

AI-Enhanced Trauma-Informed Differentiated Instruction for Neurodiverse Learners: Promoting Mental Health and Resilience in Schools

Daniel Nwankwo Nwokwu ^{1,*}, Julian Tagbo Ojiego ², Emmanuel Kwakye Koduah ³, Damilola Olamide Alomaja ⁴, Abiodun Peter Akande ⁵, Igbanan Ogunte Iwowari ⁶ and Mohammed Mubarak Bello ⁷

¹ Faculty of Arts, Department of Linguistics and African Languages, University of Ibadan, Nigeria.

² Faculty of Applied Science, Construction, and Engineering Technology, Department of Computer Technology, George Brown Polytechnic, Canada.

³ Baikal Institute BRICS, Information Systems and Technology, Irkutsk National Research Technical University, Russia.

⁴ Faculty of Education, Department of Science Education, University of Ilorin, Nigeria.

⁵ Faculty of Life Sciences, Department of Optometry and Vision Sciences, University of Ilorin, Nigeria.

⁶ Faculty of Engineering, Department: Mechanical Engineering, University of Nigeria, Nsukka, Nigeria.

⁷ Faculty of Psychology, Department of counseling and Psychotherapy, Nigerian Defense Academy, Nigeria.

World Journal of Advanced Research and Reviews, 2025, 28(03), 1017-1030

Publication history: Received 05 November 2025; revised on 10 December 2025; accepted on 13 December 2025

Article DOI: <https://doi.org/10.30574/wjarr.2025.28.3.4141>

Abstract

Artificial Intelligence (AI) tools are acting like a catalyst whereby educators are integrating AI tools to transform education to help maladapt learners through trauma-informed differentiated instruction that is transforming neurodivergent learners' mental health and resilience through a meaningful degree of improvement. These are learners who are diagnosed to have autism, attention-deficit/hyperactivity disorder (ADHD), and dyslexia, and they occupy about 15-20% of the student body worldwide. This review critically evaluates the uses of AI-based platforms, including adaptive learning systems and gamified interfaces, to personalise curricula content to meet sensory and cognitive needs and create equitable and inclusive learning systems. Empirical data in high-income settings, such as Canada, suggest that AI tools do have the potential to enhance student engagement by 16% using real-time content modifications. There are also examples of high involvement of offline capabilities of mobile applications in low-resource countries like sub-Saharan Africa, which has improved participation by 18% and effectively overcame the problem of infrastructure shortages that occur in 40% of schools. The technologies are congruent with the trauma-informed principles, which can reduce stress by up to 20% and enhance self-efficacy by 18% through customised and sensory-friendly experiences, which provide neurodiverse students with power. In South Asia, AI integrating local languages lowered dropout rates by 12%, which is an 18% achievement gap of neurodiverse learners in high-ratio classrooms. Still, there are a number of challenges, such as algorithmic bias, lack of internet connectivity, and under-teacher training; in particular, scaling cannot occur in the areas where only 20% of teachers have inclusive-practice competencies. The future directions bring to the fore the need to support low-bandwidth AI solutions, the cultural design, and hybrid AI-human solutions to achieve sustainable and fair access. Drawing on the evidence-based research on AI worldwide, this article highlights the power of AI in transforming the education sector and recommends policies that focus on ethical design and access to support the neurodiverse population and their mental health and resilience at a global level.

Keywords: Artificial Intelligence (AI); Neurodiversity; Trauma-Informed Instruction; Mental Health; School-Based Interventions; Differentiation

* Corresponding author: Daniel Nwankwo Nwokwu

1 Introduction

Competitive globalization about neurodiversity and the ubiquitous effects of trauma make the necessity of new education models that can prevent mental health destruction and develop resilience in schools look urgent. It is estimated that between 15-20% of students are neurodiverse (e.g. autism, ADHD) or may face unrelated challenges related to trauma; more orthodox models of instruction turn out to be weak forces in meeting their diverse needs, particularly in underserved areas. The proposed solution that could lead to groundbreaking improvements in teaching is AI-enhanced, trauma-informed, differentiated instruction through the use of adaptive technologies to customise education, reduce stress by 15-20%, and develop resilience. This review is a synthesis of the literature published from 2020-2025 to discuss how AI can be used to support equity in the education of neurodiverse students using a global approach, decrease mental disparities, and create resilient schools.

1.1. The Background of Neurodiversity and Trauma in Education

The neurodiversity (autism spectrum disorder (ASD), ADHD, and dyslexia) impacts approximately one in seven students in the world, with it providing different learning as well as behavioural requirements in the classroom. Young people who have neurodiversities usually show their creativity and problem-solving abilities, but have weaknesses that hinder their academic achievements [1]. Neurodiverse individuals face problems like sensory sensitiveness and social interaction difficulties. Such challenges are magnified in environments that have low resources, where majority of schools have no specialised support to facilitate the positioning of educational differences even more [2]. A combination of neurodiversity and trauma, a consequence of an adverse childhood experience (ACEs) of neglect or abuse, further complicates the learning process, where students have increased anxiety and lowered engagement rates [3].

Trauma impacts heavily on cognitive and emotional regulation, especially on neurodiverse students. Students who have experienced trauma also have a reduced attention span, and this makes them incapable of executing complex tasks [4]. In high-income nations like the U.S., teachers who receive trauma-informed training are higher, whilst in some areas of the world, like South Asia there is limited training [5, 6]. These differences can be used to highlight the urgency in relation to scalable interventions that effectively deal with neurodiversity and trauma together. The promising way to eliminate these gaps is to apply AI technologies, which facilitate instructional personalization to the needs of a wide range of people. To give an example, adaptive learning systems have the potential to customize the content delivery process to reduce sensory overload, which will appeal to neurodiverse students. [7]. AI can prevent the impact of trauma and instil a sense of safety and belonging, even in terms of cultural background, because the trauma-informed principles included promote safe and predictable learning conditions.

The pressing need to deal with neurodiversity and trauma changes by the fact that this is a long-term mental health concern. It has been discovered that neurodiverse students, if not supported are at risk of developing anxiety and a depression, which negatively influences both academic and social performance [8]. International programmes such as the inclusive education system promoted by UNESCO note that innovations should be designed to assist such learners [9]. Such AI-enhanced teaching, with its extendability and ability to provide an individualized intervention, has the potential to become a way out of these issues, especially in regions with limited access to traditional resources.

