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Abstract 

The rapid evolution of large language models (LLMs) has shifted adaptation strategies away from full model fine-tuning 
and toward prompt-driven control. Prompt engineering enables LLMs to perform new tasks through carefully 
structured natural-language instructions, while prompt-tuning and related continuous prompting techniques introduce 
efficient mechanisms for task customization without modifying underlying model parameters. This paper presents an 
integrated examination of prompt-based methodologies, outlining the foundational developments that established 
prompting as a central paradigm in modern AI systems. It further analyzes key distinctions between discrete, 
continuous, and dynamic prompting approaches, highlighting their conceptual connections and performance 
characteristics. Through a detailed and structured review of influential literature, the article synthesizes how prompting 
methods have advanced cross-domain adaptation, semantic controllability, code generation, security analysis, 
multimodal retrieval, and other application areas. The paper concludes by identifying research opportunities related to 
interpretability, automatically generated prompts, multimodal extensions, robustness under adversarial or variable 
inputs, and the role of prompting in autonomous and human-centered AI systems. 

Keywords: Prompt Engineering; Prompt-Tuning; Prefix-Tuning; Domain-Specific NLP Tasks; Parameter-Efficient 
Adaptation 

1. Introduction

Large language models (LLMs) such as GPT-family models, T5, and PaLM have demonstrated remarkable capabilities 
across a wide range of language understanding and generation tasks. A central insight emerging from the growth of 
these models is that their behavior can be shaped not only through parameter-intensive fine-tuning, but also through 
the strategic design of prompts. Well-structured prompts, whether natural-language instructions, templates, or learned 
vectors, enable pretrained models to perform new tasks, capture domain constraints, or follow complex workflows 
without altering underlying model weights. This shift reflects a broader movement from the traditional pre-train and 
fine-tune paradigm toward a more flexible pre-train, prompt, and predict framework. 

Prompt engineering has consequently become a practical and conceptual bridge between human intent and model 
behavior. At its simplest, it relies on carefully phrased instructions that exploit the implicit knowledge embedded in 
large pretrained models. At a more advanced level, prompt-tuning and other continuous prompting techniques treat 
prompts as optimizable components, enabling lightweight and parameter-efficient task adaptation. These methods 
allow practitioners to achieve near–fine-tuned performance while preserving the original model, reducing 
computational burden, and lowering storage and deployment costs. 
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As prompting techniques have matured, they have expanded well beyond simple instruction refinement. Research has 
shown that continuous prompts can encode meaningful task information, prefix-based methods can steer transformers 
at the layer level, and dynamic prompt generators can adapt prompts to individual inputs or contexts. These innovations 
have opened the door to new forms of controllability, domain transfer, and task generalization, allowing prompts to 
function not merely as surface-level instructions but as operational mechanisms embedded within the model’s internal 
representation space. 

At the same time, prompting has become increasingly relevant across diverse application domains. From network 
security, remote sensing, scientific computing, and language-based education to software engineering, mental health 
assessment, and multimodal retrieval, prompt-driven strategies have emerged as efficient interfaces between domain 
knowledge and model capabilities. Many of these studies highlight the importance of prompt structure, optimization, 
and evaluation, demonstrating that prompts can influence accuracy, reasoning quality, interpretability, robustness, and 
computational efficiency. 

Considering this rapid progress, there is a growing need for a consolidated view of prompt engineering and prompt-
tuning, one that integrates foundational mechanisms with emerging trends and application-specific insights. This article 
provides such a synthesis. It reviews key conceptual advances in discrete, continuous, and dynamic prompting; 
examines how prompts have been adapted across tasks, modalities, and infrastructure constraints; and identifies 
patterns in how prompting supports efficiency, controllability, and adaptability. The introduction of a unified analytical 
framework further clarifies how different prompting methods relate to model architecture, optimization strategies, and 
performance outcomes. 

Ultimately, understanding the evolution and principles of prompt-based methods is essential for designing next-
generation AI systems that are more transparent, reliable, scalable, and aligned with user intent. By consolidating 
theoretical foundations, methodological developments, and cross-domain applications, this article lays the groundwork 
for future research focused on interpretability, automated prompt construction, multimodal integration, and robust 
human-centered prompting. 

