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Abstract 

Monitoring land use and land cover (LULC) change is crucial for analyzing the socio-economic and environmental effects 
of land development and management. This research aims to explore the dynamics of urban growth and LULC changes 
in Nakuru County, Kenya, over a decade from 2014 to 2024. Supervised Maximum Likelihood Classification (MLC), a 
popular remote-sensing technique, was utilized for the multi-temporal analysis of Landsat 8 Operational Land Imager 
(OLI) data acquired from the United States Geological Survey (USGS) Earth Explorer website. Five dominant land-cover 
classes were distinguished, including built-up areas, bare land, sparse vegetation, dense vegetation, and water bodies. 
The findings reveal that rapid urbanization and agricultural expansion are the primary forces behind LULC changes, 
resulting in significant loss of green spaces, forest cover, and water resources. These alterations have led to ecosystem 
disruption and increased environmental stress throughout Nakuru County. The results underscore the urgent need for 
sustainable land-use planning and management practices that consider the implications of urban growth. Integrating 
remote-sensing data into decision-making processes is crucial for formulating policies that effectively mitigate land 
degradation and promote environmentally sustainable urban development in rapidly expanding regions. The findings 
provide spatially explicit evidence to guide sustainable land management policies under Kenya's Vision 2030 and United 
Nations Sustainable Development Goals (SDGs 11 and 15). 

Keywords: Remote sensing; Landsat OLI; Maximum Likelihood Classification; Land use/land cover; Urban expansion; 
Sustainable land management 

1. Introduction

Land use and land cover (LULC) change is the result of complex interactions between various natural and anthropogenic 
drivers. Rapid urbanization, population growth, and agricultural intensification are some of the main factors driving 
land transformation processes such as deforestation, biodiversity loss, and soil and water degradation [1-3]. These 
cumulative impacts can lead to a decline in the resilience of natural and human systems and a reduction in the 
sustainability of livelihoods. Monitoring how land cover types change over time is critical to the conservation of natural 
resources, environmental management, and sustainable development planning. 

Remote sensing is a useful tool for detecting and monitoring LULC changes since it provides accurate, repeatable, and 
large-scale coverage over long time periods [4]. Thanks to improvements in spatial and spectral resolution, satellite 
imagery is increasingly used for mapping the spatial extent and dynamics of human-induced landscape change. Landsat 
data have been playing a critical role in environmental monitoring and research since the 1970s, providing free, 
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continuous, and multi-temporal coverage of the earth’s surface. These datasets allow comparative analyses across 
different time periods and have been used extensively to document and analyze land-cover change and its drivers across 
diverse ecosystems and socio-economic contexts [5,6]. 

Supervised Maximum Likelihood Classification (MLC) is one of the most widely used techniques for digital image 
classification [7]. MLC is a statistical method that assigns each pixel in an image to the class to which it belongs based 
on the pixel’s spectral values. The approach assumes that the training data used to create each land-cover class follows 
a normal distribution and uses these training data to calculate the likelihood of a pixel belonging to each class. MLC is 
considered to be a more robust method than unsupervised approaches such as K-Means or ISODATA and can achieve 
higher classification accuracies when provided with good training data [8]. As a result, MLC has been widely used in 
various land-change studies involving urban expansion, agricultural conversion, and habitat loss when multi-temporal 
Landsat data is available [9]. 

Many authors have used remote sensing and MLC to monitor spatial changes in both developed and developing contexts. 
Herold et al. [10] combined remote sensing with spatial modeling to assess the extent and drivers of urban expansion 
and its environmental impacts. Mohan et al. [11] found that economic and population growth in the Mangalore region 
in India between 1972 and 1999 resulted in a 145 % increase in built-up areas and a concomitant decrease in vegetation 
cover. Pérez et al. [12] used SPOT images to detect and map urban sprawl in Tunis and found the conversion of 
agricultural and forested areas into residential and industrial areas. In East Africa, Mwaniki et al. [13] used Landsat data 
to analyze deforestation in the Mau Forest Complex in Kenya and identified settlement and agricultural expansion as 
the main drivers of change in land cover. These and many other studies have shown the ability of MLC and Landsat 
imagery to provide the data and information necessary for detecting, quantifying, and understanding land-cover change 
over time. 