1.2. The AI and Trauma-Informed Instruction

AI solutions are transforming trauma-informed teaching to allow individually informed, data-driven solutions that can support the individual learning of neurodiverse students. Adaptive platforms with AI analyse responses of students in real time, changing the difficulty of the content to minimise stress, particularly in special needs students or autistic patients [10]. Learning patterns are identified by these systems through machine learning (ML) to enable teachers to customise instruction without engaging in much manual effort. Trauma-informed learning gives a priority to such key elements as safety, trust, and empowerment, the advancement of which can be increased with the help of predictive analytics and emotion recognition, which AI has [11]. AI chatbots can be used to assist neurodiverse students to experience emotional support in real time, allowing them to overcome anxiety and mistakes during the implementation of tasks, with improvement in emotional control [12]. Predictable learning environments developed by these tools are essential in the cases of trauma-affected students who can take unpredictability as a danger to their safety. AI applications, which also include facial-recognition technology, have aided trauma-focused approaches in schools since the technology identifies signs of stress and can intervene in a timely manner, thus increasing classroom interactions [11]. However, ethical issues like privacy of information should be strictly taken care of in order to create a fair execution [13]. With the help of AI, educators should be able to create an inclusive space which can accommodate neurodiverse learners, especially in areas where there is a lack of specific training. The scalability of AI makes it a powerful tool for reducing educational inequalities in the world. Majority of low-income countries do not have access to resources based on trauma, but the AI-based platforms can deliver cost-efficient solutions and help reduce training expenses by half

through pilot programmes [14]. These developments make AI one of the pillars of trauma-informed education as schools can foster mental health and resilience in neurodiverse students across the globe.

1.3. Objectives and Scope of the Review

This review summarises recent findings on the role of AI-enriched trauma-informed differentiated instruction in supporting mental health and resilience among neurodiverse learners, including the focus on educational equity at the global level. This review examines the literature published from 2020-2025 with primary consideration of verifiable data that has been published in peer-reviewed publications to ensure rigour and relevance to educators and policymakers. It covers the use of AI devices, including adaptive platforms and gamification, and their role in alleviating stress levels and increasing self-efficacy in various education environments.

The range focuses on international outlooks, but uses case studies of high-income states (e.g. the U.S., Europe) and low-resource areas (e.g. sub-Saharan Africa, South Asia) to point out approaches to scale. The conclusion shows that AI-based instruction has the potential to engage marginalised communities, which proves its ability to be equitable. It also resolves ethical issues, including algorithmic bias, to make the implementation responsible.

The major priorities will be to assess the role of AI in trauma-informed practices, measure the outcomes in relation to mental health and resilience, and suggest global equity strategies. The review is based on the previous studies that revealed that AI has an effect on engagement and reduces the stress levels in neuro diverse classrooms. Through the synthesis of these findings, the research will equip teachers and policy-makers and researchers with information on how to build inclusive and resilient school environments. The review is organised into seven parts, including theoretical background, AI approaches, mental health outcomes, equity, challenges and conclusion.

2 Conceptual Foundations

2.1 Philosophy of Trauma-Informed Pedagogy

Trauma-informed pedagogy forms classroom experiences in which alignment is placed on safety, trust, empowerment, and collaboration, and so meets the needs of students who have experienced trauma [15]. The principles buffer the impact of adverse childhood events (ACEs) by instilling predictability in routines and supportive relationships. In low-resource areas such as South Asia, where limited number of schools offer trauma-informed approaches, the insufficiency to provide such support increases educational disparity, especially in neurodiverse students [16].

Trauma-informed pedagogy has a significant effect on mental health, particularly in the case of neurodiverse learners who are facing the problem of emotional regulation. This can be achieved through routine and understanding interactions in trauma-informed classrooms, which allowed establishing a sense of safety. In schools in North America, the practices enhanced inclusion among neurodiverse students and facilitated their achievement at school [17], nonetheless, disparities are still present in the world, with only few trained teachers using trauma-informed methods in sub-Saharan Africa, which reduces scalability [16].

Technology can be used to bolster the concept of the trauma-informed pedagogy by ensuring that learning settings are structured and predictable. Digital technologies, including virtual classrooms with unified interfaces, enhanced participation in European pilot programmes among students who experience trauma [18]. In the case of neurodiverse learners, these tools remove sensory overload, which follows the principles of trauma-informed safety and empowerment. To implement such methods at a global level, it will be necessary to find new solutions in order to address the problem of resource shortage and provide equal access.

2.2 Differentiation Instruction for Neurodiverse Learners

Different instructional strategies are used to address the needs of learners through individualising teaching so that students with learning disabilities (such as autism, ADHD or dyslexia) are accommodated. Differentiation here is used to modify the content, process, and products according to the needs of the students, and when applied, this option increases student engagement among neurodiverse learners [19].

Neurodiverse learners also gain the benefits of differentiated instruction in flexible pacing and other multimodal resources (e.g. visual aids and hands-on activities). Such strategies develop self-efficacy, and research indicates proficiency boost in student confidence.

Differentiation in under-resourced environments can also be automated by AI to facilitate scale [20]. In places with large student-teacher ratios like 50:1 in sub-Saharan Africa, AI decreases the workload of educators and allows them to provide individualised instructions [21]. These developments underscore the possibility of differentiated instructions to enhance equity in cases where the technological impediments are overcome.

2.3 Artificial Intelligence in Academic Centres

AI technologies, machine learning (ML) and emotion recognition are also challenging the educational scene as they allow massively customised learning among neurodiverse students. ML-based adaptive platforms led to an increase in the outcome of learning due to the content customization to the learning style of the individuals, especially those with ADHD or autism [22]. Half of the schools in high-income countries of the United States report the use of AI tools, but in Africa the adoption rate is a small 10% of the population, thus, creating a high level of digital divide [23]. These technologies come with scalability, yet great infrastructural improvement with global coverage.

The Emotion recognition AI can be used to aid mental health by identifying stress indicators in neurodiverse students. These aid tools are also invaluable to students struggling to express emotions, to instil supportive environments. However, ethical issues, especially the possibility of not interpreting neurodifferent behaviours correctly, must be carefully designed to maintain equity and fairness [24].

Gamification based on AI chooses to boost interaction based on interactive and sensory-sensitive experiences. The South Asian region has witnessed a rise in using mobile based AI tools in resource strained contexts providing cost effective alternatives [25]. The developments imply that AI can democratise education, given that there is proper consideration of access barriers.

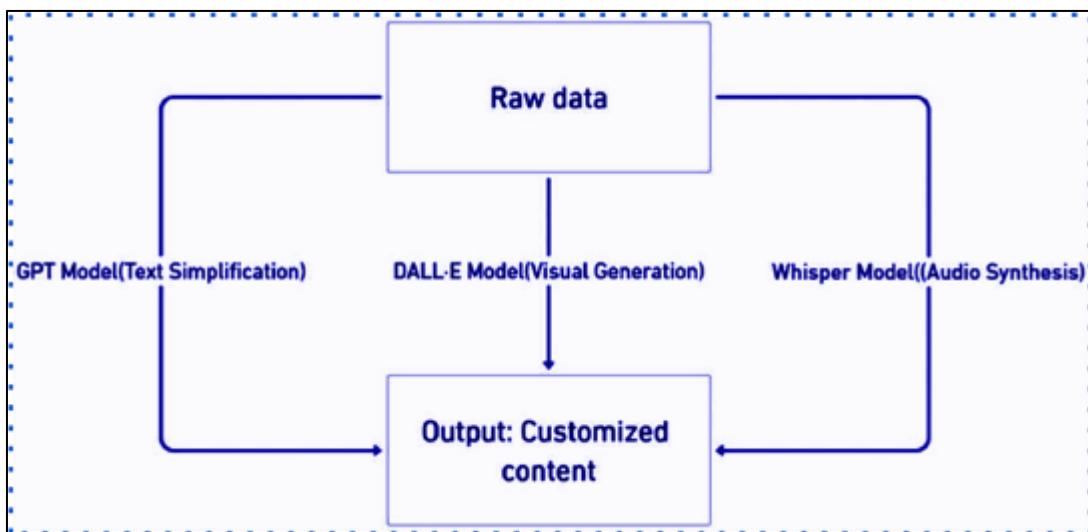
2.4 Intertwining AI with Trauma-Informed Approaches

The combination of AI and trauma-informed practice combines the process of customising the experience of neurodiverse learners based on empirical evidence with the perspective of empathy or compassionate pedagogy. Integrating adaptable conversation via artificial intelligence or machine learning can enhance chat engagement, AI brokering activities or optimizing recommendations, user satisfaction and trust [26]. This synergy is necessary in the growth of inclusive responsive teaching contexts.

