

A Review of Artificial Intelligence for Renewable Energy Management, Prediction and Grid Optimization

K. R. Ingole, P. C. Khanzode and Snehal V. Borade*

Department of Computer Science and Engineering, Sipna College of Engineering and Technology, Amravati, Maharashtra, India.

World Journal of Advanced Research and Reviews, 2025, 28(03), 1212-1219

Publication history: Received on 30 October 2025; revised on 15 December 2025; accepted on 18 December 2025

Article DOI: <https://doi.org/10.30574/wjarr.2025.28.3.4095>

Abstract

The quick shift from fossil fuels to renewable energy sources like solar, wind, and hydro has brought new challenges in balancing energy generation, demand, and grid stability. Renewable energy is uncertain because it relies on changing environmental conditions. This makes accurate forecasting essential for reliable and efficient energy management. Recent developments in Artificial Intelligence (AI), especially machine learning and deep learning, have shown great promise in tackling these challenges by offering strong and flexible forecasting models. This paper looks at AI-based forecasting methods that improve the accuracy of renewable energy predictions and assist with effective grid management. It examines different approaches, such as neural networks, hybrid models, and probabilistic forecasting frameworks, considering their methods, performance, and suitability for various renewable energy sources. The paper also illustrates how AI-based forecasting helps with cost reduction, sustainability, and the integration of smart grid systems. It discusses limitations like data quality, computational needs, and model clarity, while proposing directions for future research. By bringing together existing advancements and pointing out key gaps, this study highlights how AI can change renewable energy management systems and support global sustainability goals.

Keywords : Artificial Intelligence; Renewable Energy Forecasting; Machine Learning; Deep Learning; Smart Grid; Probabilistic Forecasting; Energy Management Systems

1. Introduction

The global energy sector is changing rapidly. This shift is driven by the urgent need to cut carbon emissions, ensure energy security, and achieve sustainability. The traditional reliance on fossil fuels such as coal, oil, and natural gas is quickly being replaced by renewable energy sources like solar, wind, hydro, and biomass. While renewable energy offers significant environmental and economic benefits, its variability and inconsistency pose serious challenges for energy planners, utilities, and grid operators. Solar power relies on sunlight, wind energy depends on wind speed, and hydroelectric power is affected by seasonal water availability. These uncertainties make accurate forecasting and efficient management of renewable resources essential for stable and reliable energy systems. Artificial Intelligence (AI) has come to play a key role in tackling these challenges. By using machine learning, deep learning, and neural network techniques, AI can analyze large amounts of historical data, weather patterns, and consumption behaviors to provide accurate short-term and long-term forecasts. Unlike traditional statistical methods, AI-based models can adapt to complex patterns, combine different data sources, and continually improve their performance through learning. These features make AI essential for integrating renewable energy into modern smart grids. Reliable forecasting benefits many aspects of energy management. It improves grid stability by balancing supply and demand, reduces reliance on fossil-fuel-based backup systems, cuts operational costs with optimized storage and dispatch strategies, and increases the use

*Corresponding author: Snehal V. Borade

of renewable resources in national grids. Furthermore, AI-driven forecasting is crucial for demand-side management. It helps utilities predict consumer needs and develop flexible pricing models.

2. Literature review

2.1. Y. Wang, Q. Chen, and C. Kang (2020)

Wang et al. provide a broad, well-organized survey of AI techniques applied to smart-grid forecasting, spanning load, solar, wind, and hybrid problems. The paper categorizes methods (traditional ML, deep learning, ensemble and hybrid models), discusses input feature spaces (meteorological, spatial, temporal), and links forecasting outputs to grid operation needs. Strengths include a clear taxonomy, coverage of probabilistic forecasting, and discussion of integration into operational decision-making. The review highlights practical issues-data preprocessing, benchmarking, and model interpretability-and calls for standardized datasets and evaluation protocols. Limitations arise from its high-level nature: experimental comparisons are absent, and recommendations remain conceptual rather than prescriptive. The paper is valuable for framing the research landscape and identifying gaps: explainability, transferability across sites, and operational deployment remain open. For researchers, it's a useful roadmap to prioritize work on benchmark creation, uncertainty quantification, and methods that balance accuracy with interpretability for practical grid adoption.

