

Sustainable and Intelligent Technologies in the Modern Nail Industry: A Review of Biopolymer Materials, Adaptive Photopolymerization Systems and Digital Education

Ruslana Tkachenko *

Nail technology instructor, USA.

World Journal of Advanced Research and Reviews, 2025, 28(03), 833-836

Publication history: Received on 03 November 2025; revised on 09 December 2025; accepted on 12 December 2025

Article DOI: <https://doi.org/10.30574/wjarr.2025.28.3.4138>

Abstract

The modern nail industry is undergoing a profound transformation driven by sustainability, intelligent materials, and digital technologies. This review article synthesizes recent advances in biodegradable biopolymer coatings, adaptive UV/LED photopolymerization systems, nanotechnology-based safety innovations, and the digitalization of professional education in nail services. Special attention is given to eco-friendly cellulose- and chitosan-based coatings that replace toxic solvents and persistent polymers, significantly reducing environmental and occupational health risks. Intelligent curing systems employing real-time optical feedback and adaptive control are reviewed as a new standard for safe photopolymerization. The article also examines the growing role of nanomaterials in enhancing mechanical strength, antibacterial protection, and optical performance of nail coatings. Finally, the integration of digital learning platforms into vocational education is discussed as a key driver of sustainable technological adoption. Collectively, these developments demonstrate the emergence of the nail industry as a science-driven, environmentally responsible, and digitally enabled sector.

Keywords: Biopolymer coatings; Intelligent UV/LED systems; Sustainable beauty; Photopolymerization; Nanotechnology; Digital education; Nail industry innovation; Occupational safety

1. Introduction

The global beauty industry is shifting from a purely aesthetic orientation toward a science-based, environmentally responsible, and technologically advanced sector. Nail service technologies, in particular, have experienced rapid development due to innovations in polymer chemistry, photonics, nanotechnology, and digital education. Traditional nail coatings and curing devices, once based largely on empirical practice, are now increasingly evaluated through the lenses of sustainability, occupational safety, and material performance.

Conventional nail polishes and gel systems rely heavily on synthetic polymers, volatile organic solvents, and fixed-wavelength ultraviolet curing devices. These technologies raise significant concerns related to environmental persistence, microplastic pollution, skin sensitization, and chronic UV exposure for both clients and professionals. In response, contemporary research has focused on biodegradable materials, adaptive photopolymerization systems, and comprehensive safety-oriented design.

This review critically examines key technological directions shaping the future of the nail industry: (1) sustainable biopolymer-based coatings, (2) intelligent UV/LED photopolymerization systems, (3) nanotechnology and safety-centered material design, and (4) the digitalization of vocational education in beauty technologies.

* Corresponding author: Ruslana Tkachenko

2. Sustainable Biopolymer Materials for Nail Coatings

2.1. Limitations of Conventional Nail Coatings

Traditional nail coatings are primarily formulated using nitrocellulose, acrylates, synthetic plasticizers such as phthalates, and volatile organic solvents. These materials provide durability and gloss but contribute to environmental pollution, toxic vapor release, and physiological stress on the nail plate. Microplastic accumulation and occupational exposure among nail technicians have become critical issues.

2.2. Biopolymer-Based Alternatives

Recent research has demonstrated the feasibility of replacing synthetic film-formers with renewable biopolymers such as cellulose acetobutyrate, chitosan derivatives, polylactide, and polyhydroxybutyrate. These materials offer a combination of mechanical strength, flexibility, optical clarity, and biodegradability.

Cellulose derivatives provide structural stability and film integrity, while chitosan contributes strong adhesion, antimicrobial activity, and biocompatibility. The synergistic interaction between these polymers allows the formation of coatings that degrade naturally under environmental conditions while maintaining performance comparable to traditional formulations.

2.3. Degradation Behavior and Environmental Impact

Experimental studies on biopolymer-based coatings demonstrate biodegradation levels exceeding 80% within three months under controlled composting conditions, compared with less than 10% degradation for conventional polishes. Tensile strength values of approximately 30 MPa confirm their suitability for practical application. These findings align with ISO standards for biodegradability and life cycle environmental assessment.

2.4. Toxicity Reduction and Nail Health

The substitution of phthalate plasticizers with citrate esters and glycerin significantly reduces volatile emissions and cytotoxicity. Biopolymer coatings act as protective micro-membranes that strengthen the nail plate, reduce dehydration, and maintain oxygen permeability. This redefinition of nail coatings as functional protective materials, rather than purely decorative films, represents a major paradigm shift in cosmetic chemistry.

3. Intelligent UV/LED Photopolymerization Systems

3.1. Limitations of Conventional UV Lamps

Standard nail curing lamps operate with fixed exposure times and limited wavelength control, leading to inconsistent polymerization, thermal discomfort, incomplete curing, and unnecessary UV exposure. These shortcomings increase risks of skin irritation, allergic reactions, and long-term occupational health effects.

3.2. Adaptive Sensor-Based Photopolymerization

Next-generation intelligent UV/LED systems incorporate optical sensors and adaptive control algorithms that monitor real-time changes in light reflection and absorption during curing. These systems dynamically adjust radiation intensity and duration based on polymerization progress, ensuring complete curing while minimizing UV exposure.

3.3. Feedback-Controlled and Machine-Learning Systems

Advanced curing devices employ microcontrollers and machine-learning algorithms to optimize curing parameters for different gel formulations. These cyber-physical systems represent a major transition from passive devices to responsive, self-adjusting equipment.

