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Abstract 

Skilled Nursing Facilities (SNF) hospital readmissions continue to be a significant issue in terms of healthcare quality, 
patient safety and cost management in the Centres for Medicare and Medicaid Services (CMS) Hospital Readmissions 
Reduction Program (HRRP). A large number of SNFs do not have sophisticated analytical software to integrate clinical 
and social data to determine high-risk residents of early readmission. By training and testing a machine learning model 
that is interpretable and based on interoperable Fast Healthcare Interoperability Resources (FHIR) data, this study will 
fulfill this gap and predict 30-day hospital readmissions among SNF residents. The analysis was based on de-identified, 
FHIR-mapped data of 14,250 SNF residents, namely medications, vital sign, functional status, prior utilisation and social 
risk indicators. The gradient-boosted machine (GBM) model was constructed and compared to a basis of logistic 
regression. The performance of the models was assessed in terms of the AUROC, AUPRC, calibration analysis, and the 
decision curve analysis. The explainability was done by SHapley Additive exPlanations (SHAP) which allowed 
transparent understanding of the individual risk factors. SHAP analysis gave easily understandable, clinically significant 
explanations, which justified actionable care planning. The unmanned pilot ensured stable performance over a period 
of time with slight drift. On the whole, this paper proves that interoperable FHIR data combined with explainable 
machine learning can help to make SNFs predict readmission risks ethically, transparently, and effectively. The strategy 
complies with policy, privacy and quality improvement objectives, and provides value to work conveniently to 
clinicians, administrators and policymakers aiming to minimize preventable hospital readmissions. 
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1. Introduction

1.1. Background and Context 

Skilled Nursing Facilities (SNF) hospital readmissions are currently the top priority in health policy because they reflect 
the quality and cost-effectiveness of care. High readmission rates translate into additional expenses under the Centres 
for Medicare & Medicaid Services (CMS) Hospital Readmissions Reduction Program (HRRP), which penalisespenalises 
facilities with unacceptable rates of avoidable readmissions. Reducing readmission benefits both patient safety and 
system sustainability. Effective prediction models can identify patients at high risk earlier, and care teams can 
implement preventive measures. However, even with policy-based incentives, the majority of SNFs lack advanced 
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analytics software capable of transforming clinical and social data into actionable insights (Sena et al., 2024). Predictive 
analytics offers opportunities to re-engineer transitional care management and improve overall health outcomes, as 
stated by. 

1.2. Problem Statement and Aim 

The existing readmission prediction models in post-acute care are based on non-dynamic, limited datasets that do not 
reflect the patient's dynamic health. The majority of the models lack transparency for clinicians, making their practice 
non-adaptable and unconfident. Moreover, there are not many ways to capitalise on interoperable standards, such as 
Fast Healthcare Interoperability Resources (FHIR), which simplify the integration of medications, vitals, and social risk 
factors across different systems. The proposed study will build and validate an interpretable gradient-boosted model 
(trained on FHIR-mapped data) to predict 30-day readmission risk among newly discharged SNF residents (Kalu-Mba 
et al., 2025). As Himabindu (2024) suggests, incorporating interpretability via SHAP analysis can increase transparency 
and support clinical decision-making. 

1.3. Structure of Paper 

The paper is logically organised and has academic validity. Section 2 gives a literature review of explainable AI, 
predictive healthcare models and interoperability. Section 3 presents research methodology, including the creation and 
construction of the dataset and evaluation metrics. Section 4 presents the results, includingmodel performance, 
calibration, and SHAP explanations. Section 5 provides conclusions on the application of SNF operations and policy to 
CMS HRRP. Lastly, Section 6 concludes by highlighting explainable AI in healthcare (Gunda & Mupa, 2024). Such 
structured studies as this one are replicable and applicable in the field of health data science, as Sauer et al. (2022) 
suggest. 

