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Abstract

In this paper, we seek to determine the critical Reynolds number of a viscoelastic fluid flowing in a cylindrical pipe with
a horizontal axis. The problem obtained is a generalized eigenvalue problem Av = yBv. A Gauss-Lobatto-Tchebyshev
method was adopted to discretize this equation and the QZ algorithm combined with the Newton-Raphson method was
used to determine this critical value of the Reynolds number. It is obtained by searching for two successive and very
close values for which correspond two eigenvalues whose maximum real parts are respectively negative and positive.
In other words, the critical value is the smallest value of the Reynolds number for which instability occurs. The code for
performing this calculation was written in FORTRAN.

The flow is stable if all the real parts of the eigenvalues obtained are negative and unstable if only one of these values is
positive.

Keywords: Viscoelastic fluids; Linear instability; Petrov-Galerkin; Generalized eigenvalue problem; Algorithm QZ;
Critical Reynolds’ number

1. Introduction

The critical value of the Reynolds number for a flow in a cylindrical pipe varies according to the amplitude of the
disturbances. Thus, it has been proven that this critical value is a decreasing function of the amplitude of the disturbance.

The literature on the study or determination of the value of the critical Reynolds number includes two parts: the
experimental part and the numerical part. Regarding the experimental part, we can list the work of Osborne Reynolds
carried out in 1883. According to his results, this critical value depends on the amplitude of the disturbance. He thus
concludes that the flow of a Newtonian fluid in a pipe is linearly stable regardless of the amplitude of the disturbances
if Re < 2000 and linearly unstable for Re > 13000. In the same vein, Pfenninger showed that the lower limit beyond
which a flow of a Newtonian fluid in a pipe is linearly unstable is Re = 10°.

Numerical studies have shown that the flow of a Newtonian fluid in a pipe is linearly stable. Examples include the work
of Meseguer and Trefethen 2001 [1] or Kama et al. 2018 [2]. For viscoelastic fluids, we were unable to find any
literature.

1.1. Equations and mathematical model

We study the flow of a viscoelastic fluid along a cylinder of circular section of horizontal axis (0z). Such a flow can be
described by a cylindrical coordinate systemr, 6, z.
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The flow of a viscoelastic fluid can be described using three main equations: the momentum conservation equation, the
mass conservation equation (or continuity equation), and the behavioral equation of the extra-constraint (Chupin
2003[3] and Oldroyd 1950 [4]). We consider the flow of an incompressible viscoelastic fluid with dynamic viscosity u
and density p driven by an extremal constant axial pressure gradient.
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By subtracting from this flow the basic flow, these equations in dimensionless form are respectively:
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Considering in addition that the elastic contribution of the extra stress is a perturbation of the Newtonian one o} which
is equal to i—w D(u"), it comes:
e
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By u, we define the adimensional velocity field of the fluid whose radial, azimuth and axial components are given in the
order by the triple (u, v,w), o is an additional term called extra stress and w is the parameter of delay defined by

w=1 —7 (6)

The system is closed with the following boundary and initial conditions:
u=0 sir=1 7N
u=u, at=0 (8)

Where % = Re is defined as the Reynolds number with v = % the kinematic viscosity of the fluid, We = % is the

Weissenberg’s number.

2. Procedure and numerical bases

We consider that the variation of the perturbation of the fields of velocity, pressure and extra stress is periodic along
the azimuthal and axial directions. These considerations make it possible to approximate u in the following form
Meseguer & Trefethen 2001[1]:

N M

u,(r,0,z;t) = ZL: Z

l=—Ln=-Nm=

amnl(t)d)mnl (r)ei(n9+l/102) (12)
0

The continuity equation leads to a linear dependence between the three components of u(r, 6, z) leading to a system
with two degrees of freedom. Therefore, we note:
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L N M
ug(r,0,z;t) = Z Z Z ar('{zll(t)(pr(,{;l(r)]ei(n9+lﬂ.oz) (13)

l=—Ln=-N m=0

For j = (1,2) the substitution of (13) in the equation governing the problem result in a system of ordinary differential
equations of coefficients a,(,{)(t). This substitution is followed by a projection based on the scalar product:

(f, q) = fw(z)f*.gdz ......... (14)
-1

Where f* designates the conjugated function of f.