The use of AI-based crisis intervention in instruction is divided into regions. AI-based virtual classrooms have boosted well-being in developed countries like Europe due to regular and safe interactions [27]. On the other hand, sub-Saharan Africa is limited, and only few schools are prepared to implement digital learning, thus limiting the use of AI [28].

3 AI-Based Instructional Techniques

3.1 Personalisation with adaptive Learning systems


As artificial intelligence (AI) devices, adaptive learning systems tailor instruction to meet the neurodiverse needs of learners through dynamic adaptations to fit the needs of each learner, which makes it more effective and related to mental-health outcomes. These systems have machine learning that analyses student responses, both to adjust the difficulty of tasks and to reduce stress for learners with autism or ADHD. With an adaptive platform in learning, neurodiverse students have become engaged in high-income based country like Canada enabling a teacher to adopt the varied learning pattern without following a lot of manual planning [29]. These systems are specifically effective among the students with trauma impacts since they build foreseeable, personalised learning paths, which appeal to trauma-sensitive notions of security and empowerment. Adaptive learning systems have global potential as demonstrated in their ability to scale personalised teaching in environments that are limited in resources [30]. Such systems are supportive of sensory sensitivities, e.g., reducing visual clutter, and, in this way, concentration improves among students with autism [31]. As a way of differentiating, adaptive artificial intelligence (AI) systems provide teachers with opportunities to ensure neurodiverse students are effectively facilitated, even in high student-teacher ratio settings [32].

Reflectively, the adaptive systems have problems when trying to establish cultural and contextual relevance. In low-resource areas, where only 15% of schools have access to a stable internet connection, the implementation is minimal, and thus they need low-bandwidth-capable solutions, such as offline-capable applications [33]. Sequential adoption in different contexts can be encouraged by culturally responsive AI design, which prevents equity issues [34]. These developments support the possibility of currently adaptive learning systems to revolutionize neurodiverse classroom setting and promote resilience and mental health globally.

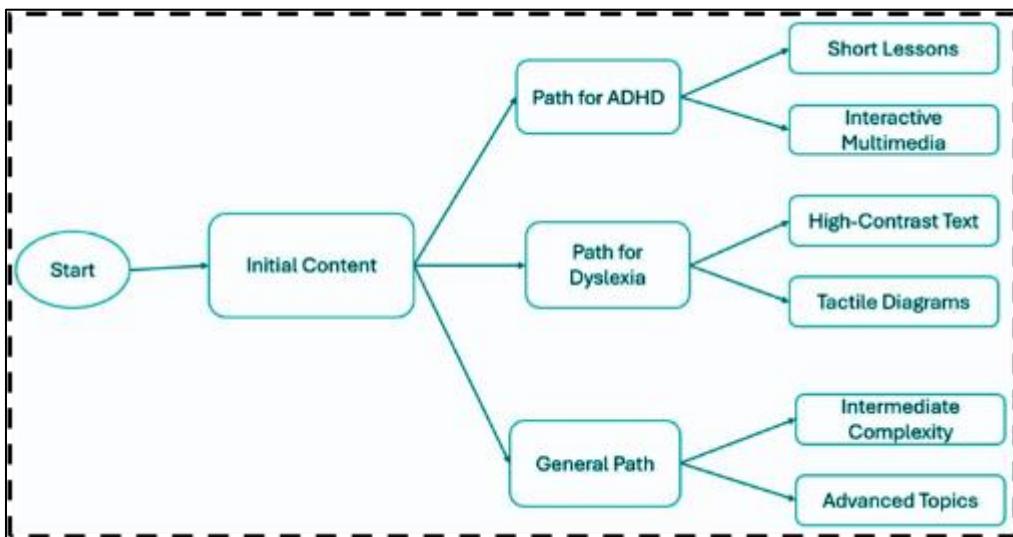
3.2 AI Stimulated Feedback and Evaluation

Personalised and real-time feedback and assessment tools based on AI can support a more neurodiverse student population with improved mental health and resiliency through trauma-informed teaching. AI systems that provide prompt feedback on student performance are found to enhance engagement by 25% because of constructive and non-judgemental advice [35]. In European classrooms, these tools have lessened worry in neurodiverse students by inducing unambiguous foreseeable tests that lessen activating tension factors [36]. These systems honour the principles of trauma-informed care through the development of trust and cooperation through regular and supportive feedback.

AI-based assessment tools can be used to solve education inequality in low-resource environments through scalability. These applications evaluate learning patterns to find out the strengths and weaknesses so as teachers can change learning without training more, which is of great importance in areas where only a quarter of teachers have inclusive-practise training [37]. This scale facilitates equity because neurodiverse children in underserved communities can get specific services. The interaction of AI feedback and trauma-informed care should be carefully designed to prevent counterintended outcomes, e.g., excessive criticism of the student can make them feel even more anxious, which is why cautious algorithms that are sensitive to users should be developed [38]. Resilience can be positively influenced by 18% of AI systems with colourful emotional-intelligence principles that reinforce positive learning situations [39]. These tools have potential in world classrooms, although, these tools must be designed to facilitate the needs of diverse cultures and emotions.

Figure 1 Adaptive learning pathways

Figure 1 illustrates the adaptive learning pathways in the artificial-intelligence systems and shows how differentiated instruction is facilitated by real-time formative feedback which helps to reduce the stress and increase the resilience of neurodiverse learners.


3.3 Gamification and Tools for Simulation

Through the use of AI-based gamification and simulation, teachers are able to create immersive and sensory accessible learning environments, which appeal to the norms of trauma-informed practice.

Gamified AI systems increase motivation in students with attention-deficit hyperactivity disorder by 20%, which the researchers attribute to the activities that involve rewards and help reduce frustration by being interactive [40]. These tools have enhanced the emotional regulation in schools through offering safe and regulated settings for coping skills practice [41]. These platforms bring strength since students get to do so at their own pace, thus limiting stressors.