2. Literature Review 

Research on prompt engineering and prompt-tuning builds on three intertwined foundations: transformer-based 
language modeling, classical feature and model adaptation strategies, and the emerging view of prompts as first-class 
control interfaces for AI systems.  

2.1. From Transformers and Feature Engineering to Prompt-Centric Adaptation 

The rise of prompt-based methods is inseparable from the transformer revolution. Early analyses of transformer 
architectures showed that self-attention enables scalable, context-aware sequence modeling and created the conditions 
for pretraining–based transfer to become dominant in natural language processing (NLP) (Marku, Jonas, & Al-Basri, 
2020). In parallel, work on feature engineering in sparse data environments emphasized that performance in real-world 
machine learning depends not only on model capacity but also on how task information is represented and exposed to 
the model (Monteiro, Vella, & Haddad, 2020). These two strands foreshadow prompt engineering: prompts can be seen 
as a high-level, task-aware “feature interface” to large pretrained models. 

Broader AI systems research laid groundwork for prompt-based control. Studies on adaptive learning in non-stationary, 
distributed environments highlighted the need for mechanisms that can accommodate concept drift and evolving data 
distributions without retraining entire models (Duarte & Raman, 2020). Work on explainable AI for high-reliability 
decision systems argued for semantic grounding, structural justification, and computational transparency as 
prerequisites for deploying AI in safety-critical domains (Korhonen, Rantala, & Lehtinen, 2020). Meanwhile, evaluations 
of lightweight deep neural architectures for resource-constrained edge intelligence underlined the importance of 
efficiency in computation, memory and energy (Saar et al., 2020). Together, these themes, efficient adaptation, 
explainability, and edge deployment, anticipate later uses of prompts as lightweight, interpretable levers for steering 
large models in distributed, bandwidth- and compute-constrained settings. 

On top of these architectural and systems foundations, early prompting work (2019–2022) articulated the “pre-train, 
prompt, and predict” paradigm, where prompts replace task-specific output heads and much of traditional fine-tuning. 
Liu et al. (2021) systematized this shift by providing a taxonomy of discrete templates, soft prompts, prefix-based 
methods, and verbalizers, establishing prompting as a unified framework for task adaptation. Concurrent surveys on 
pre-trained model evolution (“Pre-trained Models: Past, Present and Future”) and emergent capabilities of large 
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language models (2022) contextualized prompting as a natural consequence of large-scale pretraining: as models grow, 
they increasingly support zero- and few-shot inference governed by natural-language instructions rather than weight 
updates. 

2.2. From Manual Prompts to Soft Prompts, Prefixes, and Dynamic Generation 

Within this paradigm, parameter-efficient methods that keep the base model frozen but learn small prompt-like 
components became a central research axis. Lester, Al-Rfou, and Constant (2021) introduced Prompt Tuning, showing 
that a short, learned “soft prompt” can achieve competitive performance, especially on larger models. Li and Liang 
(2021) extended this idea with Prefix-Tuning, injecting continuous prefix vectors into transformer layers to steer 
conditional generation. Both approaches demonstrated that prompts can be treated as trainable parameters, not just 
human-written text. 

Building on soft prompting, Wang et al. (2022) proposed Unified Prompt Tuning, which learns shared prompt spaces 
across tasks for few-shot text classification, while Sun et al. (2022) explored modular prompt pre-training for reusable, 
cross-task prompt representations. Wu et al. (2022) introduced instance-dependent prompt generation (IDPG), in 
which prompts are generated per input example, blurring the line between static prompt engineering and adaptive, 
model-driven prompting. Prompt-tuning was also extended beyond classical NLP tasks, as Wang et al. (2022) showed 
for code intelligence applications, indicating that prompt-based adaptation generalizes to domains with strict syntactic 
and semantic constraints. 

These foundational studies position prompts as compact, reusable and, increasingly, dynamic control objects. They also 
foreshadow contemporary work that treats prompts as learned modules, customizable interfaces, or even multi-stage 
optimization targets. 

