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Abstract 

Classical covering systems, introduced by Erdo’s, consist of congruences ai (mod ni) whose union covers all integers. 
Despite extensive work on their structural and extremal properties, little is known about analogues in algebraic settings. 
In this paper, we develop a unified framework for covering systems over algebraic domains, focusing on the ring of 
integers 𝒪𝐾 of a number field and the polynomial ring 𝐹𝑞[x]. We define algebraic covering systems in both environments 

and establish necessary norm and degree-based conditions for full coverage and demonstrate that restricted families of 
ideals or polynomial moduli cannot yield coverings unless their reciprocal norm sums exceed explicit thresholds. We 
further provide structural examples, and counterexamples illustrating how factorization patterns, prime splitting, and 
residue structure influence covering behavior. Our results show that polynomial rings admit sharper and more uniform 
obstruction criteria than number fields, while number-field coverings exhibit arithmetic constraints governed by prime 
ideal decomposition. 
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1. Introduction

A covering system is a finite family of congruences 

m ≡ ai (mod ni), 

such that every integer satisfies at least one of them. If moduli n1, n2 , . . . ,nk are pairwise distinct, the system is called a 
distinct covering system. Covering systems were introduced by Erdo’s [3] and have since played a central role in 
combinatorial and analytic number theory. Early constructions by Moser [10] and Selfridge [17] demonstrated the 
surprising variety of covering systems and inspired deeper investigation into their extremal structure. A long-standing 
problem posed by Erdo’s asked whether distinct covering systems could have arbitrarily large least modulus. This 
problem was resolved in a breakthrough by Hough [8], who used probabilistic and entropy-based tools to show that 
there exists an absolute constant M such that no distinct covering system may have all moduli exceeding M. 

A parallel development due to [6] introduced a sieve-theoretic framework for proving nonexistence of covering systems. 

Their results show that if a set of moduli is too “sparse” in the sense that the reciprocal sum ∑
1

𝑛𝑖
 is too small, then the

corresponding congruence classes necessarily leave a positive density of integers uncovered [13]. 

Despite much progress in the classical setting, relatively little attention has been given to algebraic analogues of 
covering systems in other arithmetic rings. Two natural and important generalizations are: the ring of integers 𝒪𝐾 of a 
number field K and the polynomial ring 𝐹𝑞[x] over a finite field. These settings preserve fundamental structural features 
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such as prime factorization, norms, and Chinese Remainder Theorem decompositions yet differ from the integer case in 
important arithmetic ways, making them fertile ground for extending the theory of covering systems. 

In the classical theory, restricting moduli to special families (such as primes, prime powers, or smooth numbers) leads 
to sharp structural limitations. Analogous restrictions appear naturally in algebraic settings: in number fields, moduli 
correspond to ideals n and their size is measured by the norm N(n) = |OK/n| and in polynomial rings 𝐹𝑞[x], moduli 

correspond to monic polynomials, with size measured by degree or by qdeg m. This raises fundamental algebraic 
questions: 

• Can covering systems exist when moduli are restricted to ideals of bounded norm? 
• What are the analogues of reciprocal-sum obstructions in number fields or function fields? 
• How does prime decomposition (splitting, inertia, ramification) influence covering systems in  𝒪𝐾 
• Does the polynomial ring 𝐹𝑞[x] exhibit simpler or stricter covering behavior due to its uniform factorization? 

Exploring restricted-moduli phenomena in these algebraic settings provides new connections among sieve theory, 
algebraic number theory, and additive combinatorics. 

This paper develops a unified theory of covering systems in both  𝒪𝐾  and 𝐹𝑞 [x]. We introduce formal definitions of 

covering systems over the rings  𝒪𝐾   and 𝐹𝑞 [x], extending classical integer covering systems to general Dedekind 

domains and function fields and also establish analogues of the classical reciprocal-sum condition: 

∑
1

𝑁(𝔫𝔦)
𝑖

≥ 1,   ∑ 𝑞− deg 𝑚𝑖

𝑖

≥ 1 

These constraints demonstrate that overly sparse families of ideals or polynomials cannot form coverings. Extending 
the ideas of [6], we prove finite-sieve obstruction theorems in 𝐹𝑞[x] and analogous ideal-norm obstructions in number 

fields. We provide explicit constructions showing when coverings can (and cannot) exist in algebraic settings, 
illustrating the role of prime splitting and irreducible factor structure. Our results clarify how covering systems interact 
with ideal theory, factorization patterns, and CRT decompositions, providing a framework for future work on algebraic 
analogues of classical problems such as Erdo’s’ minimum modulus problem. 

These contributions reveal that covering systems in algebraic domains exhibit both strong analogies with and striking 
differences from their counterparts in the integers, opening several new directions for research. 

This paper is organized as follows. In Section 2 we establish the algebraic, analytic, and structural background. Section 
3 develops the restricted family covering systems while Section 4 contains theoretical obstructions. Section 5 gives the 
structural theorem and Section 6 illustrates examples and counter examples, Section 7 contains further study and 
conclusion. 