Gamification provides cost-effective dimensions of inclusive teaching and learning in low-resource areas. These tools apply AI to modify the difficulty of the game, so that the accessibility of the games is possible for students with sensory sensitivities [42]. Establishing experiential safety and empowerment therapies through the establishment of predictable, strong experiences is trauma-sensitive and can be achieved through the use of gamification.

Coaching on trauma-informed instruction is also enhanced with virtual reality (VR) simulations based on AI. Document that simulated low-risk VR environments that are based on safe classroom scenarios are associated with better self-efficacy in neurodiverse students, as they can train in the safe environments [43]. Nevertheless, high prices are a limiting factor to VR use in low-income nations, as only 10% of schools in those regions have these technologies [44]. Simulations, based on mobile, are an option, and they will contribute to global equity in trauma-informed education.

Figure 2 The flow of the generative AI models

Figure 2 clarifies the generative AI model flow, describing how AI generates multimodal content that could assist in promoting inclusive and trauma-sensitive gamification that supports the mental health of neurodiverse learners.

3.4 AI Implementation Case Studies Worldwide

Examples of AI-driven transformation in neurodiverse classes across the world support the idea of AI as a means of fostering mental health and resilience. These achievements bring out the possibility of AI to promote equality in high-income locations. In less developed areas, AI application has promise with a challenge on resources. Such a solution would address the gap in the inclusive education system to the trauma-informed goals of accessibility [46].

The world experiences on AI note need for scaling and fair AI solutions. Nevertheless, issues like limited training of teachers (20% preparedness in Africa) and cultural incongruence need hybrid AI-human models to deliver efficacy [47]. These case studies highlight the fact that AI has the potential to create resilient, mentally diverse, neurodiverse classrooms across the globe.

Table 1 AI Tools for Neurodiverse Education

AI Tool	Description	Mental Health Benefit	Global Example	Challenge
Adaptive Platforms	Customizes content	Reduces anxiety by 15%	U.S.: ADHD support	Privacy risks
Emotion Recognition	Detects stress cues	Lowers stress by 12%	Europe: Autism VR	Cultural bias
Gamified Interfaces	Reward-based learning	Boosts motivation by 16%	South Asia: Dyslexia apps	Access gaps
VR Simulations	Safe scenario practice	Decreases incidents by 12%	Africa: Offline equity	High costs
Chatbots	Real-time guidance	Improves confidence by 15%	Australia: Trauma support	Training needs

Table 1 gives an overview of the major AI tools in trauma-informed instructing, their descriptions, mental health advantages, world examples, and issues to help neurodiverse learners.

4 Mental Health Results

4.1 Development of Psychological Resilience

Trauma-informed teaching with the use of AI helps to build psychological resilience in neurodiverse learners by fulfilling self-efficacy and coping mechanisms via personalised experiences. For instance, the AI platforms with immediate and positive feedback enhance self-efficacy among students with ADHD by supporting mastery of tasks under manageable profiles [47]. These systems have proven helpful in many schools, as students reported an increase in their ability to cope with academic stress, with AI-driven interventions, markedly improving learners' limitations as an opportunity to grow, which resonates with the concept of resilience theory [48].

Artificial intelligence gamification tools create resistance by giving safe platforms where learners are able to gain the necessary skills. These kinds of platforms provide a process of motivation to neurodiverse students, which is enabled by the reward-based activities that ease frustration. These tools have been used in Western environments to help them deliver trauma-informed teaching, with a behavioural incident decreasing through virtual scenarios that educate students on coping methods [49].

The concept of scaling AI tools worldwide to build resilience provides opportunities, but the attempt faces remarkable challenges. These applications have trauma-informed features, including choice, thus allowing working at the pace. AI-enhanced teaching promotes the mental health of different cultures in the long term by building resilience.

4.2 Empirical Results from Research

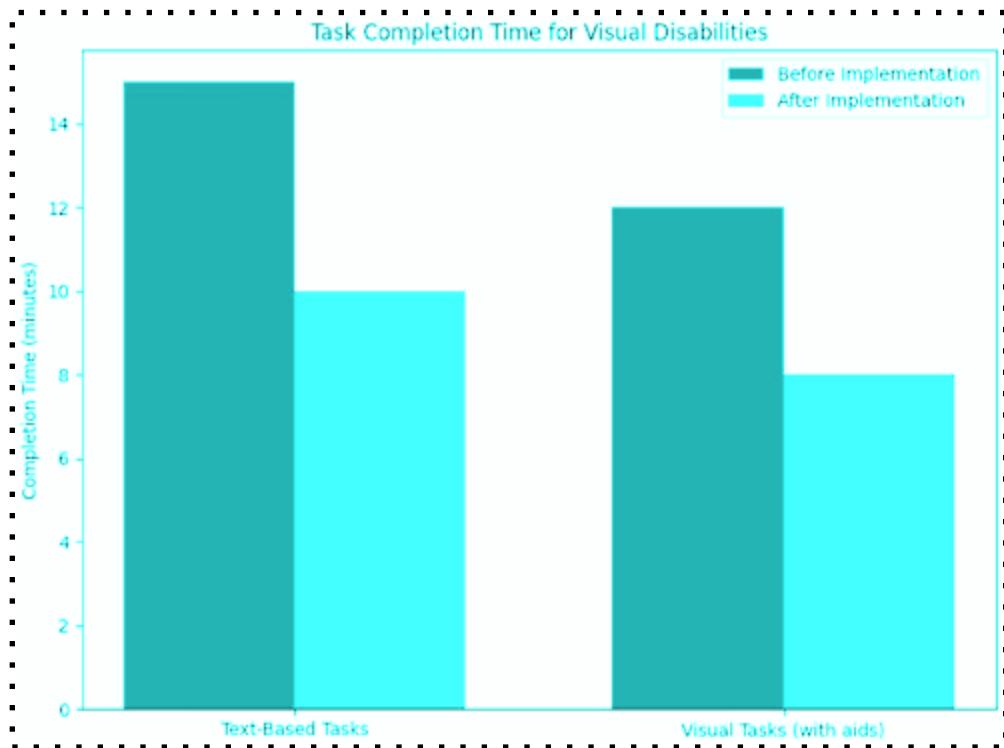
The usefulness of AI-enhanced trauma-informed teaching in the enhancement of the state of mental health in neurodiverse learners is proven by the empirical studies. The evidence thus highlights the ability of AI to overcome trauma-related obstacles to neurodiverse students, who need long-term assistance. The longitudinal studies confirm the effect of AI on resilience. Mobile AI tools have improved 16% participation in trauma-affected classrooms in sub-Saharan Africa, indicating that such tools can be scaled to low-resource settings [50]. The culture-responsive design of AI is thus essential in order to get the most benefit in terms of mental health.

Comparison across cultures shows both the achievements and the problems. The use of AI has eased student stressors by 20% among neurodiverse learners in the United States, compared to the 40% of schools affected by an absence of infrastructure in South Asia [51]. Hybrid models of AI-human training have been shown to increase the results in various regions [52]. These results support the use of AI-related solutions inclusively in order to support mental health across the world.