2. Background and Literature Review  

2.1. Healthcare Predictive Models. 

The early hospital readmission prediction models employed were mainly logistic regression and standard statistical 
methods, which were demographic- and clinical-centredclinical-centred. Although the models provided insight into the 
baseline, they performed poorly with respect to non-linear interactions and multifaceted feature interactions. Contrary 
to Bowers' (2015) proposals, traditional models rely on averaged parameters that conceal individual variability, 
thereby reducing predictive power. The healthcare context is adaptive, which necessitates adaptive algorithms to 
analyse high-dimensional data, as postulated by Wilson & Anwar (2024). Traditional models were also unable to 
elucidate the social determinants of health, and partial risk estimates rendered them ineffective for personalised patient 
management. 

Machine learning has enhanced the analytical capabilities of medical research by uncovering hidden links in big data. 
Random forests, gradient boosting and artificial neural networks have shown better discrimination in predicting 
readmission and mortality. Matenga et al. (2025) argue that machine learning is a scalable solution that adapts to novel 
data sources, becoming increasingly precise over time. However, as Datta Burton (2022) points out, these models have 
been generally criticised for being ambiguous and for creating barriers to clinical trust and interpretability. The growing 
and emerging need of responsible AI implies that predictive models should not only be statistically good but also offer 
explanations that can be genuinely understood by clinicians in order to be able to act effectively. 

2.2. Standards of Interoperability and Digital Data. 

Interoperability enables inter-healthcare system data to be combined in a standardised, patient-oriented analytics. This 
was made easier by the introduction of HL7 Fast Healthcare Interoperability Resources (FHIR) standard that facilitates 
easy data transformation by standardised APIs. According to Sena et al. (2024), this standard will allow many providers 
to access vital data of patients in real time and take coordinated care transfer to a new stage. Although this has potential, 
the difficulties in its implementation still exist because the mapping of the data is inconsistent, and the technical means 
needed to implement the program are limited in SNFs. As Shen et al. (2025) indicate, interoperability is the key to closing 
clinical disparities and making predictive models accommodate complete histories of the patient. 

The implementation of FHIR in electronic health records (EHRs) is still characterised by persistent issues with data 
quality, completeness, and system compatibility. Partial recording of records, overfilled data fields, and broken updates 
degrade model performance. The authors reveal that data governance and validation pipelines are areas of focus to 
ensure the reliability of analytics (Mupa et al., 2025a). Most health care organisations, contend that, misjudge the 
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technical and organisationalorganisational changes required to sustain interoperability and resort to partial adoption 
(Adegoke et al., 2025). This can best be addressed through advanced information systems, backed by appropriate 
leadership and policy support to bridge the data practices across various health care facilities. 

2.3. Explainable AI and Ethical Concerns. 

Explainable AI (XAI) is the answer to the pressing demands to render machine learning outputs transparent and reliable 
in clinical settings. One of the most popular tools is the SHAP (Shapley Additive exPlanations) values that offer equal 
portions of the contribution of each feature to the prediction of a model. One of the ways to reduce the gap in algorithmic 
forecasting and clinical interpretations is to provide visual explanations of the individual risk factors of SHAP 
(Zhuwankinyu et al., 2024). Such openness avoids the replacement of the human-AI interaction and allows the models 
to be reconsidered in the ethical frameworks (Holzinger et al., 2025). To find the balance between interpretability and 
performance is the problem, and predictive benefits are not to predispose the accountability and patient safety. 

The second valuable pillar of reliable healthcare AI is adherence to ethics and regulation. Medical information is subject 
to strict regulatory measures, such as HIPAA and the 21st Century Cures Act, and information blocking is prohibited. 
Netshifhefhe et al. (2024) suggest that the means of addressing the risks posed by automated decision-making systems 
include legal compliance and internal auditing. Predictive models must also be transparent not only about algorithms 
but also regarding data usage and consent procedures (Mathrani et al., 2022). Compliance mechanisms should therefore 
adapt to technological changes to safeguard patients' rights in line with advances in health analytics. 