3.4. Occupational and Consumer Safety

Personalized protection modules analyze nail thickness, skin sensitivity, and user exposure history to calibrate energy doses precisely. Optical shielding and wavelength optimization further reduce risks to surrounding skin. These developments significantly lower cumulative UV exposure for nail professionals.

4. Nanotechnology and Safety Innovations in Nail Coatings

4.1. Functional Nanomaterials

Nanotechnology enables the modification of mechanical, optical, and biological properties of nail coatings at the molecular level. Silica nanoparticles enhance hardness and crack resistance, titanium dioxide provides UV protection and optical brightness, while nanosilver introduces antibacterial functionality without altering appearance.

4.2. Microstructural Optimization

Uniform nanoparticle dispersion improves coating smoothness, reduces porosity, and prevents pigment migration. These microstructural effects directly enhance durability, gloss stability, and color uniformity.

4.3. Chemical-Biological Interaction with the Nail Plate

Studies on the interaction between coating components and keratin matrices reveal that acrylates, formaldehyde derivatives, and phthalates disrupt hydration and elasticity. Biocompatible polymers preserve physiological balance while maintaining mechanical performance.

4.4. Occupational Health Considerations

Nanocomposite materials, when combined with reduced solvent systems, significantly decrease airborne contaminants in salons. Proper ventilation, dust management, and material substitution strategies form a comprehensive safety framework.

5. Digitalization and Education in Nail Technologies

5.1. Limitations of Traditional Vocational Training

Historically, nail education relied heavily on in-person apprenticeship and non-standardized teaching methods. This created disparities in educational quality, access, and scientific literacy.

5.2. Hybrid and E-Learning Models

Digital platforms enable remote access to theoretical modules on polymer chemistry, photophysics, eco-safety, and occupational health. Virtual laboratories complement hands-on practice by allowing students to simulate curing processes, material behavior, and safety scenarios.

5.3. Continuous Professional Development

Online learning systems provide ongoing access to updated modules on biopolymer coatings, nanotechnology, and regulatory standards. This supports lifelong learning in a rapidly evolving industry.

5.4. Transformation of Professional Identity

The integration of science-based curricula elevates nail services from a purely craft-based occupation to a technologically grounded professional field, emphasizing analytical thinking, sustainability, and safety.

6. Discussion

The convergence of biopolymer chemistry, intelligent photopolymerization, nanotechnology, and digital education marks a fundamental transformation of the nail industry. These innovations reflect broader trends in sustainable manufacturing, smart devices, and science-driven vocational training.

Biodegradable materials challenge the long-standing dominance of persistent plastics in decorative coatings. Intelligent curing systems redefine safety standards through adaptive feedback control. Nanotechnology enables multifunctional performance without increasing chemical burden. Digital education ensures that these innovations are translated effectively into professional practice.

Together, these developments demonstrate that nail technologies are evolving into a mature applied science domain comparable to medical coatings, optical materials, and smart consumer devices.

7. Conclusion

This review demonstrates that the nail industry is undergoing a profound scientific and technological transformation. Sustainable biopolymer coatings provide high-performance alternatives to toxic persistent polymers. Intelligent UV/LED photopolymerization systems introduce adaptive safety mechanisms and personalized exposure control. Nanotechnology enhances mechanical durability, optical performance, and antimicrobial protection. Digital education platforms ensure rapid, equitable dissemination of these innovations.

The future of nail technology lies in the integration of environmental responsibility, intelligent system design, and continuous professional education. These principles collectively redefine nail services as a model of ethical innovation where aesthetics, human health, and ecological sustainability coexist.

Compliance with ethical standards

Acknowledgments

The author expresses gratitude to Iuliia Gorbacheva for her conceptual contributions to the development of eco-friendly nail coating technologies and for providing practical insights and experimental data underlying several sections of this review. These contributions significantly informed the analysis of innovative materials and safety approaches discussed in the article.

References

- [1] ISO 14855-1:2012. Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions. Geneva: International Organization for Standardization, 2012. 22 p.
- [2] ISO 2813:2014. Paints and varnishes – Determination of gloss value at 20°, 60°, 85°. Geneva: International Organization for Standardization, 2014. 14 p.
- [3] ISO 14040:2006. Environmental management – Life cycle assessment – Principles and framework. Geneva: International Organization for Standardization, 2006. 20 p.
- [4] ISO 10993-5:2009. Biological evaluation of medical devices – Part 5: Tests for in vitro cytotoxicity. Geneva: International Organization for Standardization, 2009. 34 p.
- [5] ISO/IEC 17025:2019. General requirements for the competence of testing and calibration laboratories. Geneva: International Organization for Standardization, 2019. 30 p.
- [6] IEC 62471:2006. Photobiological safety of lamps and lamp systems. Geneva: International Electrotechnical Commission, 2006. 55 p.
- [7] EN 13060:2014. Small steam sterilizers. Brussels: European Committee for Standardization, 2014. 48 p.
- [8] EN 14885:2018. Chemical disinfectants and antiseptics – Application of European standards for chemical disinfectants and antiseptics. Brussels: CEN, 2018. 42 p.
- [9] EN 13432:2000. Packaging – Requirements for packaging recoverable through composting and biodegradation – Test scheme and evaluation criteria. Brussels: European Committee for Standardization, 2000. 44 p.
- [10] IEC/ANSI IESNA RP-27 series. Recommended Practice for Photobiological Safety of Lamps & Lamp Systems. Washington, D.C.: Illuminating Engineering Society of North America, 2017. 60 p.
- [11] Regulation (EC) No 1223/2009 of the European Parliament and of the Council on cosmetic products. Official Journal of the European Union, L342, 30 Dec 2009.