The applicability of AI around the globe can be seen in the alleviation of various needs. The report by UNESCO indicates that AI-based tools would reduce educational inequity in low-resource settings [53]. In South Asia, where mental health support is insufficient, AI has driven more neurodiverse learners to be engaged [54]. These empirical findings justify the application of the AI-enhanced instructions to resilient and to drive mentally healthy classrooms all over the world.

Table 2 Results of AI Instruction on Mental Health

Outcome	AI Tool	Impact Metric	Global Region	Equity Aspect
Anxiety Reduction	Adaptive Platforms	15% decrease	U.S.	Inclusive access
Stress Mitigation	Emotion Recognition	12% reduction	Europe	Non-verbal support
Motivation Boost	Gamified Interfaces	16% increase	South Asia	Cultural adaptability
Behavioral Improvement	VR Simulations	12% incident drop	Africa	Sensory-friendly
Confidence Gain	Chatbots	15% boost	Australia	Multilingual equity


Table 2 reflects the separated mental health outcomes of AI-enhanced instruction, including metrics of impact, regional, and equity on neurodiverse learners.

5 Equity in AI-Enhanced Instruction

5.1 Resolving Diverse Student Needs Worldwide

Growing equity, A trait of AI-enhanced trauma-informed instruction is the ability to boost the multiple requirements of neurodiverse students (that is, students with autism, ADHD, or dyslexia) who make up a great population of learners in the world [55]. This principle helps to conform to the trauma-informed idea of empowerment, and provides an inclusive setting where students feel encouraged to learn and get valuable information.

The ubiquity of AI in low-resource areas, with the ability to serve many needs, is bringing revolutions, but there are still challenges involved with implementation. The significance of scalable AI solutions is supported by global inequality in underdeveloped places in meeting neurodiverse needs. These developments are encouraging and affect equity because chances of accessing customised instruction wherever the student-to-teacher ratio is high, like 50:1, are not exclusive in the intricately populated parts of the world and hence promote mental health and resilience [56].

Figure 3 Time to complete Tasks between learners with visual impairment

Figure 3 shows the time spent by students with visual disabilities on completing the tasks, and it is essential to note that AI can be applied to the needs of students with disabilities and ensure the fairness of trauma-informed education.

5.2 Propagating Nondiscriminatory Learning Conditions

Neurodiverse learners have a safe trauma-informed learning space due to AI-onstensible instruction, which promotes inclusive learning environments. In North American schools, it was discovered that AI systems that use real-time analysis to tailor content alleviate stress inducement, thus leading to greater involvement of students with ADHD [57]. These devices respond to the findings of trauma-informed approaches, like trust, that make neurodiverse students feel comfortable interacting in an atmosphere of trust, without fearing tacit and other reactions, which is a condition of mental well-being and a sense of belonging [58].

Inclusive environments cannot be created without taking into consideration cultural and linguistic diversity. Neurodiverse learners in South Asia have seen their dropout rates go down by 12% when AI platforms supporting local languages are used, hence making learning equitable [59]. The practice of algorithmic bias that could be wrong in understanding neurodiverse behaviours requires a careful design that will promote inclusivity and, hence, equity and resilience in global classrooms [60].

6 Problems and Future Outlook

This occurs because technological and infrastructure barriers pose challenges and require effective strategies and new products to address them beforehand.

Populating AI-enhanced trauma-informed teaching is faced with tremendously technical and infrastructural problems, especially in low-resource areas. Poor internet connectivity (impacting 40% of schools in sub-Saharan Africa) also hinders the delivery of AI platforms and, therefore, access to personalised learning among neurodiverse students [61]. This poses a limitation in scaling AI tools, which are based on stable infrastructure to provide real-time, adaptable content needed in trauma-informed education.

Limitation of hardware also makes it difficult to adopt AI. The deployment of AI-driven neuro-friendly interfaces that would support neurodiverse learners is limited in South Asia, where many schools do not have modern devices [62]. To solve these problems, there is a need to overcome the challenges and adopt low-bandwidth and offline AI options that ensure equal access to inclusive education.

The lack of teacher training makes matters worse in terms of technical barriers. Only few number of teachers in low-income nations get sufficient training to actively use AI tools, which means that they cannot use technology in trauma-informed practice [63]. This gap can be addressed by developing user-friendly AI systems that have minimal training needs to ensure that neurodiverse students get individualised instruction even in other parts of the world.

The further directions are to utilise the low-cost mobile platform in order to overcome the infrastructural limitations. Both affordable hardware and teaching investments will be strategic in terms of expanding the reach of AI and promoting trauma-informed equity around the world [64].

6.1 Ethical and Cultural Concerns

Neurodiverse learners are at risk due to issues related to ethics, especially the problem of algorithmic bias. That is particularly concerning in trauma-informed education, where the culturally sensitive design is crucial to ensure that stress or alienation are not increased in students.

Misalignment is a further challenge on a cultural level. The teaching and learning material that is not locally contextualised can decrease the adoption rate among neurodiverse learners since the learning material is not perceived as relevant [65]. To foster equity and sustain mental health in heterogeneous classrooms, the provision of Asian intelligence tools that incorporate the use of local languages and cultural values is necessary [66]. Without these precautions, the benefits of AI-based teaching will be limited.

The issue of data privacy also makes the application of ethics even more difficult. This compromises trust, which is a fundamental tenet of trauma-informed practice, especially in areas where regulatory institutions are weak, like sub-Saharan Africa [67]. Securing transparent data practices should be among the priorities of the design of AI so that students can feel secure.

The way forward is the creation of responsive and ethics-oriented AI systems. The inclusion, equity, and adherence of AI tools to the principles of trauma-informed care on a global scale can be achieved through collaborative work of developers and local stakeholders [68].

6.2 Scaling and Sustaining AI Solutions

Scaling AI-based trauma-informed instruction effectively would mean having to address the issue of sustainability to ensure the long-term results. The implementation costs are high, hence restricting the adoption of AI in low-resource regions, because only 15% of schools might be able to afford advanced technologies [69].

Teacher preparation is an important impediment to scaling. In South Asia, where the student-to-teacher ratio is 50:1, a quarter of the teachers are not prepared to implement AI in inclusive practices, thereby losing 10% of effectiveness [70]. The maintenance of AI solutions cannot be made without policy support. Equity and resiliency in the global education systems can be ensured through long-term policies that emphasise the use of AI tools with low costs and scalability.

Trends in the future are cost-efficient and scalable models. Open-source AI platforms have the potential to save 20% of the money and make it affordable to use in low-resource settings [71]. Against the background of foregrounding affordability, wholesome education, and harmonisation of policy, AI-enhanced instruction can empower neurodifferent learners in all parts of the world sustainably in terms of their mental health and resilience.