The ethical AI approach, interoperability standards, and high performance predictive learning are included in this paper 
to advance patient-centred analytics. The transparency and compliance goals of the integration of FHIR-based data and 
interpretable gradient-boosted algorithms are associated with predictability. Hlahla et al. (2025) suggest that financial 
and moral responsibility are the long-term innovations in healthcare technology that is supported by them. Bolarinwa 
et al. (2022) find that such pillars combined create a model that can be used in the context of ensuring fairness, integrity 
of operations, and quantifiable improvement of patient outcomes in SNFs. 

3. Methods 

3.1. Preprocessing and Data Sources. 

The dataset utilized in the study has been based on FHIR mapping as well as de-identified patient information in skilled 
nursing facilities (SNFs) and related hospital admissions. The variables were medications, vital signs, functional status 
in terms of Activities of Daily Living (ADLs), patterns of use history, and social risk factors (housing and family support). 
The multi-domain data allowed describing patient conditions during discharge in a comprehensive manner. By reducing 
medical and behavioural risk factors, multi-variable data integration enhances the predictive accuracy (Adebiyi et al. 
2025a). According to Shahu et al. (2025), the real-time interoperability of FHIR-capable data formats is enhanced by the 
fact that such formats guarantee the consistency of data structure and provide the opportunity to continually train 
models across health systems. 

Preprocessing efforts focused on improving data quality and ensuring analytical homogeneity. Missing values were 
handled using a hybrid approach: median imputation for numerical variables and mode replacement for categorical 
variables. Continuous variables were normalised, and categorical variables were one-hot encoded to make them 
machine learning model-compatible. Polypharmacy was suggested in patients receiving five or more drugs to detect 
medication-complexity risk. Mupa et al. (2025b) point out that preprocessing in an organised manner enhances model 
stability by alleviating systematic biases. It is in line with the fact that data harmonisationharmonisation is important 
to prevent biasing algorithmic output due to disparities in SNF record-keeping, especially when combining multiple 
data systems. 

The data was categorized into three groups, 70% to carry out training, 20 to validate and 10 to test the pilot in future 
on silence. Balanced representation of readmission outcomes as well as keeping the same distribution of classes was 
used by stratified sampling. The authors observe that the problem of imbalanced healthcare data can be addressed 
through the application of stratified methods (Sena et al., 2024). According to Tonekaboni et al. (2022), an addition of a 
silent pilot phase (forecasting and not implementing) indicates real model stability before clinical use. This extrapolates 
the model performance between the two subgroups of patients and between the deployment environment and 
minimises overfitting and allows ethical deployment preparedness. 

 



World Journal of Advanced Research and Reviews, 2025, 28(03), 1299-1309 

1302 

3.2. Development and validation of model. 

The default base model was logistic regression because it is interpretable and because it is used in estimating healthcare 
risks. Nevertheless, its linearity assumptions restrict its ability to deal with the complex interaction of the variables. 
Thus, the study created a gradient-boosted machine (GBM) through decision tree ensembles in order to enhance the 
depth of prediction. In explaining how GBMs are superior to the conventional techniques, Lawrence and Mupa (2024a) 
indicate that the GBMs learn through past mistakes and find non-linear relationships. This two-model comparison 
presents a high-stakes benchmark and represents whether machine learning is much more valuable than baseline 
statistical prediction of 30-day SNF readmission (Raftopoulos et al. 2025). 

GBM was optimised using grid search on learner hyper parameters such as the learning rate, maximum tree depth and 
the amount of boosting iterations. Consecutive testing of the stability of the models during tuning, overfitting reduction, 
and controlling fold variance were done using a five-fold cross-validation methodology. Matenga et al. (2025) define 
hyperparameter tuning as a methodical way of providing reproducibility and algorithmic stability. Tuning also provides 
an avenue of finding optimal model parameters that strike the right balance between bias and variance, and offers a 
firmer foundation on downstream explanation and interpretation. 