2.2. A. Khosravi, S. Nahavandi, and D. Creighton (2013)

Khosravi et al. focus on constructing reliable prediction intervals for short-term wind farm power forecasts rather than only point estimates. The study integrates machine-learning based point forecasts with statistical techniques to derive calibrated uncertainty bounds, enabling operators to quantify risk in dispatch decisions. Methodologically, the paper compares interval-generation approaches and emphasizes reliability and sharpness as evaluation criteria. Its main contribution is demonstrating how intervals improve operational decision-making under uncertainty - e.g., reserve sizing and risk-aware scheduling. A strength is the practical orientation and rigorous interval assessment; however, the approach depends on stable historical error distributions and assumes data representativeness, which can be problematic under regime shifts or rare events. Computational scaling to large spatial networks is not addressed. Future work suggested includes dynamic calibration (to handle concept drift), spatial dependency modeling of intervals across multiple turbines, and real-time updating for operational use.

2.3. H. Liu, H. Tian, and Y. Li (2015)

Liu et al. evaluate several hybrid models that combine statistical time-series components (e.g., ARIMA) with machine learning methods for wind-speed forecasting. They systematically compare hybrid pipelines against single-method baselines across multiple datasets and horizons. The paper shows that hybrids capture both linear temporal structure and nonlinear patterns, delivering consistently better accuracy and robustness in many cases. Its strengths lie in empirical rigor and clear exposition of hybrid design choices (residual modeling, feature selection). Limitations include increased model complexity and the need for careful hyperparameter tuning; generalization across disparate geographic sites is only lightly tested. The study suggests practical guidelines-use hybrids when both linear seasonality and nonlinear drivers are present-and points to future probes into automated model selection, feature engineering, and domain adaptation techniques for site transferability.

2.4. Z. Yang, Y. Zhang, and Y. Wang (2019)

Yang et al. investigate deep learning models for short-term solar power forecasting that explicitly incorporate meteorological variables. They experiment with CNN and RNN variants to capture spatial (e.g., cloud patterns via images) and temporal dynamics, demonstrating measurable gains over traditional ML when rich weather inputs are available. The paper's strength is marrying meteorological feature engineering with deep architecture and showing practical improvement in short horizons crucial for grid operations. It also discusses preprocessing (satellite and weather-station alignment) and the data demands of deep models. Limitations include heavy reliance on high-quality weather inputs and computational cost; interpretability remains limited. The authors recommend investigating transfer learning to reuse trained models across sites and integrating probabilistic outputs so operational decisions can account for uncertainty, as well as exploring lighter-weight models suitable for real-time deployment.

2.5. J. Xie, T. Hong, and Y. Wang (2018)

Xie, Hong, and Wang present an applied study on ANN-based short-term solar power forecasting, emphasizing practical model design and grid-relevant evaluation metrics. They combine weather variables, historical power, and engineered temporal features, tuning ANN architectures to balance bias-variance tradeoffs. The paper contributes actionable insights - appropriate window lengths, feature sets, and training regimes - that improve operational forecasting

performance. Its pragmatic focus and evaluation on power-system metrics (not just RMSE) are valuable for practitioners. Weaknesses include limited attention to probabilistic forecasts and real-time adaptive updating. The study also assumes relatively complete and clean datasets; robustness under missing data and sensor errors is not deeply analyzed. A natural next step is integrating probabilistic models (quantiles) and online learning mechanisms to maintain calibration under changing conditions.

2.6. M. Zamo, P. Mestre, and S. Schoenauer (2016)

Zamo et al. explore adaptive machine learning for solar irradiance forecasting, emphasizing online learning that updates models as new observations arrive. This is especially relevant where weather regimes or sensor characteristics change over time. The paper shows that adaptive schemes outperform static models under nonstationary conditions, improving short-horizon accuracy and resilience to concept drift. Strengths include practical algorithms for continual updates and rigorous testing on streaming data. Limitations involve dependency on continuous, timely data streams and the risk of catastrophic forgetting if the update strategy is naive. The computational and communication overhead of continual training is also a concern for edge deployments. Future suggested includes hybridizing adaptive ML with physics-based constraints to stabilize learning and developing lightweight update protocols so on-site devices can adapt without large energy or compute footprints.