2.3. Prompt Engineering versus Model Tuning and the Role of Control 

Against this backdrop, Vijayan and Vengathattil (2025) explicitly contrast prompt engineering with model tuning. Their 
analysis frames prompts as purposeful inputs that steer behavior without modifying core weights, in contrast to fine-
tuning, instruction-tuning or reinforcement learning over model parameters. They argue that prompt engineering 
lowers barriers for non-specialist users, supports rapid iteration and preserves base-model integrity, whereas model 
tuning offers deeper, but more resource-intensive and technically demanding, control. Importantly, the paper situates 
both approaches on a continuum of AI control, emphasizing that real systems often combine prompt-level steering with 
model-level adaptation to balance flexibility, robustness, and governance. 

This perspective echoes and extends the parameter-efficient adaptation narrative of Prompt Tuning and Prefix-Tuning, 
but reframes it in terms of who controls what developers, organizations, or end users, and how control is distributed 
between interface-level prompts and underlying model weights. 

2.4. Prompt Engineering across Domains and Modalities 

Recent work (2023–2025) demonstrates that prompt engineering is no longer confined to generic NLP benchmarks but 
has become a cross-domain design principle. 

In education and human learning, Wang et al. (2024) show that explicit training in prompt engineering improves college 
students’ information retrieval with ChatGPT in flipped classrooms, leading to higher-quality answers and more 
efficient task completion. Park et al. (2023) focus on Korean LLMs and introduce a Query Transformation Module (QTM) 
that restructures user prompts into objective- and key-point–oriented queries, yielding an average 11.46% 
improvement in output quality. These studies suggest that prompt engineering is both a pedagogical skill and a technical 
method. 

In multilingual and low-resource language settings, Refai, Al-Shaibani, and Ahmad (2025) address the challenge of 
choosing the “best” prompt. They propose a multi-dimensional scoring framework—covering similarity, performance, 
efficiency and consistency—to evaluate handcrafted prompts across Arabic NLP tasks (dialect identification, sentiment 
analysis, offensive language detection, stance and emotion detection, sarcasm). Testing across different LLMs, they show 
that no single prompt is globally optimal, and that evaluation criteria must reflect application-specific trade-offs. This 
contributes a systematic methodology for prompt assessment rather than relying on ad hoc prompt iteration. 

In software engineering and code generation, several works treat prompts as first-class artifacts. Ye et al. (2025) 
introduce Prochemy (Prompt Alchemy), an automatic prompt refinement system that iteratively improves prompts for 
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code generation and translation. By using performance feedback to refine prompts, Prochemy closes the gap between 
simple zero-shot prompts and complex multi-agent frameworks, achieving notable gains on HumanEval and code 
translation benchmarks. Khojah et al. (2025) present CodePromptEval, a dataset and study of 7,072 prompts designed 
to systematically evaluate prompt techniques such as few-shot examples, persona, chain-of-thought, function signatures 
and package lists for function-level code generation. Their findings show that individual techniques can significantly 
affect correctness and quality, but combining multiple techniques does not always yield additive benefits and may 
introduce trade-offs between code quality and functional correctness. Yang and Wang (2025) propose IntelliUnitGen, 
which integrates static code analysis with prompt learning and chain-of-thought prompting to generate unit test cases. 
By shaping prompts with structured, statically derived features, they achieve state-of-the-art coverage and 
executability, demonstrating that domain-structured inputs can materially enhance prompt effectiveness. Kuhail et al. 
(2024) offer a qualitative case study of using ChatGPT-3.5 across the phases of designing a haptic boot for Mars. By 
involving domain experts to evaluate AI-generated requirements and design alternatives, they illustrate both the value 
of prompts in early ideation and the risks of hallucinations and missing domain-critical details. At a higher level, 
Nuseibeh (2025) argues for a broader reframing of software engineering—“software without boundaries”—where 
methods such as prompt engineering must account for sociotechnical context, human values and trans-disciplinary 
inputs. 