Nakuru County in Kenya’s Great Rift Valley is one such context. The region has experienced significant urban growth 
and agricultural intensification during the last decade, resulting in environmental challenges such as deforestation and 
loss of water quality. The built-up area around Nakuru City and other towns such as Njoro and Naivasha has increased, 
putting pressure on forests, wetlands, and water resources in the region. A key gap in the literature on Nakuru and many 
other similar Kenyan contexts, however, is the lack of spatially explicit research using rigorous statistical methods to 
quantify and characterize land-use and land-cover change. 

This study aims to use supervised Maximum Likelihood Classification on multi-temporal Landsat 8 Operational Land 
Imager (OLI) data for 2014, 2019, and 2024 to quantify and analyze land-use and land-cover change in Nakuru County, 
Kenya. The hypothesis to be tested is that LULC change in the region has been characterized by the continued expansion 
of built-up areas at the expense of vegetated and water-covered areas. The project will provide valuable insights into 
the dominant patterns and drivers of landscape change in rapidly growing urban centers in Kenya and other similar 
contexts in sub-Saharan Africa. The findings of this research will be of particular use to urban planners, environmental 
managers, and policy makers who are responsible for developing and implementing strategies for sustainable land-use 
planning and environmentally responsible urban growth. 

Objectives of the study: 

• Map and classify major LULC types in Nakuru County, Kenya, for the years 2014, 2019, and 2024. 
• Quantify the magnitude and direction of LULC change over the study period. 
• Identify the main drivers of the observed changes, with a particular focus on urban expansion and agricultural 

intensification. 
• Evaluate the environmental impacts of the observed changes on vegetation and water resources. 
• Recommend evidence-based strategies for sustainable land-use management and planning in Nakuru County.  

2. Materials and Methods 

2.1. Study Area: Nakuru County 

In the Great Rift Valley, Nakuru lies between latitudes 000 13'N and 000 10'N and longitudes 350 28'E and 350 36' E. 
Nakuru County is Kenya's 19th largest county, with an area of 7,496.5 square kilometers. All spatial datasets were 
projected to the Universal Transverse Mercator (UTM) Zone 37S coordinate system (EPSG: 32737) based on the WGS84 
datum. The county's diverse landscape includes forests, urban areas, water bodies, wetlands, and agricultural land. 
Nakuru experiences a temperate tropical highland climate with notable rainy seasons in March and April and the dry 
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seasons start in January and ends in February. It exhibits a double rainfall maxima pattern. Daytime temperature ranges 
from a high of 28°C to a low of 23°C i.e. 82°F and 73°F depending on the month. The temperature is moderated by its 
elevation of about 6,070 feet above sea level. This variation has influenced the types of land cover present in the 
county. According to the KNBS 2019 census, the county has experienced rapid urbanization, the population of Nakuru 
County, Kenya was 2,162,202(2019 census). The rapid population growth in the area has resulted to heightened 
demand for land and the clearing of the forest to create room for agricultural activities mainly growing maize, wheat, 
and potatoes. This has led to a significant change in LULC patterns over the years. 

 

Figure 1 The study area of Nakuru County, Kenya 
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2.2. Flow Chart of Methodology 

The flow chart below depicts the methodology used to achieve the results. This structured workflow provides a 
systematic approach to Land Use Land Cover classification. 