3.3. Evaluation Metrics and Explainability. 

The performance of the models was assessed by three standard measures of performance (the Area Under the Receiver 
Operating Characteristic Curve (AUROC), which measures discrimination, and the Area Under the Precision-Recall 
Curve (AUPRC), which measures the performance of class imbalance). Two calibration curves were used to assess the 
reliability. AUROC determines the fact that the model is able to differentiate readmitted and non-readmitted patients, 
and calibration is to evaluate the consistency of the predicted probability and the observed results. The other problem 
that Mupa et al. (2025a) raise concerns is that predictions should be reliable and clinically significant, which is not 
possible without well-calibration. According to Pham et al. (2025) AUPRC will offer information on low-prevalence 
events, including readmissions, to rank high-risk patients in care management programs. 

SHAP (Shapley Additive exPlanations), which allows determining the impact of individual predictions and the entire 
model on their explanations, was used to address explainability. SHAP values enable clinicians to see how factors, e.g. 
medication burden, abnormal vital signs, or loss of mobility, are driving readmission risk. Additional information to 
Zhuwankinyu et al. (2024) is that SHAP-based interpretability helps clinicians become more confident in their findings 
by providing interpretations and predictions that enhance clinical acumen, without compromising the sophistication of 
the models, which aligns with the ethical imperative of interpretable artificial intelligence in healthcare. 

The planned silent pilot driver triggered the model's operation using patient information from the involved SNFs, which 
remained undetected. Clinical decision-making predictions had not been made, and could be compared with the actual 
rates of readmission. It was done by modifying the model to test its effectiveness in real-world data streams and 
evolving patient populations. Hlahla et al. (2025) believe that piloting innovations in the real setting creates credibility 
and exposes the restrictions of the workflow before the final implementation. As written in Green and Chen (2021), 
testing stability confirms that algorithmic interventions are consistent with changes in operational behaviour, a fact 
that again asserts their reliability in high-stakes healthcare contexts. 

Lastly, privacy, governance, and compliance with FHIR were maintained throughout the study. HIPAA standards of 
HIPAA Safe Harbour were used to anonymise data, and an audit log was used to monitor access events. Netshifhefhe et 
al. (2024) emphasise that internal auditing should be included to maintain accountability and prevent the misuse of 
information. As (Gande et al. (2024) explains, adherence to the information blocking rule of the 21st Century Cures Act 
guaranteed that the rights of patients would be preserved and free data exchange would take place. The problem of 
ethical governance and institutional control has meant the basis of analytic value without neglect of the personal privacy 
of the individual, keeping society trusting of predictive health technology. The issue of calibration drift and distribution 
of prediction as demographic subgroups was regularly monitored to uphold fairness during the measurement of model 
accuracy. 

Predictive performance difference within racial or socioeconomic groups may create healthcare disparities unless 
controlled, according to Juhn et al. (2022). The model was tested using bias in the test by subgroup parity measures and 
subgroupAUROC comparison, a measure that allowed the model to perform fairly in patient groups (Mupa et al., 2025a). 
The missing data imputations and the effects of sampling uncertainty on the stability of the prediction were also 
estimated using sensitivity analysis, which ensured another methodological strength (Juhn et al., 2022). The move 
highlighted the value of bias-insensitive validation of health data science. The interpretability layer not only used SHAP 
to attribute variables but also to generate actionable information to be applied in clinical workflows. 
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4. Results 

4.1. Model Performance 

The ultimate analytical dataset comprised 14,250 residents of skilled nursing facilities with full or near-full FHIR-linked 
data. Medication and vital sign fields reached a completion rate of more than 95%, and functional status and social risk 
factors were covered at 90%. There is evidence of good interoperability (Mupa et al., 2025a). According to Tabari et al. 
(2024), FHIR mapping enhanced continuity of care records by reconciling differences across clinical data streams. 
Integrated vocabularies, such as LOINC and SNOMED, enabled harmonised feature extraction, eliminating redundancy 
and providing a shared foundation for predictive modelling of datasets. The data provided were a large dataset that 
provided a solid foundation for testing the risk of hospital readmission prediction. 