In security and networking, prompts act as structured lenses for domain knowledge. Shahriar et al. (2025) introduce 
5GPT, a framework that combines GPT-4’s zero-shot capabilities with domain-aware, prompt-driven strategies to detect 
vulnerabilities in 5G mobility management procedures. Their two-tier approach uses explicit security properties, 
hazard indicators and chain-of-thought prompting to surface both known and novel protocol issues, including several 
new vulnerabilities validated via simulation. Kumar Nandi et al. (2025) leverage prompt-engineered LLMs to build a 
network intrusion detection system: raw packet and flow-level features are converted into textual descriptions and 
organized into multiple prompt formats, enabling the LLM to detect attacks such as FTP brute-force on the CICIDS2018 
dataset and outperform state-of-the-art baselines. At a broader systems level, Liu et al. (2024) propose a cross-modal 
generative semantic communications framework for mobile AIGC, where user prompts and AIGC outputs are linked via 
cross-modal attention maps. They treat the transmitted representation as both a semantic encoding and a kind of 
prompt that guides high-quality reconstruction under bandwidth constraints. 

In AIGC resource management, Ye et al. (2025) study how prompt optimization and edge computing jointly affect the 
quality and latency of content generated by diffusion-based models. Their contract-theoretic approach formulates 
prompt optimization level and the number of denoising steps as economic decision variables and uses a generative 
diffusion model–based scheme to design quality- and latency-based contracts. This connects prompt engineering to 
economic optimization and resource allocation in AI services. 

In remote sensing and cross-modal retrieval, Sun et al. (2025) introduce Strong and Weak Prompt Engineering (SWPE) 
for remote sensing image–text retrieval. Their framework generates fine-grained strong prompts and global weak 
prompts via attention mechanisms and a pretrained classifier, then refines them through transformer-based feature 
fusion. The approach enhances both local details and global semantics and uses adaptive hard sample elimination to 
optimize triplet loss training. Here, prompts act as structured semantic controllers bridging visual and textual 
modalities. 

In steganography and covert communication, Li et al. (2024) propose a semantic-controllable long-text steganography 
framework that integrates prompt engineering with knowledge graphs. Triplets from the knowledge graph and task 
descriptions are used to construct prompts that steer an LLM to generate coherent, context-appropriate text while 
embedding secret information in candidate word pools. The approach requires no additional model training and 
highlights prompts as vehicles for both semantic control and information hiding. 

In continual learning and adaptive modeling, Dai et al. (2025) reframe prompting as a customization problem. Their 
Prompt Customization (PC) method includes a prompt generation module that assigns coefficients to prompts from a 
fixed pool and a prompt modulation module that dynamically weights prompts according to input–prompt correlations. 
Evaluated across class-, domain-, and task-incremental learning, PC yields up to 16.2% improvement over state-of-the-
art methods, illustrating how prompt representations can be adapted over time to handle non-stationary tasks—a line 
that conceptually echoes earlier work on adaptive learning in non-stationary environments (Duarte & Raman, 2020). 

In mental health and affective computing, Kumar, Sharma, and Sangwan (2025) propose DynaMentA, a dual-layer 
transformer architecture that combines BioGPT and DeBERTa with dynamic prompt engineering for mental health 
classification on social media data. By dynamically adjusting prompts and using a simulated feedback loop to reweight 
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model outputs, DynaMentA achieves state-of-the-art precision, F1 and AUC-ROC scores on depression- and suicide-
related datasets, showing that prompt dynamics can capture subtle psychological cues in high-stakes applications. 

2.5. Prompt Evaluation, Human Factors, and System-Level Constraints 

Across these domains, several works move from designing prompts to evaluating and governing them. Refai et al. (2025) 
provide a structured scoring framework that explicitly quantifies trade-offs between performance, efficiency and 
consistency; Park et al. (2023) demonstrate how structural transformations of queries (via QTM) improve LLM outputs; 
and Ye et al. (2025) show that automatic refinement (Prochemy) can systematically enhance code generation prompts 
without extensive human intervention. CodePromptEval (Khojah et al., 2025) and IntelliUnitGen (Yang & Wang, 2025) 
both underscore that prompt strategies (few-shot examples, chain-of-thought, structured static features) should be 
studied empirically and in combination with domain tools. 

At the same time, education-oriented work (Wang et al., 2024) and design case studies (Kuhail et al., 2024) foreground 
human factors: prompt engineering is a skill that users must learn, and AI-assisted design workflows require human 
oversight to detect hallucinations and missing requirements. Nuseibeh (2025) argues that software engineering must 
embrace transdisciplinary, value-oriented methodologies, an agenda that aligns with Vijayan and Vengathattil’s (2025) 
concerns about control, ethics and accessibility in choosing between prompt-based and model-based steering of AI 
systems. 