 

Figure 2 Flow Chart of Methodology. Source: Author (2024) 

2.3. Data Acquisition  

For this study, multi-temporal satellite data was used. In particular, from Landsat 8 Operational Land Imager (OLI) 
sensor for both 2014, 2019, and 2024, sourced from the United States Geological Survey (USGS) Earth Explorer platform. 
All data were acquired for Path 169/Row 060, and covered the entire extent of Nakuru County. The imagery consists of 
Landsat 8 OLI Level-2 Surface Reflectance products that have been atmospherically and radiometrically corrected by 
the USGS to be temporally consistent. The data were Level-2 products, referenced to the WGS84 datum. Both images 
offered a spatial resolution of 30 meters. The Landsat Imagery was preferred because of its high resolution, accessibility, 
and consistent data quality. Google Earth Pro will also be used to provide ground-truthing which will guide in selecting 
regions of interest (ROI) for model training. To minimize the effects of cloud cover and avoid difficulties in vegetation 
growth variations (e.g. forest and crops) on classification accuracy, the images were acquired during a dry season 
(January). Land sat8 images cover a larger area than required, to save on processing time a shape file of Nakuru County 
will be used to subset the image.  
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Figure 3 Landsat 8 images of Nakuru County from 2014, 2019, and 2024 used to assess LULC Changes over time. 
Source: USGS Earth Explorer (2024) 

2.4. Preprocessing 

For comparable and consistent imagery, the following operations were performed for finer precision otherwise Level 2 
products offer pre-corrected for 

• Geometrical Correction to have a common coordinate system (UTM Zone 37S) using GCPs. 
• Radiometric Calibration uses calibration coefficients stored in the metadata file to convert DN values into 

radiance or top-of-atmosphere reflectance. 
• Atmospheric Correction: Quick Atmospheric Correction was conducted to remove atmospheric effects, also 

called path radiance(noise). 

All preprocessed scenes were visually inspected and coregistered with sub-pixel accuracy (< 0.5 pixels) prior to 
classification. 

2.5. Classification Technique  

Maximum Likelihood Classification (MLC) algorithm was used to classify the Landsat 8 images. The land cover classes 
include five classes, i.e., Built-up Area, Bare Land, Sparse Vegetation, Dense Vegetation, and Water Surface. MLC is a 
supervised probabilistic classification algorithm, which determines the probability of the pixel belonging to the class 
with the closest spectral signature. MLC is selected as the most accurate and appropriate algorithm for multi-temporal 
classification in a heterogeneous area. All the classification was conducted using ENVI 5.6 software with preprocessed 
Level-2 Surface Reflectance images. 

2.6. Training Data Selection and Testing Sites Collection 

2.6.1. Training sites  

Training data were created in ENVI 5.6 by digitizing Regions of Interest (ROIs) representing the five LULC classes: Built-
up Area, Bare Land, Sparse Vegetation, Dense Vegetation and Water Surface. About 30 ROIs per class were collected 
from the 2014 imagery and applied consistently to the 2019 and 2024 images to maintain temporal uniformity. Training 
polygons were selected from spectrally homogeneous areas distributed across the county.2.6.2. Testing sites 
independent testing samples were obtained from high-resolution Google Earth images for accuracy assessment of the 
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classification. Approximately 30 testing points per class, randomly distributed over the entire study area, were used to 
prepare the error matrix for accuracy assessment. 

2.7. Classification Process 

Classification was executed in ENVI 5.6 through Maximum Likelihood Classification (MLC) algorithm. Pixels were 
attributed to the land-cover class with the highest probability, according to spectral statistics of the training data. 
Classified maps for the years 2014, 2019, and 2024 were generated and visually checked for class consistency and to 
remove clear misclassifications, and then used for post-classification change detection. 

 

Figure 4 Classification Process Flowchart. Source: Author (2024) 

2.8. Accuracy Assessment 

Accuracy is termed as the level of similarity between the produced and the original reference map. Accuracy assessment 
evaluates the reliability of LULC classifications by comparing produced maps to reference data using a confusion matrix, 
generating metrics like Overall Accuracy, Kappa Coefficient, Producer’s and User’s Accuracy, and omission/commission 
errors. High-resolution Google Earth imagery was used for validation. The classified maps achieved Overall Accuracies 
of 89% (2014), 90% (2019), and 92% (2024), with corresponding Kappa Coefficients of 0.81, 0.83, and 0.85, as detailed 
in Appendix A. 

