systems. Data
availability and quality are an important concern. Al models require large volumes of high-resolution labeled data, but
monitoring net- works are often sparse, sensor calibrations inconsistent, and data formats fragmented [5,37]. Missing
values and seasonal gaps introduce bias and reduce generalizability, especially in underrepresented or remote regions.
These issues confirm earlier observations that the” data bottleneck” is the main barrier to operational Al in
environmental monitoring [38,39].

Transparency and interpretability also remain critical limitations. Complex architectures such as deep neural networks
and ensembles often operate as” black boxes”, making it difficult for stakeholders and regulators to validate predictions
[37]. Without explainability mechanisms, trust and adoption remain limited.

Computational costs compound these challenges. High-performing models, particularly deep and hybrid architectures,
often require GPUs and continuous cloud connectivity. This creates barriers for agencies in resource-constrained
settings, reinforcing digital inequalities [6,18].

Finally, the field lacks standardized protocols for preprocessing, feature engineering, and benchmarking. Variability in
metrics and the scarcity of open-source implementations make reproducibility and cross-study comparisons difficult
[37]. Addressing these gaps is vital for building globally credible tools.

4.3. Toward standardized, full-stack frameworks

The reviewed evidence highlights the need to move beyond isolated models toward standardized, full-stack
architectures for water resource assessment. As illustrated in Fig. 7, a robust pipeline should integrate real-time data
acquisition (IoT sensors, satellite imagery), edge and cloud-based processing, optimized and explainable Al analytics,
and decision-support dashboards for policymakers. Recent proposals for loT-cloud integration frameworks [30,40]
confirm that modular layered designs offer scalability, resilience, and adaptability, though few have been applied
specifically to WQL.
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Figure 7 Proposed Al and Optimization Pipeline for Water Resource Assessment

Explainable AI (XAI) tools such as SHAP and LIME can bridge the interpretability gap, improving regulatory acceptance
and stakeholder trust [32]. Decision-support dashboards connected to these systems facilitate adaptive governance,
enabling early warning and scenario-based management [41].

Such architectures not only enhance technical reproducibility but also align with the Sustainable Development Goals
(SDG 6: Clean Water, SDG 13: Climate Action) by ensuring scalable, transparent, and adaptive water quality monitoring.

4.4. Research gaps and future directions

This review identifies several research gaps. First, few studies incorporate spatiotemporal analytics and multi-source
fusion (e.g., combining IoT, meteorological, and satellite data) for basin-scale WQI prediction. Second, interoperability
standards remain underdeveloped, limiting data exchange across agencies. Third, computational efficiency, particularly
edge-enabled lightweight models, needs greater emphasis to enable deployment in regions with constrained resources.
Finally, benchmarking protocols and open-source toolkits are urgently required to improve reproducibility and
comparability [37].

Future research should therefore prioritize modular, open, and interoperable architectures that embed optimized Al
within continuous monitoring workflows. Pilot implementations in diverse hydrological contexts will be essential to
validate real-world scalability. Addressing these gaps would transform Al-driven WQI prediction from an academic
focus into an operational backbone of water resource management.

4.5. Threats to validity

As with any review study, certain limitations and potential biases may affect the validity of our findings. First, the search
strategy, while comprehensive, was restricted to major databases (Scopus, Web of Science, IEEE Xplore, ScienceDirect,
SpringerLink). Relevant studies indexed elsewhere or published in non-English sources may have been excluded,
introducing a degree of publication bias.

Second, although we applied clear inclusion and exclusion criteria, the heterogeneity of reporting practices across
studies meant that some methodological details (e.g., dataset size, preprocessing steps, hyperparameter settings) were
either incomplete or inconsistent. This may have influenced our ability to compare performance metrics directly.

Third, bibliometric and clustering analyses were based on metadata (titles, abstracts, and keywords), which may not

fully capture the conceptual depth of each article. While these methods provide valuable insights into research trends,
they cannot substitute for detailed content analysis.
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Finally, as the field of Al and water resource monitoring is rapidly evolving, recent advances published after our cut-off
date (June 2025) may not be reflected in this synthesis. This inherent lag between literature review and publication is
a known challenge in fast-moving domains.

Despite these threats to validity, the methodological triangulation employed, combining structured literature review,
bibliometric mapping, and comparative syn- thesis, provides confidence that the patterns and gaps identified in this
study are representative of the state of the art.

5. Conclusion

This review has synthesized recent advances in artificial intelligence (Al) and optimization techniques for Water Quality
Index (WQI) prediction. Models such as Artificial Neural Networks (ANN), Support Vector Machines (SVM), Adaptive
Neuro-Fuzzy Inference Systems (ANFIS), and hybrid frameworks have demonstrated strong predictive performance,
often surpassing traditional regression-based methods. Optimization approaches including Genetic Algorithms (GA),
Particle Swarm Optimization (PSO), and Multi-Gene Genetic Programming (MGGP) further enhance accuracy by
supporting feature selection and parameter tuning. Together, these advances highlight the growing maturity of Al-
driven water quality assessment.

Nevertheless, most existing solutions remain fragmented, confined to localized studies, and rarely embedded within
real-time monitoring infrastructures. This limits their scalability and applicability in large-scale water resource
management. A critical finding of this review is the need to move beyond isolated model development toward
standardized, modular system architectures that integrate Al models with [oT sensors, edge computing, and cloud
platforms. Such end-to-end frameworks would enable continuous monitoring, adaptive feedback, and early warning
systems across diverse hydrological settings.
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