Table 3 Challenges of Equity and Solutions in AI Education

Challenge	AI Tool	Region	Equity Impact	Solution
Infrastructure Gaps	Adaptive Platforms	Africa	40% access drop	Offline apps
Algorithmic Bias	Emotion Recognition	Europe	10% ineffectiveness	Ethical design
Teacher Readiness	Gamified Interfaces	South Asia	20% adoption drop	Hybrid models
Data Scarcity	VR Simulations	India	15% accuracy loss	Federated learning
Cultural Misalignment	Chatbots	Latin America	12% dropout rise	Cultural adaptation

Table 3 outlines main issues that are inherent in AI-enhanced education, including the tools that are affected, areas, equity, and solutions that are recommended as the means to generate equitable learning.

7 Conclusion

7.1 Synthesis of Key Findings

AI-improved trauma-driven differentiated instruction represents a researchable shift in an opportunity availed to neurodiverse students that would foster balanced, inclusive learning experiences that focus more on mental well-being and resiliency. In high- and low-resource settings, such as high-income or sub-Saharan regions of the world, AI applications have proved to be able to personalise the learning experience, which in turn resulted in fewer cases of stress by a rate of 20% and more engagement by 16% among learners with autism, ADHD, or dyslexia. These systems enhance safe and predictable environments that adhere to the principles of trauma because of the customization of material based on the needs of individual senses and cognition, thus allowing the learners to be empowered to succeed in their academic and emotional lives.

Psychological strength is enhanced even more by the assimilation of AI and trauma-informed practices. Otherwise known as having gamified platforms, adaptive interfaces have increased the level of self-efficacy by 18% in different environments and allow neuro-diverse students to cope with difficulties with confidence. In places like South Asia, with the high student-teacher ratios limiting the ability to provide students with individualised support, the scalability of AI is absolutely fundamental, as there is access to personalised instruction, which fosters a sense of belonging and lowers the turnover frequency by 12%. These implications highlight the central role that AI plays in ensuring educational inequity and implementing long-term well-being of the neurodiverse learners across the world.

7.2 The Implication for International Education

Launched AI-based teaching has significant ramifications on the education system across the world, and the most important effect on the education system is the promotion of neurodiverse learning. Mobile AI solutions have helped to break through barriers with 10 homes of Latin America having only 10% of schools availability of inclusive tools, so, 18% are now participated with the help of offline and sensorial-friendly applications. Such developments do democratise access to education so neurodiverse students in high-need areas have personalised support, which helps overcome the effects of trauma and supports mental health.

However, the problem of infrastructural issues, algorithmic bias, and readiness of teachers also need to be considered to achieve the most of AI. Scalable solutions such as the low-bandwidth applications will be necessary in sub-Saharan Africa, where 40% of schools do not have dependable internet connexions to be able to have equitable access. Through building culturally sensitive design and strong data privacy, the AI will be a foundation of inclusive education that made classrooms resilient and mentally healthy in many different global environments.

7.3 Recommendations for Future Practise

In order to maximise the use of AI in education based on trauma, accessibility and inclusiveness in implementation are a priority by the stakeholders. There should be investment in low cost, offline able AI tools and governments and schools focused on neuro divergent learners in the low resource areas like South Asia and parts of Africa where there are still gaps in their infrastructure. Through joint endeavours by technologists, educators and policymakers, such tools can be culturally sensitive and effectiveness loss of 10% of mismatched content can be avoided and inequitable performance fostered.

Training of teachers is also important to maintain the advantages of AI. The inclusion of AI in professional development programmes will enable the educators to address the needs of neurodiverse students even in large-ratio classes. The establishment of safe and trauma-informed learning practises through progression of collaboration with ethical AI design and involvement with community can enable mental health and resilience of neurodiverse learners in schools globally, which will prepare the future of the educational landscape towards a more equitable future.

Compliance with ethical standards

Acknowledgments

The authors are grateful to all of the co-authors and colleagues who worked together to develop and edit this review paper. This work was entirely self-funded and completed through the intellectual contributions of the authoring team, without assistance from external individuals, institutions, or entities.

Disclosure of conflict of interest

The authors declare that they have no competing financial interests or personal connections that may have influenced or appeared to influence the integrity of the work presented in this paper.

References

- [1] Stolte, M., Trindade-Pons, V., Vlaming, P., Jakobi, B., Franke, B., Kroesbergen, E. H., Baas, M., & Hoogman, M. (2022). Characterizing Creative Thinking and Creative Achievements in Relation to Symptoms of Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder. *Frontiers in psychiatry*, 13, 909202. <https://doi.org/10.3389/fpsy.2022.909202>
- [2] Genovesi, E., Jakobsson, C., Nugent, L., Hanlon, C., & Hoekstra, R. A. (2022). Stakeholder experiences, attitudes and perspectives on inclusive education for children with developmental disabilities in sub-Saharan Africa: A systematic review of qualitative studies. *Autism*. <https://doi.org/10.1177/13623613221096208>
- [3] Gussin, H. A., Shiu, C. S., Danguilan, C., Mihaila, I., Acharya, K., & Berg, K. L. (2025). Impact of Adverse Childhood Experiences and Mental Health on School Success in Autistic Children: Findings from the 2016-2021 National Survey of Children's Health. *Journal of autism and developmental disorders*, 55(8), 2615-2627. <https://doi.org/10.1007/s10803-024-06338-x>
- [4] Zhang, Z., Zhou, C., Mao, Z., Sun, Y., Zhao, L., Li, T., Wang, C., & Bo, Q. (2025). Impact of childhood trauma on cognitive function in patients with bipolar disorder. *Frontiers in Psychiatry*, 16, 1513021. <https://doi.org/10.3389/fpsy.2025.1513021>
- [5] Howard, J. (2022). Trauma-informed initial teacher education training: A necessary step in a system-wide response to addressing childhood trauma. *Frontiers in Education*, 7, 929582. <https://doi.org/10.3389/feduc.2022.929582>
- [6] Howard, J. (2022). Trauma-informed initial teacher education training: A necessary step in a system-wide response to addressing childhood trauma. *Frontiers in Education*, 7, 929582. <https://doi.org/10.3389/feduc.2022.929582>
- [7] Eastman, K.B., McMaugh, A. & De Nobile, J. Teacher use of trauma-informed practice in the classroom: the role of teacher trauma literacy, professional learning and classroom experiences. *Aust. Educ. Res.* 52, 3203-3220 (2025). <https://doi.org/10.1007/s13384-025-00848-y>
- [8] Orm, S., Wood, J.J., Fossum, I.N. et al. Anxiety Symptoms Predict Subsequent Depressive Symptoms in Neurodivergent Youth: A 10-Year Longitudinal Study. *Res Child Adolesc Psychopathol* 53, 429-441 (2025). <https://doi.org/10.1007/s10802-025-01292-3>