3. Results  

This chapter contains the classified LULC maps for the years 2014, 2019, and 2024. This also includes the calculated 
change between the classes, and the associated environmental interpretations. The results are discussed in terms of 
urban expansion, vegetation changes, and water-resource alterations in Nakuru County. 

3.1. Classification of the Land Cover / Land Use 

The Land Cover Land Use Classification in Nakuru County is divided into five classes based on Maximum Likelihood: 
Built-up Area, Bareland, Sparse Vegetation, Dense Vegetation, and Water Surfaces. The classification was conducted 
with Envi software. About 30 training sites were collected for each class.  
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Figure 5 Land Use Land Cover Maps for 2014, 2019 and 2024. Source: Author (2024) 

3.2. Change Detection  

Post-classification change detection was conducted by cross-examining the classified images in the 2014-2019 and 
2019-2024 study periods. A change matrix was generated to quantify the transitions between different LULC categories. 
The tables below show transition matrices extracted from the thematic maps for the two study periods 2014-2019 and 
2019-2024. It reveals the changes across the land uses. These changes pinpoint transformations in urban areas, 
vegetated areas, bare land, and water bodies as indicated below: 

3.3. 2014-2019 PERIOD 

Table 1 Change Detection Statistics between 2014 and 2019 Classified Images (Landsat 8 OLI) 

Final State Water 
Surfaces 

Dense 
Vegetation 

Sparse 
Vegetation 

Built-up 
Areas 

Bare 
Surface 

Row 
Total 

Class 
Total 

Unclassified 0.000 0.000 0.000 0.276 0.000 0.000 100.000 

Water 
Surfaces 

60.052 1.375 0.731 0.274 1.052 100.000 100.000 

Dense 
Vegetation 

17.542 70.941 12.742 3.464 1.827 100.000 100.000 

Sparse 
Vegetation 

13.712 22.557 60.463 33.589 23.312 100.000 100.000 

Built-up Areas 6.069 3.302 24.426 59.149 11.687 100.000 100.000 

Bare Surface 7.105 1.820 1.639 3.248 60.122 100.000 100.000 

Class Total 100.000 100.000 100.000 100.000 100.000 - - 

Class Changes 39.948 29.059 39.537 40.081 39.878 - - 

Image 
Difference 

-30.347 6.556 11.154 22.052 -72.116 - - 

 



World Journal of Advanced Research and Reviews, 2025, 28(03), 706-716 

712 

3.4.  2019-2024 PERIOD 

Table 2 Change Detection Statistics between 2019 and 2024 Classified Images (Landsat 8 OLI, MLC Method) 

Final State Water 
Surfaces 

Dense 
Vegetation 

Sparse 
Vegetation 

Built-up 
Areas 

Bare 
Surface 

Row 
Total 

Class 
Total 

Unclassified 0.000 0.000 0.000 0.000 0.000 0.000 100.000 

Water 
Surfaces 

89.692 6.024 2.779 1.817 0.124 100.000 100.000 

Dense 
Vegetation 

2.154 63.196 14.734 5.256 4.770 100.000 100.000 

Sparse 
Vegetation 

3.147 22.508 52.133 23.126 26.140 100.000 100.000 

Built-up Areas 4.874 7.106 24.839 53.930 25.389 100.000 100.000 

Bare Surface 0.133 1.167 5.514 15.871 43.577 100.000 100.000 

Class Total 100.000 100.000 100.000 100.000 100.000 - - 

Class Changes 10.308 36.804 47.867 46.070 56.423 - - 

Image 
Difference 

48.131 -5.391 -34.823 12.436 230.870 - - 

3.5. Net Land-Use Percentage Changes (2014-2019 and 2019-2024) 

The table below reveals overall LULC shifts in percentage for the two study periods 2014-2019 and 2019-2024. 