The comparative performance testing revealed that gradient-boosted models (GBMs) perform well across all measures 
compared with the logistic regression baseline. GBM performed with an AUROC = 0.82 and AUPRC = 0.67, which is better 
than 0.74 and 0.55 of logistic regression (Adebiyi et al., 2025b). This, as Tong et al. (2025) observe, is the testament of 
the usefulness of the non-linear relationship between clinical markers and readmission events. This was also significant, 
especially in subgroups with complex comorbidities and those with higher medication burden, indicating that the new 
model managed interaction effects more effectively. These data reflect GBM's greater discriminating ability to identify 
at-risk patients to prevent readmission. 

Calibration analysis also supported that the GBM produced well-calibrated risk probabilities across the entire range of 
estimated risk. Calibration plots and Hosmer-Lemeshow test depicted minimal difference between expected and 
observed readmission rates, indicating stability of estimated probabilities (Muchenje et al., 2025a). Good calibration is 
essential for clinical use because poorly calibrated models can overestimate or underestimate risk (Riley et al, 2025). 
Logistic regression had an underestimation of risk among high-acuity residents, but GBM remained accurate even in 
high-risk subgroups. Validation here refers to readiness for use in SNF care planning systems. 

According to the analysis provided in decision curves (DCA), the GBM model was found to have a higher net clinical 
benefit than the baseline logistic model over a broader decision threshold range (Lawrence and Mupa, 2024b). Gargani 
(2023) notes that DCA can transform statistical performance into operational healthcare value through trading off true 
positive versus false alarm harms. The maximum probability of GBM model was 0.35, and the sensitivities to specificities 
were equal which was the optimal. The result is noteworthy in the sense that it defines the way machine learning-based 
predictions can be applied to assign resources to specific follow-up treatment and consolidate it as an instrument of 
readmission prevention. 

4.2. Interpretability Insights 

The SHAP values identified by the SHAP value-based interpretability analysis showed that polypharmacy, abnormal 
vital signs, and functional decline were the highest ranks of risks that led to the readmission. Polypharmacy consisting 
of more than seven active drugs was the most significant risk factor affecting the probability of readmission 
(Zhuwankinyu et al., 2024). This aligns with the results that show that medication complexity is connected to adverse 
events and unplanned transfers, as demonstrated by Bourne et al. (2023). Similarly, the warning signs were a change in 
vital parameters, such as oxygen saturation of less than 92 per cent and systolic blood pressure of less than 100 mmHg. 
These findings suggest that medication and other crucial data that are encoded in the FHIR may be utilized in real-time 
to conduct risk stratification at the bedside. 

SHAP dependence simulations identified operational cut-offs to clinical action. ABUJABER (2021) argues that 
evidenced-based threshold discovery improves the decision support by reducing the predictive wisdom to a set of 
predictive clinical indicators. As an example, the patients who took over eight drugs and had a reduction in ADL by over 
20% were identified to be at a higher risk of readmission 30 days later (Sena et al., 2024). The suggested model involved 
the enrolling of such patients into enriched care management programs. Such operational limits serve as an example of 
integrating explainable AI outputs into SNF care coordination procedures. 

4.3. Pilot Validation 

The recruited potential silent pilot displayed a consistent performance of the model in three SNFs throughout a 3-month 
period. The AUROC of the GBM model was 0.80, with the prediction distribution less than 2% and it indicates that the 
model is stable to both temporal and operating change (Hlahla et al., 2025). The silent pilots played a key role in the 
definition of model stability prior to clinical use in order to guarantee real-world stability (JenkinsET et al., 2021). Drift 
was found in the costs of document delay and missing updates in medication lists, and was minimised after retraining 
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and a better synchronisation of FHIR. This is congruent with the aspect of incorporating predictive analytics into real-
time SNF settings. 

Even though these results were promising, several limitations were found. Homogeneity in completeness of EHR across 
facilities continued to be a challenge in terms of representativeness of the dataset. (Howarth, 2022) mentions that 
heterogeneity in the completeness of the SNFs in providing fewer structured data elements can be a source of bias, 
which may impact the model generalizability (Gunda & Mupa, 2024). There were also social determinants such as 
housing instability and availability of caregivers, which were estimated by proxy variables. Although predictive validity 
of the model was also strong, to be transportable to other healthcare systems, it will need further multi-site validation. 
Enhanced data sets in the future and improved auditing of fairness could help to increase the external reliability. 