The basic functions will be chosen so that integrand is even, which will result in:

fG(r)dr = ZIG(r)dr ...... (15)
21 0

The basic functions are also chosen so that the projection of the pressure term is zero. For this purpose, functions based
on Chebyshev polynomial were considered. This choice imposes two essential criteria. The first consists of choosing
weights associated with Chebyshev polynomials, which makes it easier to calculate the scalar product. The second
criterion relates to the approximation of the integral by a Gauss- Chebyshev- Lobatto quadrature of the form:

1 M

(F.9) = [ worfgdr = Y win)f(n)e@ (16)
0 j=0
f=bmr et g =t (17)

We define,
hn()=(01- 7ﬂZ)TZm (18), gn() =010~ 7”Z)ZTZm (19)
T, is the Chebyshev polynomial defined by T,,,, = cos (2m8)

The basic functions and tests were proposed by Leonard & Wray 1982 [5] then used by Meseguer & Trefethen 2003 [6]
and are defined as follows:

2.1. Basic functions

2.1.1. Istcase: n=0

0
1
d)‘r(nin = Thm (T)

0
ikolr g, (r)
Pratn = 0 (20)
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2.1.2. 2rdcgse: n # 0
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2.2. Test functions

2.2.1. 1stcase: n =0
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Using the Fourier representation, the continuity equation becomes
in
Du(r) + ?v(r) +ilgw(r) =0 (28)
d
D=— 29
I (29)
3. Numerical implementation
Let
PR (2.9)d - Vp + — AT WV(DG) 26
w= T T W pReu e'Dt()

Replacing U by the basic functions and projecting on the basis of the test functions, it comes:

Ry, ¥) =0 (27)
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The numerical method chosen is adapted from work in the early 1980 by Leonard and Wray [5].

With the Petrov-Galerkin procedure (Meseguer & Trefethen 2000 [7]) and (Meseguer & Mellibovesky 2007 [8]), we

obtain:
(¢11n,n,l' l»brln,n,l) (¢72n,n,l' lprln,n,l) Ci-’rln,n,l Cl dl
1 2 2 2 52 + 2 + VVE 2
(‘l)m,n,l' wm,n,l) (¢m,n,l' wm,n,l) am,n,l ¢ d
_ 1 (A(prln,n,l' 1»l}rln,n,l) (Aqsgi,n,l' lprln,n.l) arln,n,l
~—n 1 2 2 2 2 (28)
Re (Ad)m,n,l' l/Jm,n,l) (Ad)m,n,lv lpm,n,l) Al
where

Ll - (Do
= (@D YL2,) and a2 = (V.(52) wi) @9

The matrices ¢'? and d*? derive from the projection of the nonlinear terms and can be calculated with a pseudo-
spectral method by Fast Fourier Transform (FFT).

+
R 1 2 2 2 2 2 2
A A a c d
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The problem obtained after projection is a problem with the generalized eigenvalues that we will solve numerically
with QZ algorithm J. P. Berlioz [9]. To implement this method, we will use Housholder’s unitary reflection matrices and
Givens rotation matrices (A. Quarteroni, R. Sacco and F. Saleri [10]) and (L. Amodei and J.P. Dedieu [11]).