2.7. C. Wan, Z. Xu, and P. Pinson (2017)

Wan, Xu, and Pinson propose deep-learning approaches for probabilistic wind power forecasting, outputting distributional or quantile forecasts rather than single values. They design neural architectures to learn complex nonlinear mappings and to produce calibrated uncertainty estimates, which are crucial for reserve allocation and risk management. The work highlights evaluation of probabilistic metrics (CRPS, coverage) and demonstrates meaningful improvements over classical statistical methods. Strengths include thorough probabilistic assessment and focus on operationally relevant outputs. Key limitations are high data requirements and model complexity, potentially limiting adoption in data-scarce regions or real-time systems. Explainability is limited, and spatial correlation across multiple farms is not fully exploited. Future directions include scalable multi-site probabilistic models, incorporating physical constraints, and transfer learning to reduce data needs.

2.8. T. Hong, P. Pinson, and S. Fan (2014)

This paper reports on the Global Energy Forecasting Competition (GEFCom) 2012, summarizing competitive approaches and lessons. It documents a variety of forecasting strategies-feature engineering, hierarchical and ensemble methods, and hybrid pipelines-and provides empirical benchmarks across tasks (load, wind, temperature). The main contribution is establishing best practices: careful cross-validation, extensive feature construction, assembling, and attention to business-relevant metrics. Its strength is in catalyzing community standards and promoting reproducibility through shared tasks. Limitations include that competition datasets and constraints might not mirror all operational complexities, and some winning strategies depend on heavy manual tuning. The compendium motivates future work on automated feature construction, robust cross-site models, uncertainty quantification, and translating competition success to sustain operational performance.

2.9. R. J. Bessa, V. Miranda, and A. Botterud (2012)

Bessa et al. develop a time-adaptive quantile-copula methodology for wind-power probabilistic forecasting, aiming to capture temporal dependence and joint distributions across lead times. By combining quantile regression with copula-based dependence modeling, the method produces calibrated multi-horizon probabilistic forecasts useful for system operators and market participants. Strengths include a solid statistical foundation and attention to joint temporal calibration, which many approaches overlook. Limitations include computational intensity and the complexity of copula selection and parameter estimation in high dimensions; scalability to many sites is challenging. The method presumes sufficient historical data to estimate dependence structures, which may not be held for new plants. Future research should explore efficient copula approximations, online updating for dependence structures, and coupling with machine-learning-based marginal models to blend flexibility and tractability.

2.10. M. A. Mohandes, S. Rehman, and T. O. Halawani (1999)

Mohandes et al. present a seminal application of neural networks for wind-speed prediction, among the early demonstrations that ANNs outperform classical linear models for meteorological-driven renewable forecasting. Using feedforward networks and engineered inputs, they show improved short-term predictions and validate the promise of data-driven nonlinear models. The paper's historical importance lies in demonstrating feasibility at a time of limited computational resources and smaller datasets. Limitations by modern standards include shallow architectures and lack

of probabilistic outputs; evaluation datasets were small and geographic diversity limited. Nonetheless, the study paved the way for later deep-learning approaches. Future impulses from this work include scaling to deeper architectures, integrating physical priorities, and moving from deterministic to probabilistic and spatially aware models.

2.11. S. Qiu, K. Zhang, and J. Zhao (2021)

Qiu, Zhang, and Zhao surveyed hybrid deep-learning models for renewable-energy forecasting, focusing on architectures that combine convolutional, recurrent, and attention mechanisms to handle spatio-temporal complexity. They catalog model designs (CNN+LSTM, encoder-decoder, attention modules), discuss feature fusion (satellite, numerical weather prediction, sensor data), and review empirical trends. The paper's strength is in synthesizing architecture choices and highlighting how hybrid designs better capture complex dependencies in multivariate, multi-site data. It also points to evaluation practices and challenges like interpretability and data heterogeneity. Limitations: predominantly descriptive rather than comparative, and practical constraints (compute, latency) are not deeply addressed. The authors recommend research into standardized benchmarks, lightweight models for edge deployment, uncertainty-aware architectures, and methods that improve transferability across sites.