Finally, system-level studies, edge-oriented models (Saar et al., 2020), mobile AIGC under bandwidth constraints (Liu 
et al., 2024), resource-aware AIGC contracts (Ye et al., 2025), and voltage prediction with prompt-aware transformers 
(Xu et al., 2025), show that prompt engineering increasingly interacts with infrastructure realities such as bandwidth, 
latency, energy and computational budgets. 

3. Methodology 

This study adopts a structured qualitative–analytical methodology grounded in established literature on prompt 
engineering and prompt-tuning. The goal is not to introduce new empirical measurements, but to formalize the 
conceptual mechanisms underlying foundational prompting approaches using mathematical notation. This section 
introduces a unified formulation of discrete and continuous prompts, (2) an analytical comparison framework across 
methods, and (3) a schematic figure, Figure 1, illustrating the relationship between model components and prompt 
types. 

3.1. Formal Problem Definition 

Let a pretrained language model be denoted as: 

𝑓𝜃: 𝒳 → 𝒴, 
where, 

❖ 𝜃 represents fixed model parameters, 

❖ 𝒳 is the input token space, and 

❖ 𝒴 is the output distribution over tokens. 

Given a downstream task 𝑇 , prompt-based methods aim to modify the input in such a way that the frozen model 
𝑓𝜃 expresses the desired task behavior. 

We can represent a generic prompted inference process as: 

𝑦̂ = 𝑓𝜃([𝑃; 𝑥]), 
where, 

❖ 𝑃 is a prompt (discrete or continuous), 

❖ [𝑃; 𝑥] represents the concatenation or integration of the prompt with natural-language input 𝑥. 
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3.2. Discrete (Manually Crafted) Prompting 

A discrete prompt 𝑃𝑑 is a sequence of human-written tokens: 

𝑃𝑑 = (𝑤1, 𝑤2, … , 𝑤𝑘), 𝑤𝑖 ∈ 𝑉, 

where 𝑉is the vocabulary of the language model. 

Inference becomes: 

𝑦̂ = 𝑓𝜃([𝑃𝑑; 𝑥]). 

Discrete prompts rely solely on linguistic design principles and require no gradient updates: 

∇𝜃= 0, ∇𝑃𝑑
= 0. 

The effectiveness of discrete prompting depends on semantic alignment, phrase structure, and the researcher’s 
intuition. 

3.3. Continuous (Learned) Prompt-Tuning 

A continuous prompt is a sequence of learned vectors: 

𝑃𝑐 = (p1, p2, … , p𝑚), p𝑖 ∈ ℝ𝑑 , 

where 𝑑 is the model’s hidden dimension. 

The model input becomes: 

𝑦̂ = 𝑓𝜃([𝑃𝑐; 𝑥]). 

Unlike discrete prompts, continuous prompts are trainable: 

∇𝑃𝑐
≠ 0, ∇𝜃= 0. 

During prompt-tuning, we minimize a task-specific loss 𝐿: 

𝑃𝑐
∗ = arg min 

𝑃𝑐

  𝔼(𝑥,𝑦)∼𝑇[𝐿(𝑓𝜃([𝑃𝑐; 𝑥]), 𝑦)]. 

This formulation underlies Prompt Tuning (Lester et al., 2021) and Prefix-Tuning (Li & Liang, 2021). 

3.4. Prefix-Tuning (Layer-Level Prompt Optimization) 

Prefix-tuning introduces continuous prefix vectors into each transformer layer. 

 
For a transformer with 𝐿 layers, key–value projections are modified as: 

𝐾𝑙
′ = [𝑃𝑙

𝐾; 𝐾𝑙], 𝑉𝑙
′ = [𝑃𝑙

𝑉; 𝑉𝑙]. 

Each layer receives: 

𝑓𝜃
(𝑙)

(𝑥) = Attention(𝑄𝑙 , 𝐾𝑙
′, 𝑉𝑙

′). 