2. Preliminaries and notation 

This section establishes the algebraic, analytic, and structural background necessary for the study of covering systems 
in the setting of number fields and function fields. We review foundational concepts from Dedekind domains, ideal 
arithmetic, the Chinese Remainder 

Theorem, and classical covering-system theory, situating our work within the broader literature of algebraic number 
theory, combinatorial number theory, and function-field arithmetic.  

Let K be a number field and 𝒪𝐾 its ring of integers. It is well known that 𝒪𝐾 is a Dedekind domain [12], meaning that 
every nonzero ideal 𝔞 ⊂ 𝒪𝒦 admits a unique factorization 

𝔞 = ∏ 𝔭𝔳𝔭(𝔞)

𝔭

 

where the product ranges over nonzero prime ideals. The norm of an ideal is defined by 

N(a) = |OK/a|, 
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and satisfies N(p) = pf for each 𝔭 ∣ 𝑝 reflecting the splitting type of p in K [9, 12, 18]. These structural features, unique 
factorization of ideals, finite residue rings, and norm multiplicativity allow covering systems in 𝒪𝒦  to be studied using 
combinatorial and analytic arguments analogous to those used in the classical integer case [4, 11]. 

Let 𝐹𝑞 be a finite field with q elements. The polynomial ring 𝐹𝑞[𝑥] is a principal ideal domain whose arithmetic parallels 

that of the integers but with several conceptual simplifications. Irreducible polynomials play the role of primes, and 
every polynomial admits a unique factorization  

𝑚(𝑥) = ∏ π(𝑥)𝑒π

π∈ℐ𝓆

 

where ℐ𝓆  denotes the set of monic irreducibles. 

The natural “norm” of a monic polynomial m is 

|𝑚| = 𝑞deg 𝑚 

the number of residue classes modulo (m). This makes 𝐹𝑞[𝑥]  especially suitable for covering system analysis: norms 

grow exponentially and are exactly multiplicative in degree, avoiding many technical complications present in 𝑍 or 𝒪𝒦  

[15, 20, 2]. 

The distribution of irreducible polynomials is governed by the prime polynomial theorem [15], and properties of 
smooth polynomials are better behaved than integer smooth numbers [7, 14]. These allow sharper asymptotic and sieve 
results, which we exploit in later sections. 

For any Dedekind domain R (such as 𝒪𝒦  or 𝐹𝑞[𝑥] ), the Chinese Remainder Theorem (CRT) provides a canonical 

decomposition of residue rings. If 

𝔑 = lcm(𝔫1, … , 𝔫𝔨) = ∏ 𝑝𝑒𝔭

𝔭

 

Then 

                                                                                        𝑅/𝔑 ≅  ∏ 𝑅/𝔭𝔢𝔭
𝔭  

In 𝐹𝑞[𝑥] , if M = lcm(m1, . . . mk) factors as 

𝑀(𝑥) = ∏ 𝜋(𝑥)𝑒𝜋

𝜋

 

Then 

                                                                                           𝐹𝑞[𝑥]/(𝑀)  ≅  ∏ 𝐹𝑞[𝑥]/(𝜋𝑒𝜋)𝜋  

This decomposition is central for;  

• representing residue classes efficiently,  
• lifting congruences modulo smaller moduli to congruences modulo M,  
• reducing coverage questions to finite combinatorial problems,   
• enabling algorithmic and SAT-based search for coverings. 

A classical reference for CRT in Dedekind domains is [9, 12]. 

The theory of covering systems originated with Erd˝os [3, 5] and was further developed by 
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Moser [10] and Selfridge [17]. An important analytic viewpoint was introduced by Filaseta, Ford, Konyagin, Pomerance, 
and Yu [6], who showed how sieve methods and reciprocal-sum constraints can force uncovered residues. 

Additional analytic tools relevant to covering-system obstructions include: Mertens-type product estimates for primes 
[19], Brun–Titchmarsh-type inequalities [1], smooth-number distribution estimates [7], multiplicative function 
averages and density results [11, 16]. For the function-field setting, analogous results include: the prime polynomial 
theorem [15], smooth polynomial factorization statistics [14], equidistribution in polynomial residue classes [20]. These 
tools provide the foundation for extending classical coverage questions to algebraic domains. 

Notation Used Throughout. 

• K: number field; 𝒪𝒦: ring of integers. 
• 𝐹𝑞: finite field with q elements; 𝐹𝑞[x]: polynomial ring. 

• 𝔞, 𝔫, 𝔭: ideals in 𝒪𝒦. 
• 𝑁(𝔞): norm of an ideal. 
• M: l.c.m. of moduli in the polynomial case. 
• 𝑅/𝔞: residue ring modulo an ideal; |𝑅/𝔞| = 𝑁(𝔞) 
• qdeg m: size of 𝐹𝑞[𝑥]/(𝑚). 