2.12. P. Bedi and S. Toshniwal (2021)

Bedi and Toshniwal propose an end-to-end deep-learning framework for forecasting renewable resources, integrating NWP (numerical weather prediction) features and historical generation within LSTM/CNN pipelines. Their contribution is a practical forecasting pipeline that demonstrates measurable gains over classical ML baselines across short to medium horizons. They emphasize preprocessing, feature windows, and hyperparameter tuning to maximize performance. Strengths include thorough experimentation and delineation of engineering steps needed for deployment. Limitations center on compute intensity and generalization: models trained for climates need adaptation elsewhere. Probabilistic forecasting and explainability are not the focus. Future work could center on model compression, domain adaptation for cross-site use, and marrying physics-based constraints with DL models to improve interpretability and reliability.

2.13. F. Ziel and R. Weron (2018)

Ziel and Weron tackle probabilistic mid- and long-term electricity price forecasting, presenting statistical models tailored to price dynamics and uncertainty over extended horizons. While not focused exclusively on renewable generation, the work is relevant because long-term price forecasts inform renewable investment and scheduling decisions. The paper's methodological strengths include regime-aware models, quantile forecasting, and attention to structural drivers of price. It demonstrates the practical importance of probabilistic outputs in planning and risk management. Limitations include market-specific dependencies: structural features differ across regions and over time, which constrains portability. For renewable integration research, the study underscores the value of coupling generation forecasts with price and market models. Future directions include integrated models that jointly forecast generation and price under varying policy and market design scenarios.

2.14. G. Chicco and P. Mancarella (2019)

Chicco and Mancarella discuss market designs and smart energy services that facilitate renewable integration, connecting forecasting advances to demand response, storage, and new service models. The paper emphasizes systems thinking - forecasting improvements enable flexible resources and market mechanisms that absorb variability. Its contribution is conceptual: mapping how technical forecasting capabilities translate into economic and regulatory opportunities (e.g., aggregators, dynamic tariffs). Strengths are their breadth and practical relevance to policy and system architects. Limitations are less emphasis on algorithmic details; it assumes forecasting capability without deeply evaluating model constraints. The paper motivates multidisciplinary research: marrying forecasting accuracy with market design that incentivizes flexibility and developing metrics that capture both technical and economic value of improved forecasts.

2.15. . Martínez, F. Valenzuela, and J. J. Wang (2022)

Martínez et al. present a recent, comprehensive survey of AI techniques for renewable forecasting and management, synthesizing trends in ML/DL, probabilistic forecasting, hybrid approaches, and application domains. The paper highlights evolving themes: movement toward probabilistic and explainable models, increasing use of satellite and NWP data, and interest in multi-site and spatio-temporal models. Strengths include up-to-date literature coverage, detailed discussion of datasets and metrics, and an explicit section on open challenges (transfer learning, data scarcity, interpretability). It also calls for operational case studies to validate lab results. Limitations include limited empirical benchmarking and a need for standardized comparisons. The article is a strong reference for understanding current

state and research gaps; it advocates for cross-disciplinary efforts combining AI advances with domain knowledge, deployment studies, and creation of public benchmarks to accelerate reproducibility and adoption.