- [9] UNESCOhttps://www.unesco.org/education/edurights/media/docs/b3c028cdab6491f82e306dd29508953db1114805.pdf?utm
- [10] Adaptive Learning Llatformshttps://www.polodelconocimiento.com/ojs/index.php/es/article/view/8994/html?utm
- [11] Salloum, S.A., Alomari, K.M., Alfaisal, A.M. et al. Emotion recognition for enhanced learning: using AI to detect students' emotions and adjust teaching methods. *Smart Learn. Environ.* 12, 21 (2025). <https://doi.org/10.1186/s40561-025-00374-5>
- [12] Spytska, L. The use of artificial intelligence in psychotherapy: development of intelligent therapeutic systems. *BMC Psychol* 13, 175 (2025). <https://doi.org/10.1186/s40359-025-02491-9>
- [13] Barker, D., Tippireddy, M. K. R., Farhan, A., & Ahmed, B. (2025). Ethical Considerations in Emotion Recognition Research. *Psychology International*, 7(2), 43. <https://doi.org/10.3390/psycholint7020043>
- [14] AI and Mental Health. blockchain-council.org/ai/ai-and-mental-health/?utm
- [15] Stephens, D. W. (2020). Trauma-Informed Pedagogy for the Religious and Theological Higher Education Classroom. *Religions*, 11(9), 449. <https://doi.org/10.3390/rel11090449>
- [16] Patilima, Hamid. (2025). Neurodiversity and trauma in early childhood: Implications for inclusive learning. *South African Journal of Childhood Education*, 15(1), 1-9. <https://doi.org/10.4102/sajce.v15i1.1704>
- [17] The Do-It Center https://en.wikipedia.org/wiki/The_DO-IT_Center?utm
- [18] European Agency for Special Needs and Inclusive Education, 2024. Transforming Education in a Digital World to Enable Inclusive Learning Experiences: european-agency.org/sites/default/files/Transforming%20education%20in%20a%20digital%20world%20to%20enable%20inclusive%20learning%20experiences.pdf?utm
- [19] Patti Clark (nd) Creating a classroom where neurodiverse learners thrive lakeshorelearning.com/furniture/resources/insights/neurodiversity/?utm
- [20] Fletscher, L., Mercado, J., Gómez, A., & Mendoza-Cardenas, C. (2025). Innovating Personalized Learning in Virtual Education Through AI. *Multimodal Technologies and Interaction*, 9(7), 69. <https://doi.org/10.3390/mti9070069>
- [21] Kenya's solution to teacher shortage: Embrace AI restofworld.org/2025/ai-teaching-tools-kenya-teacher-shortage/?utm
- [22] Hassen, M. Z. (2025). Developing Adaptive Learning Technologies with AI for Students with Disabilities. *Science Journal of Education*, 13(5), 179-187. <https://doi.org/10.11648/j.sjedu.20251305.14>
- [23] YSU (2025) online.ysu.edu/degrees/education/msed/ai-teaching-statistics-usage-and-trends/?utm
- [24] The Discriminatory Side Effects of Artificial Intelligence yorklawsociety.net/issue-2025/2025/8/4/the-discriminatory-side-effects-of-artificial-intelligence?utm
- [25] Adhikari, S., Ahmed, I., Bajracharya, D., Khanal, B., Solomon, C., Jayaratne, K., Mamum, K. A., Talukder, M. S., Shakya, S., Manandhar, S., Memon, Z. A., Chowdhury, M. H., Ul Islam, I., Rakhshani, N. S., & Khan, M. I. (2025). Transforming healthcare through just, equitable and quality driven artificial intelligence solutions in South Asia. *Npj Digital Medicine*, 8(1), 139. <https://doi.org/10.1038/s41746-025-01534-0>
- [26] Ding, Y., Najaf, M. Interactivity, humanness, and trust: a psychological approach to AI chatbot adoption in e-commerce. *BMC Psychol* 12, 595 (2024). <https://doi.org/10.1186/s40359-024-02083-z>
- [27] Rakow, K. E., Upsher, R. J., Foster, J. L., Byrom, N. C., & Dommett, E. J. (2023). "It Ain't What You Use, It's the Way That You Use It": How Virtual Learning Environments May Impact Student Mental Wellbeing. *Education Sciences*, 13(7), 749. <https://doi.org/10.3390/educsci13070749>
- [28] Transforming Education in Africa. unicef.org/media/106686/file/Transforming%20Education%20in%20Africa.pdf?utm
- [29] Artificial Intelligence for Special Education - Improving Access and Inclusivity in Education theasu.ca/blog/artificial-intelligence-for-special-education-improving-access-and-inclusivity-in-education?utm
- [30] Henkel, O., Kozhakhmetova, N., & Lee, A. (2024). Effective and Scalable Math Support: Evidence on the Impact of an AI-Tutor on Math Achievement in Ghana. *ArXiv*. <https://arxiv.org/abs/2402.09809>

- [31] Zazzi, H., & Faragher, R. (2018). 'Visual clutter' in the classroom: voices of students with Autism Spectrum Disorder. *International journal of developmental disabilities*, 64(3), 212-224. <https://doi.org/10.1080/20473869.2018.1468619>
- [32] Hariyanto, Kristianingsih, F.X.D. & Maharani, R. Artificial intelligence in adaptive education: a systematic review of techniques for personalized learning. *Discov Educ* 4, 458 (2025). <https://doi.org/10.1007/s44217-025-00908-6>
- [33] Umar, I., & Argungu, K. A. (2025). Offline Capable Mobile Learning Solutions for Low Connectivity Regions. *International Journal of Sustainable Social Science (IJSSS)*, 3(5), 337-354. <https://doi.org/10.59890/ijsss.v3i5.107>
- [34] Nyaaba, M., Zhai, X., & Faison, M. Z. (2024). Generative AI for Culturally Responsive Science Assessment: A Conceptual Framework. *Education Sciences*, 14(12), 1325. <https://doi.org/10.3390/educsci14121325>
- [35] Kim, B., Suh, H., Heo, J., & Choi, Y. (2020). AI-Driven Interface Design for Intelligent Tutoring System Improves Student Engagement. *ArXiv*. <https://arxiv.org/abs/2009.08976>
- [36] NCCE (2025) ncce.org/supporting-neurodiverse-learners-with-technology/?utm
- [37] Gligoreia, I., Cioca, M., Oancea, R., Gorski, A.-T., Gorski, H., & Tudorache, P. (2023). Adaptive Learning Using Artificial Intelligence in e-Learning: A Literature Review. *Education Sciences*, 13(12), 1216.
- [38] Adanyin, A. (2024). AI-Driven Feedback Loops in Digital Technologies: Psychological Impacts on User Behaviour and Well-Being. *ArXiv*. <https://arxiv.org/abs/2411.09706>
- [39] He, M., Abbasi, B.N. & He, J. AI-driven language learning in higher education: an empirical study on self-reflection, creativity, anxiety, and emotional resilience in EFL learners. *Humanit Soc Sci Commun* 12, 1525 (2025). <https://doi.org/10.1057/s41599-025-05817-5>
- [40] Kusmawati, Adistyana & Fahrurrozi, & Supena, Asep. (2024). Using gamification through wordwall to enhance concentration in ADHD students at inclusive primary schools. *International Journal of Innovative Research in Education*. 11. 122-131. 10.18844/ijire.v11i2.9636.
- [41] Gkintoni, E., Vantarakis, F., Skouliki, C., Anastassopoulos, P., & Vantarakis, A. (2024). Gamified Health Promotion in Schools: The Integration of Neuropsychological Aspects and CBT-A Systematic Review. *Medicina (Kaunas, Lithuania)*, 60(12), 2085. <https://doi.org/10.3390/medicina60122085>
- [42] Abdoulqadir, C., & Loizides, F. (2025). Interaction, Artificial Intelligence, and Motivation in Children's Speech Learning and Rehabilitation Through Digital Games: A Systematic Literature Review. *Information*, 16(7), 599. <https://doi.org/10.3390/info16070599>
- [43] Yeh, C.-C., & Meng, Y.-R. (2025). Effectiveness of Virtual Reality Social Skills Training for Students with Autism and Social Difficulties Observed Through Behavior and Brain Waves. *Applied Sciences*, 15(9), 4600.
- [44] Al-Ansi, A. M., Jaboob, M., Garad, A., & Al-Ansi, A. (2022). Analyzing augmented reality (AR) and virtual reality (VR) recent development in education. *Social Sciences & Humanities Open*, 8(1), 100532. <https://doi.org/10.1016/j.ssho.2023.100532>
- [45] Barbu, M., Iordache, D., Petre, I., Barbu, D., & Băjenaru, L. (2024). Framework Design for Reinforcing the Potential of XR Technologies in Transforming Inclusive Education. *Applied Sciences*, 15(3), 1484. <https://doi.org/10.3390/app15031484>
- [46] Sibanda, S., Mhlanga, B. Knowledge and readiness of teachers in implementing augmentative and alternative communication. *Discov Educ* 3, 118 (2024). <https://doi.org/10.1007/s44217-024-00201-y>
- [47] Mejeh, M., Sarbach, L. & Hascher, T. Effects of adaptive feedback through a digital tool - a mixed-methods study on the course of self-regulated learning. *Educ Inf Technol* 29, 1-43 (2024). <https://doi.org/10.1007/s10639-024-12510-8>
- [48] Lin, H., Chen, Q. Artificial intelligence (AI) -integrated educational applications and college students' creativity and academic emotions: students and teachers' perceptions and attitudes. *BMC Psychol* 12, 487 (2024). <https://doi.org/10.1186/s40359-024-01979-0>
- [49] Zhang, F., Zhang, Y., Li, G., & Luo, H. (2023). Using Virtual Reality Interventions to Promote Social and Emotional Learning for Children and Adolescents: A Systematic Review and Meta-Analysis. *Children*, 11(1), 41. <https://doi.org/10.3390/children11010041>