This notation is consistent with algebraic number theory conventions found in [12, 9, 18] and with the arithmetic of 
function fields as presented in [15]. 

3. Restricted-family covering systems 

Covering systems in 𝑍 have long been studied under restrictions on the moduli, such as requiring the moduli to be 
distinct, prime, prime powers, or composed only of small prime factors; see for example [3, 10, 17, 5]. Such restrictions 
dramatically influence the structure of covering systems and often impose strong obstructions. In this section we extend 
the notion of restricted-moduli covering systems to algebraic settings, specifically to the rings 𝒪𝒦  and 𝐹𝑞[x]. 

We introduce three fundamental families of restricted moduli: prime (or prime ideal) moduli, prime-power moduli, and 
smooth moduli. These families serve as natural analogues of the classical restricted-moduli problems and lead to new 
structural and analytic challenges. 

Prime-Only Moduli: In the classical integer setting, restricting moduli to primes 𝒫(P) = {p : p ≤ P} leads to covering-
system questions closely related to reciprocal-sum estimates and prime-distribution results. Because 

∑
1

𝑝
𝑝≤𝑃

∼ log log 𝑃 + 𝐵, 

the total “weight” contributed by prime moduli grows very slowly. This fact already suggests strong limitations for 
prime-only covering systems; cf. [5, 6, 8]. 

Algebraic analogue in 𝒪𝒦: For a number field K, the analogue of restricting to primes is to restrict the moduli to nonzero 
prime ideals𝔭 ⊂ 𝒪𝒦  with norm bounded by a parameter X: 

𝒫𝒦(𝑋) = { 𝔭 ⊂ 𝒪𝒦  :  𝑁(𝔭) ≤ 𝑋 } 

The distribution of prime ideals is governed by the analytic class number formula and the prime ideal theorem [12, 9, 
18], which imply that 

∑
1

𝑁(𝔭)
𝑁(𝔭)≤𝑋

∼ log log 𝑋 + 𝐶𝐾 , 

mirroring the classical prime reciprocal-sum behavior. Thus, prime-ideal covering systems face the same sparsity 
obstruction as prime coverings in Z. 

Algebraic analogue in 𝑭𝒒[𝒙]: In  𝐹𝑞[𝑥] the “prime” moduli are monic irreducible polynomials π ∈ ℐ𝓆 of bounded degree: 
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𝒫𝓆(𝑑) = { π ∈ ℐ𝓆: deg π ≤ 𝑑 } 

Using the prime polynomial theorem [15], 

|𝒫𝓆(𝑑)| =
𝑞𝑑

𝑑
+ 𝑂! (

𝑞𝑑/2

𝑑
) 

and the analogue of the reciprocal-sum condition becomes 

∑ 𝑞− deg π

deg π≤𝑑

= ∑
#{π: deg π = 𝑘}

𝑞𝑘

𝑘≤𝑑

∼ ∑
1

𝑘
𝑘≤𝑑

 

Again, extremely slow growth. Thus prime-only coverings in Fq[x] face the same density limitations. 

Prime-Power Moduli: Allowing prime powers expands the flexibility of the covering system both in Z and in algebraic 
settings. 

Algebraic analogue in 𝒪𝒦: For each prime ideal p and exponent e ≥ 1, the ideal 𝔭𝔢  has norm 

𝑁(𝔭𝔢) = 𝑁(𝔭)𝑒 

This exponential growth in norm allows moduli of relatively small bases to generate many residue classes. Such prime-
power ideals often help “fill in” residue gaps that prime ideals cannot, a phenomenon parallel to integer prime-power 
coverings [4, 13]. 

Algebraic analogue in 𝐹𝑞[𝑥]]: Prime-power moduli correspond to (πe) where π is irreducible. 

The residue class ring 

𝐹𝑞[𝑥]/(πe) 

has size qe deg π and a chain of nested residue-class structures [15]. Such higher-power moduli yield additional degrees 
of freedom in constructing coverings, similar to the behavior seen in the integers but algebraically cleaner. 

Smooth-Moduli Systems: A modulus (integer or polynomial) is called smooth if all its prime divisors lie below a fixed 
threshold. Smooth-moduli covering problems have been studied in the integer setting [19, 7, 14] and exhibit distinct 
behavior because smooth numbers (or polynomials) tend to cluster arithmetically. 

Algebraic analogue in 𝒪𝒦: Define the set of y-smooth ideals: 

𝒮𝒦(𝑦) = { 𝔞 ⊂ 𝒪𝒦: 𝔞 ℎ𝑎𝑠 𝑛𝑜 𝑝𝑟𝑖𝑚𝑒 − 𝑖𝑑𝑒𝑎𝑙 𝑤𝑖𝑡ℎ 𝑁(𝔭) > 𝑦} 

The norm-distribution of smooth ideals is controlled by generalizations of Dickman–de Bruijn theory [19], and lower 
bounds for smooth ideal counts can be obtained by analytic methods, though the distribution is more complicated than 
in Z. 