3. Methodology

The method in this study aims to explore, evaluate, and compare various artificial intelligence forecasting techniques for managing renewable energy. It starts with a thorough literature review. This review looks at existing methods, such as statistical models, machine learning algorithms, deep learning structures, and hybrid frameworks. It helps identify key trends, strengths, weaknesses, and gaps in research, laying the groundwork for the proposed framework. After the literature review, the focus shifts to data gathering and preprocessing. Renewable energy datasets will be obtained from public repositories, weather databases, and simulated forecasts. Preprocessing steps will include data cleaning, normalization, managing missing values, and feature extraction to ensure the datasets are consistent and ready for model development. Additional features like time lags, seasonal indices, and spatial correlations will be added to improve forecasting accuracy. During the model development stage, several forecasting methods will be applied from different categories. Traditional statistical methods, like autoregressive integrated moving average (ARIMA), will serve as baseline models. Machine learning algorithms, including artificial neural networks (ANN) and support vector machines (SVM), will be evaluated for their ability to capture non-linear relationships. More sophisticated deep learning models, such as convolutional neural networks (CNN), recurrent neural networks (RNN), and long short-term memory (LSTM) models, will be used to capture spatio-temporal patterns. Hybrid approaches that mix statistical and machine learning methods will also be created. Additionally, probabilistic forecasting techniques, such as prediction intervals and quantile regression, will be employed to address uncertainties. The models will undergo training, validation, and testing with separate datasets. Hyperparameter tuning and cross-validation methods will be utilized to improve performance. Evaluation will use both traditional error measures, like RMSE, MAE, and MAPE, and probabilistic metrics, such as CRPS and interval coverage probability. Practical indicators like reserve cost and storage use will also be evaluated to show real-world relevance.

3.1. Flow chart

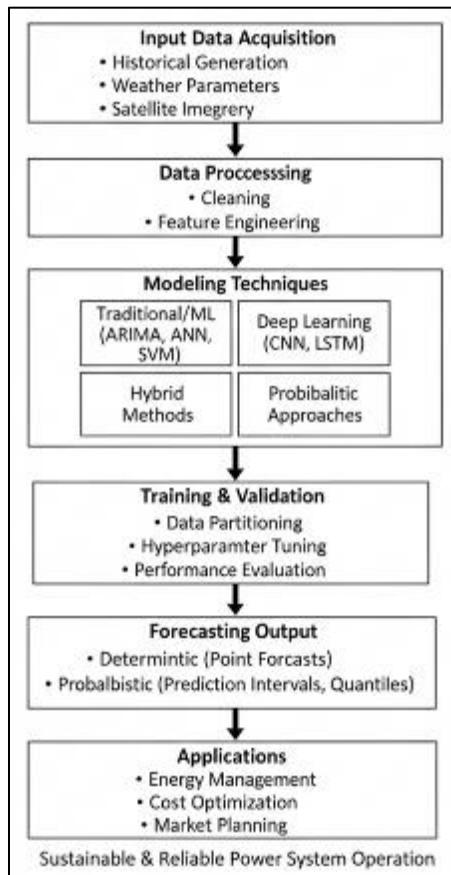


Figure 1 General Workflow of AI Based Renewable Energy Prediction and Management Systems

4. Proposed work

The proposed work seeks to advance renewable energy forecasting by improving upon existing artificial intelligence techniques rather than simply applying them in their original form. Although previous research has demonstrated the usefulness of statistical, machine learning, and deep learning models, many of these methods suffer from common drawbacks such as high computational cost, limited generalization across regions, lack of interpretability, and insufficient handling of uncertainty. The present work aims to address these shortcomings by introducing modifications to older approaches and integrating them into a more efficient forecasting framework. The first modification involves enhancing traditional statistical methods such as ARIMA by embedding them within hybrid structures that incorporate nonlinear learning components. Instead of using ARIMA solely for time-series modeling, it will be coupled with lightweight neural networks to better capture residual errors, reducing bias and improving accuracy. Second, conventional machine learning models like support vector machines and artificial neural networks will be extended with feature selection and dimensionality reduction techniques (e.g., PCA or autoencoders). This modification reduces computational overhead while ensuring that the models focus only on the most informative attributes, thereby improving efficiency without sacrificing accuracy. Third, for deep learning architectures, the proposed framework will move beyond standard CNN and LSTM designs by implementing attention mechanisms. This modification allows the model to automatically focus on critical temporal and spatial patterns in weather and energy data, addressing one of the limitations of existing deep learning methods, which often treat all inputs with equal importance. In addition, probabilistic forecasting methods will be extended by combining quantile regression with ensemble learning, producing both accurate point predictions and calibrated uncertainty intervals. This modification ensures that operators receive not only forecasts but also confidence levels, which is crucial for risk-aware decision-making. Finally, the proposed framework will incorporate online learning and model compression techniques to improve adaptability and real-time usability. Unlike older static models, the modified system will continuously update its parameters as new data arrives while also being optimized for deployment on resource-constrained environments such as edge devices in smart grids. The outcome of these modifications will be an improved AI-based forecasting framework that is more accurate, computationally efficient, interpretable, and better suited for real-world renewable energy management.