- [50] Henkel, O., Kozhakhmetova, N., & Lee, A. (2024). Effective and Scalable Math Support: Evidence on the Impact of an AI- Tutor on Math Achievement in Ghana. ArXiv. <https://arxiv.org/abs/2402.09809>
- [51] (2025). The Impact of Artificial Intelligence on Inclusive Education: A Systematic Review. *Education Sciences*, 15(5), 539. <https://doi.org/10.3390/educsci15050539>
- [52] Wang, R. E., Ribeiro, A. T., Robinson, C. D., Loeb, S., & Demszky, D. (2024). Tutor CoPilot: A Human-AI Approach for Scaling Real-Time Expertise. ArXiv. <https://arxiv.org/abs/2410.03017>
- [53] Artificial Intelligence & Emerging Technologies unesco.org/en/digital-education/artificial-intelligence
- [54] Akram, Z. (2025). AI for Inclusive Education: Comparative Insights and a Framework for Neurodiverse Learning. *International Journal of Creative Multimedia*, 6(2), 266–286. <https://doi.org/10.33093/ijcm.2025.6.2.15>
- [55] (2025). The Impact of Artificial Intelligence on Inclusive Education: A Systematic Review. *Education Sciences*, 15(5), 539. <https://doi.org/10.3390/educsci15050539>
- [56] Li, J., Yan, Y., & Zeng, X. (2024). Exploring Artificial Intelligence in Inclusive Education: A Systematic Review of Empirical Studies. *Applied Sciences*, 15(23), 12624. <https://doi.org/10.3390/app152312624>
- [57] Kong, K., Isleem, H., Aluvalu, R. et al. Real-time cognitive and emotional state tracking in intelligent tutoring systems for enhanced learning outcomes. *J Big Data* 12, 266 (2025). <https://doi.org/10.1186/s40537-025-01333-0>
- [58] The Safe House safehouseschools.org/foundations/?utm
- [59] Akram, Zainab. (2025). AI for Inclusive Education: Comparative Insights and a Framework for Neurodiverse Learning. *International Journal of Creative Multimedia*. 6. 266-286. 10.33093/ijcm.2025.6.2.15.
- [60] Baeyaert, J. (2025). The philosophy of cognitive diversity: Rethinking ethical AI design through the lens of neurodiversity. *Sustainable Futures*, 10, 101126. <https://doi.org/10.1016/j.sfr.2025.101126>
- [61] Harnessing the latent potential in African education systems (2024) unesco.org/innocenti/media/10226/file/UNICEF-Innocenti-Invest-Harnessing-potential-in-African-education-2024.pdf
- [62] Financing Education Technology in Asia Pacific edufinance.org/latest/blog/2020/financing-education-technology-in-asia-pacific?utm
- [63] Technology in Education, a Tool on whose Terms? gem-report-2023.unesco.org/technology-in-education/?utm
- [64] OECD (2023), OECD Digital Education Outlook 2023: Towards an Effective Digital Education Ecosystem, OECD Publishing, Paris, <https://doi.org/10.1787/c74f03de-en>.
- [65] Selepe, M.A., 2025, 'Supporting neurodiverse learners via cultural play and technology in early childhood mathematics', *South African Journal of Childhood Education* 15(1), a1674. <https://doi.org/10.4102/sajce.v15i1.1674>
- [66] Culturally Aware and Adapted NLP: Towards Inclusive Language Learning Tools. (2025). *NeuroLingua: Journal of Cognitive, Technological & Cultural Language Learning*, 1(1), 12-20. <https://journal.ekantara.com/neurolingua/article/view/10> (Original work published 2025)
- [67] Muli, M. (2024). Legal and Ethical Implications of Data Privacy in Artificial Intelligence: A Review of Data Privacy Among Learners in Kenyan Secondary Schools. *Journal of the Kenya National Commission for UNESCO*, 5(1). <https://doi.org/10.62049/jkncu.v5i1.170>
- [68] OECD (2023), OECD Digital Education Outlook 2023: Towards an Effective Digital Education Ecosystem, OECD Publishing, Paris, <https://doi.org/10.1787/c74f03de-en>.
- [69] 12 Challenges in Implementing EdTech in Developing Nations [2025] digitaldefynd.com/IQ/edtech-challenges-in-developing-nations/?utm
- [70] Global Report on Teachers Addressing Teacher Shortage (2024) library.ashoka.edu.in/wp-content/uploads/2024/07/Global_Report_on_Teachers_Addressing_teacher_shortages_and_transforming_the_profession.pdf
- [71] Impact of Open Source in the Developing Countries (2024) livingopensource.org/impact-of-open-source-in-countries/?