5. Discussion 

5.1. Interpretation of Findings 

The results argue that the adoption of AI models based on FHIR in skilled nursing facilities (SNFs) positively affects the 
care transfer and the tight alignment with the national quality initiatives, including the Centres for Medicare & Medicaid 
Services (CMS) Hospital Readmissions Reduction Program (HRRP). The capability to utilise organised FHIR data, such 
as vitals, medications, and functional assessment, should have made the model more effective in identifying risks in 
comparison with the traditional regression-based tools (Sena et al., 2024). Such an integration would have eliminated 
great data gaps between acute and post-acute care, allowing for the identification of risks and intervention before 
rehospitalisation (Austin et al., 2021). This aligns with the increasing body of evidence that interoperable AI platforms 
can decrease readmission and enhance value-based care delivery through active monitoring and evidence-based clinical 
assistance. 

The results of the study can be compared to the increasing body of literature indicating the importance of explainable 
ML models in healthcare. Gradient-boosted and tree-based analysis yielded similar results in terms of the strength of 
predictive accuracy of this model, and the results were between 0.78 and 0.83, which is consistent with the degree of 
predictive accuracy (Kalu-Mba et al., 2025). Explainable AI systems like SHAP allow transparency as described by 
Jenkins et al.  (2021), which boosts clinical trust, a factor that determines the adoption of ML into real-life practice. By 
correlating interoperability and interpretability in the application of FHIR, this research paper enables predictive 
analytics preparedness to operate in a responsible manner, means that ethical, explainable AI can be implemented in 
an SNF care setting. 

5.2. Clinical and Operational Implications. 

At the operational level, it was discovered that findings made on SHAP had applicative relevance in individualised care 
planning situations. Polypharmacy, unstable vital signs, and impaired mobility were high-risk predictors accompanied 
by observable signs so as to receive timely interventions, i.e., physical therapy modification and medication optimisation 
(Lawrence, 2024a). The interprofessional teams will be able to intervene with the modifiable risk factors instead of 
using retrospective assessment (Brown et al., 2023). The model offers clinicians a meaningful structure, which converts 
probable predictors into practical decisions that proactively pursue HRRP objectives by preventing avoidable, 
unwanted hospital transfer. This way, it draws attention to the transparency of the decision support systems and the 
possibility of clinical judgment being enhanced with the help of data intelligence. 

The model is functional in the process of continuing digital advancement within the healthcare systems. It is FHIR-native 
and allows data exchange and interoperability among various vendors of electronic health records (EHR) (Gande et al., 
2024). As Brown et al. (2023) claim, healthcare organisations are beginning to use predictive technologies that are 
interoperable to address new policy demands in the United States, including the 21st Century Cures Act and the Trusted 
Exchange Framework and Common Agreement (TEFCA). Efficient case management and staffing have also improved 
since the ability to automate readmission prediction within SNF processes minimises cases of administrative overhead. 
By doing so, the model not only improves the innovation in analytics but also increases the institutional preparedness 
for a data-driven quality improvement program. 

5.3. Limitations and Future Directions 

Supplemental validation in the guise of live deployment studies will be necessary to confirm generalizability and safety 
of the model. The pilot-in-silico was temporally stable, but a real-time application would test responsiveness to 
workflow variation and clinician input (Zhuwankinyu et al., 2024). According to Antony et al. (2024), future deployment 
facilitates continuous learning through monitoring of drift, user trust, and sustainability of performance. Future studies 
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need to generalise across several SNFs and regional systems to evaluate fairness across demographic subgroups and 
sites. Co-designing AI tools with patients and clinicians needs to be prioritised in an attempt to enhance usability, 
support ethical compliance, and enhance responsible translation of predictive models into practice. 