Algebraic analogue in 𝐹𝑞[𝑥] : A monic polynomial m is y-smooth if all π | m have degπ ≤ y. Smooth polynomial 

distributions behave more regularly than integer smooth numbers [15, 7, 14], making 𝐹𝑞[𝑥]a cleaner environment for 

restricted-moduli covering-system questions. 

Restricted-modulus covering systems in algebraic rings exhibit structural behaviors analogous to the classical integer 
case but with new algebraic features. Prime-only moduli tend to be too sparse to cover without significant overlaps; 
prime-power moduli typically introduce more flexibility; and smooth moduli generate intermediate phenomena driven 
by the distribution of their prime factors. These families form the foundation for the structural and sieve-theoretic 
theorems developed in Sections 4 and 5. 
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4. Theoretical obstructions 

A central theme in the study of covering systems is determining when a given family of moduli can, in principle, cover 
the entire ring. In the classical setting of Z, foundational obstruction results arise from reciprocal-sum inequalities, sieve 
methods, and Chinese Remainder Theorem (CRT) combinatorics. These ideas extend naturally but nontrivially to the 
algebraic settings of 𝒪𝒦  and 𝐹𝑞[𝑥] [13]. 

In this section we present three types of obstructions, each reflects a structural limitation inherent in covering systems 
over algebraic domains. 

Reciprocal Norm and Degree Conditions. A classical necessary condition for an integer covering system {ai mod ni} is 
that the sum of reciprocals of the moduli must satisfy 

∑
1

𝑛𝑖
𝑖 ≥ 1, 

as noted in works of Erdo’s, Selfridge, and in the later analyses of [5, 4]. This condition arises by counting residue classes 
modulo the least common multiple. We now state the precise analogue in algebraic settings. 

Proposition 4.1 (Reciprocal Norm Condition in OK). Let 

𝒞 = {𝑎𝑖 𝑚𝑜𝑑𝔫𝔦}𝑖=1
𝑘  

be a covering system in 𝒪𝒦 , and let N = lcm(n1 , . . . ,nk). Then 

∑
1

𝑁(𝔫𝔦)

𝑘

𝑖=1

≥ 1 

Proof. Work in the finite residue ring 𝒪𝒦/𝔑 , which has 𝑁(𝔑) elements. Each congruence ai mod ni lifts to exactly 
𝑁(𝔑)/𝑁(𝔫𝔦) residue classes modulo N. If these congruence classes cover the entire ring, then by subadditivity, 

𝑁(𝔑) ≤ ∑
𝑁(𝔑)

𝑁(𝔫𝔦)

𝑘

𝑖=1

 

Dividing both sides by 𝑁(𝔑) yields the claim. □ 

Corollary 4.2 (Polynomial Analogue). Let 𝒞 = {𝑎𝑖(𝑥) 𝑚𝑜𝑑𝑚𝑖(𝑥)} be a covering system in 𝐹𝑞[𝑥] and let M(x) = lcm(m1(x), 

. . . , mk(x)). Then 

∑ 𝑞− deg 𝑚𝑖

𝑘

𝑖=1

≥ 1 

This necessary condition is often already strong enough to forbid covering for very sparse families of moduli, such as 
prime moduli or low-degree moduli [15, 19, 7]. 

Sieve-Theoretic Obstructions: Sieve-theoretic methods provide powerful analytic tools for studying the density of 
integers (or polynomials, or algebraic integers) excluded by congruence conditions. In the context of covering systems, 
such methods were employed with great effect by [6], who developed a “filtering method” to show that overly sparse 
sets of moduli cannot yield full coverings. 

We now present an analogue of this obstruction in the setting of 𝐹𝑞[𝑥]. The advantage of the polynomial ring is that the 

behavior of irreducible polynomials is exceptionally regular; see [15]. 

Let 𝒫 be a finite set of monic irreducible polynomials in 𝐹𝑞[𝑥] and define 



World Journal of Advanced Research and Reviews, 2025, 28(03), 877-889 

883 

                                                                                 Δ(𝒫) = ∏ (1 − 𝑞− deg π)π∈𝒫 , 

the density of polynomials having no irreducible factors in 𝒫. 

Theorem 4.3 (Sieve Obstruction in 𝐹𝑞[𝑥]). Let ℳ  be a set of monic moduli in 𝐹𝑞[𝑥]  such that every m ∈ ℳ  has all 

irreducible factors in the finite set P. If a covering system exists with moduli from M, then 

∑ 𝑞− deg 𝑚

𝑚∈ℳ

≥ Δ(𝒫)−1 

Conversely, if ∑ 𝑞− deg 𝑚
𝑚∈ℳ < Δ(𝒫)−1, then no covering system exists using moduli from ℳ. 