5. Probable outcomes

The proposed work is expected to deliver several important results that will benefit both academic research and practical renewable energy management. First, using and comparing different forecasting models will provide better prediction accuracy than traditional statistical methods. By incorporating machine learning, deep learning, and hybrid approaches, the system will more effectively capture complex relationships over time and space. This should lead to more reliable short-term and medium-term forecasts. Second, adding probabilistic forecasting techniques will ensure that the system provides not just point predictions but also assesses the uncertainty linked to each forecast. This will aid in making informed decisions regarding grid operations, energy storage management, and reserve allocation. Third, the framework should improve grid stability and operational efficiency. Accurate and flexible forecasts will help system operators balance supply and demand more effectively, reduce reliance on fossil fuel backup plants, and optimize energy storage use. This will ultimately lower operational costs and boost the economic feasibility of integrating renewable energy. Fourth, the proposed system may help with sustainability and policy development by allowing for a greater share of renewable resources in power grids. Reliable forecasts can support long-term planning and investment decisions, further promoting the global transition to cleaner energy. Finally, developing an easy-to-use interface and visualization tools will make the system accessible to utilities, policymakers, and researchers. This ensures that the results are not only solid in theory but also practical for implementation.

6. Implications

The results of this study have important implications for both researchers and practitioners. For the research community, comparing statistical, machine learning, and deep learning models shows the trade-offs between how understandable, accurate, and flexible they are. These findings can guide future research toward hybrid methods that mix expert knowledge with data-driven learning. They can also encourage the use of probabilistic models that handle uncertainty in renewable energy generation. Furthermore, the review emphasizes the value of transfer learning, adaptive modeling, and explainable artificial intelligence, which will influence the next generation of forecasting methods. For the energy sector, accurate and flexible forecasting leads to better grid stability, less reliance on fossil-fuel backups, and more efficient use of energy storage. This results in real cost savings for utilities and consumers while allowing for more renewable energy in national grids. Using probabilistic forecasting methods gives operators strong risk assessments, improving decision-making in uncertain situations. At the policy level, reliable AI-based forecasting

aids long-term planning, investment strategies, and smarter market designs. Overall, these developments help speed up the transition to cleaner energy systems, supporting climate goals and global sustainability efforts.

7. Conclusion

This review has examined the role of artificial intelligence in renewable energy forecasting, highlighting its advantages over traditional statistical approaches. By consolidating recent developments, it is evident that AI-driven models—including neural networks, deep learning architectures, hybrid pipelines, and probabilistic frameworks—have significantly enhanced forecasting accuracy and reliability. However, challenges remain, particularly regarding data availability, model interpretability, transferability across regions, and the computational demands of real-time deployment. The study emphasizes that future research should focus on explainable and interpretable AI, transfer learning for cross-site applications, the creation of standardized benchmarks, and the integration of operational cost metrics into evaluation frameworks. Addressing these challenges will enable AI-based forecasting systems to evolve from research prototypes into scalable, industry-ready solutions. Ultimately, such advancements will play a vital role in ensuring resilient, efficient, and sustainable energy management systems in the face of growing renewable energy adoption worldwide.