4., Results and discussions

We will treat this problem according to four cases that are:

Case of one-dimensional disturbance (n=0, k0=0)
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spectrum of critical reynod's number, k0=0; n=0 and We=10"-2
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Figure 1 Spectrum of critical Reynolds’ number as a function of the delay parameter w with k; = 0.;n=0 and We =

1072

Case of homogeneous Disturbance (n#0, k0=0)

spectrum of critical reynod's number, k0=0;n=1 and We=10"-2
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Figure 2 Spectrum of critical Reynolds’ number as a function of the delay parameter w with ky; = 0.;n =1 and We =

1072
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Case of Axisymmetric Disturbance (n=0, kO #0)

spectrum of critical reynod's number, K0=0.1{red); kO=0.2{grean) kD=0 3 magenta) and Wa=10"-2
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Case of Three-dimensional disturbance (n#0, k0+0)

spectrum of critical Reynod’'s number, k0=0.1 and We=10"-2
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Figure 3 Spectrum of critical Reynolds’ number as a function of the delay parameter w withn = 0; k, = 0.1(red), ;

Figure 4 Spectrum of critical Reynolds’ number as a function of the delay parameter w withn =1; k, = 0.1 and

We = 1072

It is generally observed that the critical Reynolds number decreases with the delay parameter. This decrease depends
on the axial and azimuthal wavenumbers. It is more pronounced when the axial wavenumber is low. The critical
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Reynolds number decreases as the axial wavenumber increases. That is to say, for two different axial wavenumbers and
for the same value of the delay parameter, the critical Reynolds number is reached more frequently with the higher
value.

5. Conclusion

Depending on the nature of the disturbance and the flow parameters considered in this study, we find that the smallest
Reynolds number value below which any flow is stable is 1824 and the Reynolds number value above which any flow
is unstable is 5. 10°. However, it is observed that above a certain value of the axial wavenumber, the critical Reynolds
number remains almost invariant with respect to the delay parameter. This means that for certain values of the axial
wavenumber, the delay parameter (considered small) no longer influences stability.

The following facts can explain these results: - Elasticity is the driving force behind the instability. It should be noted
that for zero elasticity (Newtonian fluid), no instability is observed. - At low axial wavenumbers or long wavelengths,
diffusive effects are significant. These diffusive effects, having a stabilizing aspect, require even greater inertia and
therefore a higher Reynolds number to trigger instabilities.

Nomenclature

e Greekletters

o 0:Azimuthal coordinate
o A: Relaxation time of the fluid

o A':delaytime

o v: Kinematic viscosity of the fluid

o p: Density of the fluid

o o: Tensor of extra stress

o ¢': Disturbance of extra-stress

o o°: Newtonian contribution of the disturbance of the extra-stress
o o¢: Elastic contribution of the disturbance of the extra-stress

o 7 :Dynamic viscosity of the fluid

o ¢: Basis function

o : Test function

o w:delay parameter

e Latin letters

C: eigenvalue

C;:imaginary part of C

C,:real part of C

C,,: real part of the most unstable eigenvalue

f: density force

l: mode axial

kO : Axial wave number

n: mode azimutal

r : radial coordinate

R: radius of the cylinder

Re: Reynolds number

Rec : Critical Reynolds’ number

W, : Maximum speed of the base flow, it has for direction that of the axis of the cylinder.
We: Weissenberg’s number

Whb: Axial velocity of the base flow

Wy : Newtonian contribution of basic flow velocity
Wy : Elastic contribution of basic flow velocity

Z: axial coordinate

O O 00O O O0OO0OO0OO0OO0o0OO0OO0OO0OOoOOoOOoOOo
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6. Conclusion

A study of the critical Reynolds number as a function of the delay parameter was conducted. This study revealed that
the critical Reynolds number decreases with the delay parameter for certain wavenumber values. However, it was
observed that for some wavenumber values, for example, k_0 = 0.3, the critical Reynolds number is almost constant.
This finding has sparked considerable interest for us and leads us to ask some questions that seem legitimate.

Is there a critical axial wavenumber for a given Reynolds number?

Is there a critical delay parameter for a given wavenumber and Reynolds number? Beyond these questions, one might
be tempted to study the influence of the azimuthal wavenumber on stability or, at best, conduct a comparative study
between diffusive and elastic effects.
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