Proof. The argument follows the combinatorial sieve philosophy used in [6] in the integer setting and relies on the 
factorization structure of polynomial rings. 

Consider residue classes modulo M = lcm(ℳ) and track the density of classes not excluded by congruences modulo 
moduli in ℳ. Any polynomial not divisible by any π ∈ 𝒫 avoids elimination by any modulus in ℳ, unless specifically 
removed by the chosen residue classes. The underlying sieve gives a lower bound for the surviving proportion, leading 
to the stated condition; see [15, 7, 14] for analogous proofs in function-field sieve contexts. 

A direct extension to number fields is possible, replacing irreducible polynomials with prime ideals and using the 
factorization structure of 𝒪𝒦 [12, 9, 18]. We record the resulting analogue below. 

Theorem 4.4 (Sieve Obstruction in 𝒪𝒦). Let 𝒮 be a finite set of prime ideals in 𝒪𝒦  and define 

Δ(𝒮) = ∏ (1 −
1

𝑁(𝔭)
)

𝔭∈𝒮

 

If a covering system exists using moduli composed only of prime ideals in 𝒮, then 

                                                                             ∑
1

𝑁(𝔫𝔦)
𝔫𝔦

≥ Δ(𝒮)−1. 

This theorem demonstrates that restricted prime-ideal moduli cannot yield a covering unless their reciprocal-norm sum 
is sufficiently large a direct generalization of the classical restricted moduli problem for integers. 

CRT-Based Counting Obstructions: The Chinese Remainder Theorem provides structural insights into covering systems 
through the decomposition of residue rings. Let R denote either 𝒪𝒦  or 𝐹𝑞[𝑥], and let 

                                                                                             𝒞 = {𝑎𝑖 𝑚𝑜𝑑𝔫𝔦} 

be a covering system with 𝔑 = lcm(𝔫𝔦). Then  

𝑅/𝔑 ≅ ∏ 𝑅/𝔭𝔢

𝔭𝔢∥𝔑

. 

Each modulus ni restricts the residue class structure on some subset of CRT coordinates while leaving others 
unconstrained. The more “sparse” these restrictions are, the less likely it is for the residue classes to cover the entire 
ring. 

Proposition 4.5 (CRT Counting Obstruction). Let C be a covering system in R, with moduli 𝔫1, … , 𝔫𝔨  and 𝔑 = lcm(𝔫𝔦). 
Then the number of distinct lifted residue classes satisfies 

                                                                                                    ∑
𝑁(𝔑)

𝑁(𝔫𝔦)
𝑘
𝑖=1 ≥ 𝑁(𝔑), 

and hence a necessary condition for coverage is 
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                                                                                               ∑
1

𝑁(𝔫𝔦)
𝑘
𝑖=1 ≥ 1. 

A completely analogous statement holds in 𝐹𝑞[𝑥] with 𝑁(𝔫𝔦) replaced by qdeg mi. 

This proposition is a precise formulation of the density obstruction that applies to any algebraic covering system and 
can be strengthened using information about intersections of residue-class lifts, as in sieve-style approaches. 

Together, these obstruction results form the analytic backbone for the remaining structural theorems and examples in 
this paper. 

5. Structural results and theorems 

In this section we develop deeper structural constraints on covering systems in the algebraic settings 𝐹𝑞[𝑥] and 𝒪𝒦. 

These results go beyond the necessary conditions of Section 4 by describing explicit mechanisms by which the residue-
class structure forces coverage or, more commonly, prohibits it. Our theorems illustrate how the algebraic structure of 
moduli prime factors, prime-ideal splitting, and multiplicity of irreducible components imposes rigid constraints on 
possible covering systems. 

A Structural Theorem in 𝐹𝑞[𝑥]: Let ℳ be a family of monic moduli in 𝐹𝑞[𝑥], and let M = lcm(ℳ). Write the factorization  

𝑀(𝑥) = ∏ π(𝑥)𝑒π

π∈ℐ𝓆

, 

Where ℐ𝓆   is the set of monic irreducibles. By the Chinese Remainder Theorem, 

𝐹𝑞[𝑥]/(𝑀) ≅ ∏ 𝐹𝑞[𝑥]/(π𝑒π)

π

 

and each modulus m ∈ ℳ constrains a subset of coordinates corresponding to the irreducible factors of m. 

The following theorem demonstrates that coverage forces each irreducible component to be 

“controlled” by the moduli, and that the number of available constraints must match the combinatorial complexity of 
residue classes. 

Theorem 5.1 (Irreducible-Factor Structural Constraint). Let 𝒞 = {𝑎𝑖(𝑥) 𝑚𝑜𝑑 𝑚𝑖(𝑥)}𝑖=1
𝑘  be  

 a covering system in𝐹𝑞[𝑥], and let 𝑀 = lcm(𝑚1, … , 𝑚𝑘)  with factorization 𝑀 = ∏ π𝑒π
π  . For each irreducible π, let  

𝑆π = { 𝑖: π ∣ 𝑚𝑖(𝑥) } 

Then the lifted residue classes modulo (mi) must cover all residue classes in the factor𝐹𝑞[𝑥]/(𝜋𝑒𝜋); in particular,  

∑ 𝑞−𝑣π(𝑚𝑖) deg π

𝑖∈𝑆π

≥ 1 

where vπ(mi) is the exponent of π in mi. 