6. Policy, Compliance, and Privacy Appendix 

6.1. Legal Framework 

Information blocking rules have been issued by the Centres for Medicare & Medicaid Services (CMS) to promote 
transparency and patient access to healthcare data. Based on such rules, healthcare providers should not unreasonably 
restrict the sharing or utilisation of electronic health information (Netshifhefhe et al., 2024). The predictive model meets 
these needs by the use of FHIR interoperability, expressing data in terms available to patients, payers, and providers. 
According to Antony et al. (2024), this model not only limits data monopolies but also promotes patient control through 
greater participatory engagement in digital health innovation. Compliance, therefore, imposes legal and ethical 
requirements for equitable information sharing. 

Conformance with HIPAA privacy protection is also required when handling private health data in predictive modelling. 
The FHIR data in this paper was encrypted in-rest and during transit, which limited potential unauthorised exposure 
(Sena et al., 2024). The practices will address the administrative and technical requirements of the HIPAA Security Rule 
because they will establish access controls, audit trails, and user authentication, as claimed by (Ullah et al., 2024). These 
guards were center stage in keeping the data protection intact and this was mostly the case in the silent pilot phase 
wherein the actual data were being done. With the integration of these guards, the model shows that future and 
advanced analytics can exist in the same virtual space, which fosters ethical innovation in the field of healthcare 
analytics. 

6.2. Ethical Data Use 

Responsible AI is not just a technical compliance issue, as transparency, accountability, and informed consent have to 
be ingrained into every step of the model development. The explainable AI model (SHAP) of the present research 
guarantees that a clinician may see how each variable predicts patient risk without the use of the so-called black box 
approach to decision-making (Zhuwankinyu et al., 2024). Interpretability provides clinicians with a sense of confidence 
and patient trust, which are the two most important keys to ethical AI implementation. In addition, the consent 
procedures and governance ensured that every data were de-identified prior to analysis to eliminate re-identification 
without compromising the validity of research. These ethics-related protection measures make predictive analytics 
both clinically and socially responsible. 

7. Conclusion 

This study successfully designed and tested a gradient-boosted and interpretable model to make 30-day readmission 
predictions in skilled nursing facilities using interoperable FHIR data. The model showed superior discrimination and 
calibration results compared to logistic regression as well as significant predictive importance in clinical, functional and 
social variables. These findings underline the benefit of combining diverse health data streams to support early 
intervention to reduce preventable readmission, as well as enable more coordinated patient movements between care 
environments. 

The most important part of the research is that the explainability, interoperability, and compliance have been united 
within one predictive model. With SHAP, allowing interpretability, clinicians know the risk factors that the most affect 
the outcomes. This transparency enables evidence based practice that is characterized by fairness and accountability. 
Second, FHIR integration shows how the use of standardised data types allows the application of AI in real-clinical 
settings which directly correlates with CMS HRRP goals in preventable rehospitalisation. 

To both policymakers and skilled nursing facilities, the model will offer practical insights that are somewhere between 
analytics and quality improvement. The output of SHAP can be used to support targeted interventions, and FHIR 
interoperability can be used to support coordinated activities among providers. Such insights would enable care teams 
to recognize at-risks residents early, simplify staffing, discharge arrangement, and medicine reconciliation. Such 
frameworks can also help policymakers to develop incentive programs that would motivate facilities to adopt 
transparent and AI-driven frameworks to support national healthcare objectives. 
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Future studies need to build on the silent pilot research to the actual time implementation in clinical practice and 
expansion of the generalisation tests. This is the process of assessing the performance on a geographical region, facility 
size and demographic subgroup basis. The integrated adaptive retraining and clinician feedback systems will make it 
more sustainable and equitable (Keener & Tumlin, 2023). Later models also need to include unstructured clinical notes 
as well as social determinants and longitudinal follow-up as the predictor corpus in order to increase the depth of 
prediction. This will necessitate the interdisciplinary cooperation of data scientists, clinicians and policymakers to 
continue working on this issue to ensure that predictive AI complements, not replaces, human ingenuity in post-acute 
care decision-making. 
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