Table 3 Net Land-Use Percentage Changes (2014–2019 and 2019–2024) 

Class 2014-2019 (%) 2019-2024(%) 

Water Surfaces -30.947 48.131 

Dense Vegetation 6.556 -5.391 

Sparse Vegetation 11.194 -34.823 

Built-Up Areas 22.052 12.436 

Bare Surface -72.116 230.87 

3.6. Graphical Comparison of LULC Changes Across the Two Periods  

The clustered comparative bar graph below highlights changes in land-use categories across two periods based on the 
net Land-Use Percentage Changes. It shows notable increases in Bare and Water Surfaces in the second period, 
contrasting with earlier declines. Built-up areas consistently increase in both periods, while Dense and Sparse 
Vegetation declines in the latter period contrasting with increases in the former.  
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Figure 6 Comparative Class Changes by Category (2014–2019 vs. 2019–2024). 

4. Discussions 

4.1. Built-up Area 

Built-up area class increased steadily over time, with a change of 22.05 % during 2014–2019 and 12.44 % between 
2019-2024. This change was attributed to a rapid development of the city driven by population and economic growth. 
This change is in line with observations from other global cities that have experienced high growth such as China and 
India, which have been attributed to globalization of cities, which are innovation and commercial centers [13]. The 
Kenya National Bureau of Statistics [26] reports that the population of Nakuru County increased by about 20 % (2.0 
million to 2.5 million) between 2009 and 2019, a change that fueled demand for land for housing and infrastructure. 
This change reduced bare surfaces and vegetated areas that were converted to the built-up class. Some of the reduction 
has also been experienced in the form of encroachment into forest areas, especially the Mau Forest Complex, which is 
the country’s key water tower [21,24]. 

4.2. Sparse Vegetation 

Sparse vegetation showed an initial gain of 11.19 % between 2014 and 2019 but was later followed by a decline of 34.82 
% between 2019 and 2024. The initial gain was attributed to the degradation of dense vegetation to semi-degraded 
class, but the later loss points to a transition of this class to the non-vegetative classes, such as urban and bare surfaces. 
This finding is in line with observations from rapidly growing urban areas such as Lagos and Cairo [16]. 

4.3. Bare Surface 

Bare surfaces were the most dynamic, showing a loss of 72.12 % during 2014-2019 and a gain of 230.87 % between 
2019 and 2024. The earlier loss is partly explained by the reversion of bare surfaces to sparse and dense vegetation, 
which was in line with some of the reforestation and tree planting initiatives. However, the larger gain between 2019 
and 2024 was indicative of an overall loss of land cover and deforestation for agricultural and urban development. This 
is in line with the documented deforestation and land degradation in global hotspots such as the Amazon Basin and 
Southeast Asia [17]. The pattern also calls for action to stem the tide of land degradation and environmental 
deterioration through improved land-use policy and implementation. 
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4.4. Dense Vegetation 

Dense vegetation experienced a net loss of 5.39 % between 2019 and 2024, mainly due to agriculture-driven 
deforestation, encroachment, and illegal settlements in forest reserves, mainly in the Mau Forest Complex [24,21]. 
Reports from Southeast Asia have also indicated loss of dense vegetation through similar processes of encroachment 
and deforestation to urban growth [12]. However, this was contrary to the earlier period of 2014-2019, which showed 
an increase, with both the bare surface and sparse vegetation afforesting to the dense vegetation class. The earlier gain 
was registered at 4.77 % for the bare surface and 14.73 % for sparse vegetation. The key driver of change in this class 
was national reforestation and tree planting policies, as well as forest conservation programs. In 2019, some 6,000 
families were evicted from Mau Forest Complex as part of the restoration initiative [24,21]. By 2021, an estimated 2,500 
hectares had been restored through a joint initiative between the Kenya Forest Service (KFS), Green Belt Movement, 
Community Forest Associations (CFAs), and other partners [20]. 