Proof. Project the covering system onto the factor ring 𝐹𝑞[𝑥]/(π𝑒π) . If for some π the union of residue classes of the 

moduli containing π fails to cover this factor, then there exists a residue class modulo (πeπ) not eliminated by any 
congruence in 𝒞  , contradicting the covering property. Each modulus mi contributes residue classes in 𝐹𝑞[𝑥]/(π𝑒π 
precisely when π | mi. The number of residue classes covered by ai(x) mod mi(x) in that projection equals 

𝑞𝑒π deg π/𝑞𝑣π(𝑚𝑖) deg π = 𝑞(𝑒π−𝑣π(𝑚𝑖)) deg π 
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Dividing by the total number of classes gives the coverage proportion q−vπ(mi)degπ.  Summing these contributions must 
reach 1, establishing the inequality. □ 

Corollary 5.2. If all moduli in ℳ are squarefree, then for each irreducible π | M, 

∑ 𝑞−𝑑𝑒𝑔𝜋 ≥ 1

𝑖:π∣𝑚𝑖

 

Thus, at least deg(π) moduli must contain π, unless coefficients satisfy cancellation or overlap in higher-degree factors. 

This structural result shows that each irreducible factor must be “covered” sufficiently many times to account for the 
number of residue classes supported by that factor. Such constraints are algebraic analogues of the minimal-modulus 
and distinct-modulus restrictions studied in the integers [4, 5, 6]. 

A Structural Theorem in 𝒪𝒦:  We now turn to the number-field case. Let 𝔑 = lcm(𝔫1, … , 𝔫𝔨) 

 and write its prime ideal factorization 

𝔑 = ∏ f𝑝𝑒𝔭

𝔭

 

As in the polynomial case, the covering system must cover all residues in each factor 𝒪𝒦/𝔭𝔢𝔭 . For each prime ideal 𝔭 
define 

𝑆𝔭 = { 𝑖: 𝔭 ∣ 𝔫𝔦 } 

Theorem 5.3 (Prime-Ideal Structural Constraint). Let 𝒞 = {𝑎𝑖 𝑚𝑜𝑑 𝔫𝔦}  be a covering system in 𝒪𝒦 . Then for each prime 
ideal 𝔭 dividing 𝔑, 

∑
1

𝑁(𝔭)𝑣𝔭(𝔫𝔦)

𝑖∈𝑆𝔭

 ≥  1 

Proof. Project the covering system to the factor 𝒪𝒦/𝔭𝔢𝔭 . If this factor is not fully covered, then the entire covering system 
fails. 

For 𝔫𝔦 with 𝑣𝔭(𝔫𝔦) = 𝑟 ≥ 1 , the modulus 𝔫𝔦  restricts the residue class modulo 𝔭r and thereby removes 𝑁(𝔭𝔢𝔭)/𝑁(𝔭𝔯)  

residue classes from consideration. The coverage proportion contributed is 

𝑁(𝔭𝔢𝔭)

𝑁(𝔭𝔯)𝑁(𝔭𝔢𝔭)
=

1

𝑁(𝔭)𝑟
 

Summing over all i with 𝔭 ∣ 𝔫𝔦  must yield at least 1 to ensure full coverage of the factor. □ 

This theorem shows that prime-power divisors of moduli in number fields must appear frequently enough—and with 
large enough multiplicity to eliminate all residues modulo 𝔭 ep. This mirrors and strengthens the reciprocal-norm 
obstruction in Section 4. 

Distinct Moduli and Splitting Behavior: One of the most interesting structural consequences in number fields is that the 
splitting behavior of rational primes affects the feasibility of covering systems. 

Proposition 5.4 (Splitting-Type Obstruction). Let p be a rational prime that is inert in 

K, so that (p) = 𝔭 is a prime ideal with N(𝔭) = pf for some 𝑓 = [𝐾: 𝑄]. If all moduli in a covering system 𝒞 have norms < pf, 
then 𝒞 cannot cover 𝒪𝒦 . 
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Proof. If (p) remains prime in 𝒪𝒦, then no modulus ni with N(ni) < pf can be divisible by (p), and hence no modulus 
constrains the residue ring 𝒪𝒦 /(p).  Thus, there exists an entire residue class modulo (p) not removed by any 
congruence in 𝒞, preventing a cover. □ 

This illustrates how algebraic structure (splitting vs. inertia vs. ramification) directly influences whether coverings are 
possible, a phenomenon absent in Z. 