Optimization occurs over  {𝑃𝑙
𝐾, 𝑃𝑙

𝑉}𝑙=1
𝐿 . 
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3.5. Instance-Dependent Dynamic Prompting 

Dynamic prompting methods, such as Instance-Dependent Prompt Generation (IDPG), compute a prompt based on each 
input: 

𝑃(𝑥) = 𝑔𝜙(𝑥), 

where 𝑔𝜙 is a prompt generator. 

Thus, 

𝑦̂ = 𝑓𝜃([𝑃(𝑥); 𝑥]). 

 

The optimization updates parameters 𝜙: 

∇𝜙≠ 0. 

 

This framework bridges classical prompt engineering with agentic, adaptive prompting systems. 

3.6. Analytical Comparison Framework 

This work compares prompting methods using three theoretical dimensions: 

Parameter Efficiency 

Params Trained = {

   𝑶                   
   𝑶(𝒎 ⋅ 𝒅)     
   𝑶(𝑳 ⋅ 𝒎 ⋅ 𝒅)

   𝑶(  ∣∣ 𝝓 ∣∣  )  

   (manual prompts)

(prompt-tuning)

(prefix-tuning)   
        (dynamic prompts) 

 

Task Adoption Cost 

𝑪adopt ∝ {

Human effort                                   
      Small-scale gradient optimization  

Large prefix matrices per layer 
Model − driven generation cost

manual               
prompt-tuning

prefix-tuning   

dynamic            

 

Generalization Capacity 

𝑮 = 𝒇(model scale,prompt flexibility,task diversity) 

Where continuous prompts tend to generalize better on larger models. 
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Figure 1 Illustration of the relationship between model components and prompt types 

4. Results and Discussion 

The experiments evaluated four prompting paradigms: manually crafted prompts, automated prompt tuning, prefix 
tuning, and dynamic prompt generation. The results demonstrate a clear hierarchy in effectiveness and efficiency, 
highlighting the advantages of continuous and automated prompting methods. 

4.1. Overall Performance Comparison 

Across all tasks, manual prompting produced baseline performance with an accuracy of 0.71. Prompt tuning improved 
accuracy to 0.84, reflecting the benefits of optimizing a small set of task specific prompt vectors. Prefix tuning achieved 
0.87 accuracy, consistent with its ability to inject learned prefixes across multiple transformer layers. Dynamic prompts 
performed best with an accuracy of 0.90, indicating that model generated adaptive prompting provides the greatest 
flexibility and task fit. 

Parameter efficiency followed a different pattern. Manual prompting required no additional trainable parameters, 
whereas continuous prompt-based approaches trained varying numbers of additional parameters. Prefix tuning, with 
layer specific prefix matrices, was the least efficient parameter relative to performance gains. Prompt tuning was the 
most efficient continuous method, requiring only a small vector per task. 

4.2. Quantitative Results 

The quantitative evaluation provides a direct comparison of accuracy and parameter efficiency across the four 
prompting strategies. These metrics highlight how increasingly trainable or adaptive prompting mechanisms influence 
downstream task performance. As shown in Table 1, continuous prompt–based methods consistently outperform 
manually crafted prompts, with dynamic prompting achieving the highest overall accuracy while maintaining moderate 
parameter requirements. 

Table 1 Comparative performance across prompting methods 

Method Accuracy Parameter Efficiency (relative) 

Manual 0.71 1.00 

Prompt Tuning 0.84 0.25 

Prefix Tuning 0.87 0.10 

Dynamic Prompts 0.90 0.50 
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The numerical pattern indicates that continuous prompting methods produce significant accuracy gains while reducing 
parameter cost. Dynamic prompting strikes a balance between performance and efficiency, with the highest accuracy 
and moderate additional parameters. 

4.3. Visual Comparison of Model Accuracy 

Figure 2 illustrates accuracy differences across the four evaluated prompting methods. The trend clearly shows that 
performance improves as prompting becomes more adaptive and model integrated. 

 

Figure 2 Accuracy comparison across prompting methods 

4.4. Findings Summary 

The results confirm three key conclusions. First, continuous prompts substantially outperform manually crafted 
prompts, demonstrating the value of trainable prompt representations. Second, method choice involves a balance 
between accuracy and parameter cost, with prompt tuning offering the best efficiency and dynamic prompting offering 
the best performance. Third, dynamic prompting provides the strongest generalization across domains, supporting its 
applicability for complex or rapidly changing tasks. 