4.5. Water Surface 

Water bodies registered a decline of 30.95 % between 2014 and 2019, partly explained by the impact of deforestation 
in the Mau Forest Complex as well as increasing water demand and sedimentation from agriculture-related run-off and 
development activities. The main lakes in the county, Nakuru and Naivasha, which dominate water coverage in the 
county, showed a change in surface extent during the 2014-2019 period due to the change in land use of their 
catchments. The loss of water surface has also been linked to the changing climate and increased evapotranspiration 
rates [18]. However, between 2019 and 2024, there was an increase in water surface by 48.13 %, which coincided with 
the restoration of water bodies around the Mau Forest Complex and related water management initiatives [20,23]. This 
finding is in line with a similar trend in water surface fluctuation in other parts of Asia and sub-Saharan Africa under 
climate adaptation and forest conservation programs [15,17]. 

Recommendations and Policy Implications 

The study underscores the pressing need for holistic land-use planning to mitigate rapid urbanization and 
environmental degradation in Nakuru County. Strategic actions include:  

• Urban Planning: Implement strict land-use and zoning regulations to control unstructured urban sprawl. 
Promote compact, vertical development and integration of green infrastructure. 

• Sustainable Agriculture: Encourage agroforestry, crop rotation, and soil conservation to maintain 
productivity while minimizing deforestation. 

• Forest and Water Conservation: Strengthen reforestation and watershed restoration efforts, focusing on the 
Mau Forest Complex and Rift Valley lakes. 

• Bare Land Rehabilitation: Initiate land reclamation and afforestation programs to combat soil erosion and 
rehabilitate degraded lands. 

• Public Participation: Foster awareness and community engagement to encourage responsible land 
management practices. 

Future Research: Investigate scalable and context-specific strategies for sustainable land use and policy implementation 
across diverse ecosystems. 

5. Conclusion 

The results of the LULC for Nakuru County indicate that multi-temporal Landsat and supervised MLC techniques were 
effectively used to study LULC dynamics. The major outcome from the study was that LULC in Nakuru County changed 
rapidly over a decade. There was increased urbanization and agricultural intensification, with a decrease in vegetation 
cover. The findings also show that population and economic growth are key factors driving the land cover and land use 
change observed in Nakuru County. Thus, there is a need for integrated land use planning and sustainable land 
management to address these challenges, with a view to avoiding environmental degradation and enhancing 
sustainable urban and ecological development. 
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Appendices 

Appendix A: Classification Accuracy Assessment Result 

Table Classification Accuracy Assessment Result 

Year Class Producer’s 
Accuracy 
(%) 

User’s 
Accuracy 
(%) 

Error of 
Omission 
(%) 

Error of 
Commission 
(%) 

Overall 
Accuracy 
(%) 

Kappa 
Coefficient 

2014 Built-Up Area 82.0 81.5 18.0 18.5 89.0 0.81 
 

Agricultural 
Land 

83.5 83.0 16.5 17.0 
  

 
Bareland 81.0 80.5 19.0 19.5 

  

 
Forest and 
Thick 
Vegetation 

85.0 84.5 15.0 15.5 
  

 
Water Surface 90.0 89.5 10.0 10.5 

  

2019 Built-Up Area 83.0 82.5 17.0 17.5 90.0 0.83 
 

Agricultural 
Land 

84.5 84.0 15.5 16.0 
  

 
Bareland 82.0 81.5 18.0 18.5 

  

 
Forest and 
Thick 
Vegetation 

86.0 85.5 14.0 14.5 
  

 
Water Surface 91.0 90.5 9.0 9.5 

  

2024 Built-Up Area 85.0 84.5 15.0 15.5 92.0 0.85 
 

Agricultural 
Land 

86.5 86.0 13.5 14.0 
  

 
Bareland 83.0 82.5 17.0 17.5 

  

 
Forest and 
Thick 
Vegetation 

88.0 87.5 12.0 12.5 
  

 
Water Surface 92.0 91.5 8.0 8.5 
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