The structural constraints derived in this section show that covering systems in algebraic settings must satisfy strong 
compatibility conditions across the prime components of the 

modulus. These conditions reflect; prime factorization structure, multiplicity of irreducible components, residue-class 
geometry of 𝐹𝑞[𝑥] /M and 𝒪𝒦 / 𝔑 , splitting behavior in number fields. These results, together with the analytic 

obstructions of Section 4, provide a basis for the examples and computational investigations in Section 6. 

6. Examples and counterexamples 

In this section we illustrate how the structural and sieve-theoretic results of Sections 4 and 5 manifest concretely in the 
algebraic domains 𝐹𝑞[𝑥]  and 𝒪𝒦 . Our examples demonstrate three behaviors: genuine coverings created by 

appropriately selected moduli, systems that fail due to algebraic obstructions, systems that “almost” cover but 
necessarily leave a positive proportion uncovered. These constructions highlight how factorization patterns, prime 
splitting, and norm/degree growth influence the existence of covering systems. 

Examples in 𝐹𝑞[𝑥]: We begin with explicit examples in the polynomial ring 𝐹𝑞[𝑥]. Because residue class rings 𝐹𝑞[𝑥] /(m) 

are finite and well structured, coverings can often be verified directly. 

A Simple Covering for Degree-One Moduli. Let q = 2 and consider the monic irreducible polynomials of degree one, 

π1(𝑥) = 𝑥,   π2(𝑥) = 𝑥 + 1 

Let 

𝑀(𝑥) = 𝑙𝑐𝑚(π1, π2) = 𝑥(𝑥 + 1) 

Then 𝐹𝟚[𝑥]/(𝑀) has 22 = 4 residue classes. Choose the residue classes 

                                                          C = {0 mod x, 1 mod (x + 1), x mod (x(x + 1))} 

Direct enumeration shows these congruences cover all residue classes modulo M, so 𝒞 is a covering system. This trivial 
example serves to illustrate how coverings may be built by combining moduli of increasing degree. 

A Counterexample: Prime-Only Moduli Too Sparse: Let ℳ = {𝑚 ∈ 𝐹𝑞[𝑥]: 𝑚 irreducible,   deg 𝑚 ≤ 𝑑} . By the prime 

polynomial theorem [15], the reciprocal-degree sum satisfies 

∑ 𝑞− deg 𝑚

deg 𝑚≤𝑑

= ∑
#{π: deg π = 𝑘}

𝑞𝑘

𝑑

𝑘=1

∼ ∑
1

𝑘

𝑑

𝑘=1

= log 𝑑 + γ + 𝑂(1) 

If d is small, then 

∑ 𝑞− deg 𝑚 < 1 

contradicting the necessary condition for coverage from Section 4 and showing that prime-only moduli of small 
maximum degree cannot form a covering system. This is the exact analogue of the classical integer phenomenon where 
prime-only coverings are impossible unless sufficiently many primes are included [5]. 

A Near-Cover but Not a Cover. Let q = 3 and take moduli 
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m1 = x, m2 = x + 1, m3 = x + 2 

Each modulus has degree one, contributing weight q−1 = 1/3, so the reciprocal sum 

1/3 + 1/3 + 1/3 = 1 

meets the necessary condition. However, these congruences cannot cover 𝐹𝟛[𝑥] , since any covering must also constrain 
residue classes modulo x(x+1)(x+2), and a direct examination shows that at least one residue class is unrepresented. 
This demonstrates that the reciprocal degree condition is necessary but not sufficient. 

Examples in OK: We now examine examples in the ring of integers of number fields, where residue rings have more 
complicated structure, and splitting behavior plays a significant role. 

A Covering in the Gaussian Integers. Let 𝐾 = 𝑄(𝑖) and 𝒪𝒦 = 𝑍[𝑖].  Consider the prime ideals 

𝔭1 = (1 + 𝑖),   𝔭2 = (2 + 𝑖) 

with norms  

𝑁(𝔭1) = 2,   𝑁(𝔭2) = 5 

Let 

𝔑 = 𝔭1𝔭2 

with norm N(𝔑) = 10. Selecting one residue class modulo each ideal and checking the CRT decomposition, one can 
explicitly construct coverings of Z[i] modulo 𝔑 . This is an example where covering behavior in a quadratic field 
resembles the classical integer case. 

A Counterexample from Inert Primes. Let K be a number field in which a rational prime p remains inert: 

(𝑝) = 𝔭,  𝑁(𝔭) = 𝑝[𝐾:𝑄] 

Suppose all moduli in a proposed covering system satisfy 𝑁(𝔫𝔦) < 𝑁(𝔭). Then none of the ideals ni can be divisible by 𝔭, 
so no congruence restricts the residue ring modulo 𝔭 . Thus the entire class modulo (p) is uncovered. This is the 
obstruction of Proposition 5.4 and illustrates the importance of splitting behavior [12, 9]. 