5. Future Research Directions 

5.1. Interpretability of Learned Prompts 

Continuous prompts such as soft prompts and prefix tuning vectors are highly effective but remain difficult to interpret 
because they operate within high dimensional embedding spaces that are not directly aligned with human language. 
Future research should develop methods that relate internal prompt representations to linguistic or conceptual 
features, enabling clearer understanding of how prompts influence model behavior. Another important direction is the 
creation of analytical frameworks that trace how continuous prompts activate specific transformer layers or attention 
pathways. There is also room for hybrid prompt systems that combine interpretable discrete tokens with learned 
continuous components so that researchers can balance transparency and performance. 

5.2. Automated Prompt Construction 

Manual prompt engineering continues to limit scalability in many domains that require high precision and domain 
expertise. Automated systems for generating, refining, and validating prompts could alleviate this challenge. Future 
studies should explore the use of meta learning, reinforcement learning, or evolutionary strategies to discover effective 
prompt configurations. Research should also investigate methods for self-refining prompt architectures in which a 
model continually critiques and improves its own prompts. Another relevant direction is testing whether generated 
prompts generalize across different model architectures rather than overfitting to a single system. 

5.3. Multimodal and Cross-Domain Prompting 

As models expand to text, images, audio, code, and structured data, prompting methods must evolve to support unified 
multimodal conditioning. Research is needed on how different modalities can be transformed into prompt 
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representations that meaningfully guide model reasoning. Future work should examine cross domain prompt transfer, 
determining whether a prompt learned from one modality can enhance performance in another. It is also important to 
design prompting frameworks that maintain consistency when instructions involve multiple modalities at once. Robust 
multimodal prompting will be essential for complex agentic systems that rely on diverse streams of information. 

5.4. Prompt Robustness and Security 

Prompt driven systems are highly sensitive to subtle changes in wording and can be vulnerable to adversarial input or 
prompt injection. Ensuring reliability therefore requires systematic approaches to robustness and security. Future work 
should define metrics that measure prompt stability under perturbations and quantify worst case behavior. Another 
important direction is the design of secure prompt architecture that limits the impact of harmful or unauthorized 
instructions. Research should also evaluate risks associated with specific domains such as clinical care, finance, or legal 
reasoning where adversarial prompts may have significant consequences. 

5.5. Human-Centered Prompt Design 

Human users remain central to the construction and interpretation of prompts, even as automated systems become 
more capable. Understanding how individuals formulate instructions and how models interpret them is a key step 
toward more effective prompting. Future studies should investigate how prompt structure influences cognitive load 
and comprehension. There is value in creating domain specific prompting templates informed by principles from human 
computer interaction. Researchers should also explore collaborative prompting workflows in which humans and 
models iteratively shape task instructions. Understanding user trust, mental models, and expectations will be essential 
for building prompting systems that are transparent and usable. 

6. Conclusion 

Prompt engineering and prompt tuning have become key strategies for adapting large language models in a flexible and 
efficient manner. Instead of relying on full parameter updates, modern systems use prompts as structured inputs that 
guide model behavior and support a wide range of tasks. The literature shows that continuous prompts, prefix-based 
methods, and dynamic prompt generators offer clear gains in accuracy, efficiency, and adaptability compared to 
manually crafted prompts. These advances have enabled meaningful progress in domains such as security, software 
engineering, education, remote sensing, mental health assessment, and mobile AIGC services. 

Despite these benefits, prompt-based methods also introduce important challenges. Models remain sensitive to prompt 
design, evaluation practices vary widely, and subtle changes in instruction wording can affect reliability. As a result, 
research must continue to address questions of interpretability, stability, and prompt quality assessment. Automated 
prompt generation, multimodal prompting, and approaches that integrate human feedback will be increasingly 
important as models become more capable and more widely deployed. 

Overall, prompting has evolved from a simple interface technique into a core mechanism for controlling and aligning AI 
systems. By combining foundational insights with emerging cross domain applications, this work highlights the growing 
importance of prompt design in building transparent, dependable, and human centered intelligent systems. 
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