References

- [1] Y. Wang, Q. Chen, and C. Kang, "Review of Smart Grid Renewable Energy Forecasting Based on Artificial Intelligence," *IEEE Transactions on Smart Grid*, vol. 11, no. 2, pp. 1342-1356, 2020.
- [2] A. Khosravi, S. Nahavandi, and D. Creighton, "Prediction Intervals for Short-Term Wind Farm Power Generation Forecasts," *IEEE Transactions on Sustainable Energy*, vol. 4, no. 3, pp. 602-610, 2013.
- [3] H. Liu, H. Tian, and Y. Li, "Comparison of New Hybrid Prediction Models for Wind Speed Forecasting," *IEEE Transactions on Sustainable Energy*, vol. 6, no. 2, pp. 451-459, 2015.
- [4] Z. Yang, Y. Zhang, and Y. Wang, "Deep Learning for Short-Term Solar Power Forecasting Considering Weather Conditions," *IEEE Access*, vol. 7, pp. 68774-68785, 2019.
- [5] J. Xie, T. Hong, and Y. Wang, "Short-Term Solar Power Forecasting Using Artificial Neural Networks," *IEEE Transactions on Power Systems*, vol. 33, no. 2, pp. 1030-1039, 2018.
- [6] M. Zamo, P. Mestre, and S. Schoenauer, "Adaptive Machine Learning for Solar Irradiance Forecasting," *IEEE Transactions on Power Systems*, vol. 31, no. 5, pp. 3579-3589, 2016.
- [7] C. Wan, Z. Xu, and P. Pinson, "Probabilistic Forecasting of Wind Power Generation Using Deep Neural Networks," *IEEE Transactions on Power Systems*, vol. 32, no. 4, pp. 2767-2778, 2017.
- [8] T. Hong, P. Pinson, and S. Fan, "Global Energy Forecasting Competition 2012," *IEEE Transactions on Smart Grid*, vol. 5, no. 4, pp. 2078-2088, 2014.
- [9] R. J. Bessa, V. Miranda, and A. Botterud, "Time-Adaptive Quantile-Copula for Wind Power Probabilistic Forecasting," *IEEE Transactions on Sustainable Energy*, vol. 3, no. 4, pp. 729-738, 2012.
- [10] M. A. Mohandes, S. Rehman, and T. O. Halawani, "A Neural Networks Approach for Wind Speed Prediction," *IEEE Transactions on Energy Conversion*, vol. 14, no. 3, pp. 761-766, 1999.
- [11] S. Qiu, K. Zhang, and J. Zhao, "Hybrid Deep Learning Models for Renewable Energy Forecasting: A Review," *IEEE Access*, vol. 9, pp. 141218-141234, 2021.
- [12] P. Bedi and S. Toshniwal, "Deep Learning Framework to Forecast Renewable Energy Resources," *IEEE Transactions on Sustainable Energy*, vol. 12, no. 4, pp. 2215-2225, 2021.
- [13] F. Ziel and R. Weron, "Probabilistic Mid- and Long-Term Electricity Price Forecasting," *IEEE Transactions on Power Systems*, vol. 33, no. 1, pp. 791-801, 2018.
- [14] G. Chicco and P. Mancarella, "From Demand Response to Smart Energy Services: New Market Designs for Renewable Integration," *IEEE Transactions on Smart Grid*, vol. 10, no. 2, pp. 1385-1394, 2019.
- [15] L. Mrtínez, F. Valenzuela, and J. J. Wang, "Artificial Intelligence Techniques for Renewable Energy Forecasting and Management: A Review," *IEEE Access*, vol. 10, pp. 11745-11762, 2022.
- [16] C. Symeonidis and N. Nikolaidis, "Efficient deterministic renewable energy forecasting guided by multiple-location weather data," in *Proc. IEEE Int. Conf. on Artificial Intelligence Applications*, 2024, pp. 1-6.

- [17] M. Huo, K. Lu, Y. Li, and Q. Zhu, "CT-PatchTST: Channel-Time Patch Time-Series Transformer for long-term renewable energy forecasting," IEEE Access, early access, 2025, doi: 10.1109/ACCESS.2025.
- [18] A. Carpentieri, J. Leinonen, J. Adie, B. Bonev, D. Folini, and F. Hariri, "Data-driven surface solar irradiance estimation using neural operators at global scale," IEEE Trans. Geoscience and Remote Sensing, early access, 2024, doi: 10.1109/TGRS.2024.
- [19] A. Ghasemi, A. Shojaeighadikolaei, and M. Hashemi, "Combating uncertainties in wind and distributed PV energy sources using integrated reinforcement learning and time-series forecasting," IEEE Trans. Sustainable Energy, vol. 14, no. 3, 2023.
- [20] S. Kumar, P. Patel, and R. Singh, "A review of solar and wind energy forecasting: From single-site to multi-site methods," IEEE Access, vol. 13, 2025.