Smooth-Ideal Moduli in Quadratic Fields. Take 𝐾 = 𝑄(√−5), where the class group has order 2. Prime ideals above small 

rational primes yield norms ≤ 5. Let  𝒮𝒦(5) denote the set of 5-smooth ideals. A necessary condition from Section 4 gives 

∑
1

𝑁(𝔫)
𝔫∈𝒮𝒦(5)

≥ 1 

Direct computation (cf. [19, 14]) shows the left-hand side is < 1, implying that no covering system can be constructed 
using only 5-smooth ideals. 

Across both settings, three patterns emerge; small moduli or sparse moduli cannot cover due to reciprocal-norm 
limitations, splitting behavior in number fields introduces obstructions absent over Z, Polynomial rings 𝐹𝑞[𝑥]. often 

allow explicit coverings due to uniform CRT decomposition and regularity of factorization. These examples validate the 
structural theorems of Section 5 and show how algebraic properties directly influence the feasibility of covering 
systems. 

7. Discussion  

The results of this paper reveal that covering systems in algebraic domains retain many features of classical integer 
coverings while displaying new and distinct behaviors arising from ideal structure, prime splitting, and polynomial 
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factorization. In this section we discuss the implications of our results and describe several promising directions for 
further research across number theory, function fields, and computational mathematics. 

Connections to Additive and Combinatorial Number Theory - Covering systems over Z have deep connections to 
additive number theory, particularly to sumset structure, zero-sum sequences, and density results [11, 16]. Analogous 
connections emerge in the algebraic settings considered here: 

• In OK, residue classes modulo ideals form structured subsets that behave similarly to cosets in finite abelian 
groups. Their interactions resemble classical zero-sum phenomena and relate naturally to Davenport-type 
invariants. 

• In 𝐹𝑞[𝑥], the regularity of polynomial factorization and the natural grading by degree provide a clean analogue 

to sumset problems in finite vector spaces. 
• Sieve obstructions in our setting mirror the role of smooth numbers, friable integers, and multiplicative 

structures that appear in additive combinatorics [7, 19]. 

These connections suggest that many techniques from additive combinatorics may extend to covering systems in 
algebraic domains, and vice versa. 

Relations with Function Field Arithmetic - The function field 𝑭𝒒[𝒙] and its polynomial ring 𝑭𝒒[𝒙] exhibit striking 

regularity absent in integer arithmetic: 

• All norms are exact powers of q, making reciprocal-degree sums simple and predictable. 
• The distribution of irreducible polynomials is governed by the prime polynomial theorem [15], which yields 

explicit asymptotic. 
• Sieve methods behave better due to precise control of degree factorizations [2, 14]. 

In light of  these features, the obstructions obtained in Sections 4 and 5 for 𝐹𝑞[𝑥]  are often stronger and more 

quantitative than their integer analogues and may point toward sharper results in function-field analogues of classical 
covering problems. 

Impact of Splitting Behavior in Number Fields - One of the most new and interesting phenomena in the number field 
setting is the role of splitting behavior of rational primes. Proposition 5.4 demonstrates a clear example: if a rational 
prime is inert, then no covering system can be constructed unless moduli include some ideal dividing its associated prime 
ideal. This highlights several deeper questions: 

• How does the splitting type (split, inert, ramified) influence the feasibility of a covering system? 
• How do class number and unit structure affect coverings in OK? 
• Can one characterize number fields for which distinct covering systems exist with large least norms? 

Such questions illustrate how algebraic number theory enriches the classical theory of coverings.  

Future Directions and Open Problems: Our work suggests several compelling lines of inquiry: 

• Minimum norm or degree problem: Does an analogue of Hough’s minimal modulus theorem [8] hold in 𝐹𝑞[𝑥] or 

𝒪𝒦? 
• Restricted-moduli coverings: How do coverings behave when moduli are restricted to: prime ideals with fixed 

residue degree, polynomials with bounded irreducible factor degrees, y-smooth ideals or polynomials? 
• Structure of distinct covering systems: What structural constraints must distinct covering systems satisfy in 

algebraic domains? 
• Asymptotic density problems.: Can one classify all families of ideals or polynomials whose reciprocal-norm sums 

diverge, and hence potentially admit coverings?  
• Extension to other Dedekind domains: How does the theory change when passing to; rings of S-integers, 

coordinate rings of curves over finite fields, global function fields beyond 𝐹𝑞[𝑥].? 

These questions highlight the rich interplay between algebraic, analytic, and computational aspects of covering systems 
and point toward a larger framework in which the theory can be further developed. 
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8. Conclusion 

The extension of covering-system theory to algebraic domains reveals new structures, new obstructions, and new 
opportunities for both theoretical and computational advances. The analogy with the integer case is deep and 
instructive, yet the algebraic domains introduce unique features including prime-ideal splitting and highly regular 
polynomial factorization that generate phenomena not visible over Z. This synthesis of combinatorial, analytic, and 
algebraic methods suggests a promising research program for future work. 
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