

A Study on The Determination of The Effects of Salicylic Acid, Ascorbic Acid and Different Salt Concentrations on The Germination of Fodder Pea (*Pisum sativum ssp. arvense L.*) Plants at Various Salt Concentrations

Cenk PAŞA ^{1,*} and İlker NİZAM ²

¹ Department of Plant and Animal Production, Medicinal and Aromatic Plant Programme, Altınoluk Vocational School, Balıkesir University, Edremit, Balıkesir, Türkiye.

² Namık Kemal University, Faculty of Agriculture, Field Crops Department, Tekirdağ, Türkiye.

World Journal of Advanced Research and Reviews, 2025, 28(03), 1753-1760

Publication history: Received on 15 October 2025; revised on 23 December 2025; accepted on 26 December 2025

Article DOI: <https://doi.org/10.30574/wjarr.2025.28.3.3936>

Abstract

This study aimed to investigate the effects of ascorbic acid (AsA) and salicylic acid (SA) on the germination and early seedling growth of fodder pea (*Pisum sativum ssp. arvense L.*) under various salt (NaCl) concentrations. Four concentrations of both SA and AsA (0, 50, 100, and 150 mM) were applied under four different NaCl concentrations (0, 50, 100, and 150 mM). Key parameters such as germination time (days), root length (cm), hypocotyl length (cm), and germination rate (%) were evaluated. The results indicated that increased salt concentrations negatively impacted germination. However, applications of 50 mM and 100 mM AsA and SA demonstrated positive effects on the measured parameters. It was concluded that optimal applications of AsA and SA can positively influence fodder pea germination under saline conditions.

Keywords: *Pisum sativum ssp. arvense L.*; Salicylic acid; Ascorbic acid; NaCl

1. Introduction

A valuable fodder plant from the legume family, the fodder pea (*Pisum sativum ssp. arvense L.*) is extremely productive, very adaptable, and capable of fixing nitrogen to the soil. It also leaves a clean field for subsequent plants (Timurağaoğlu ve ark., 2004; Uzun ve ark., 2012; Kadıoğlu ve Tan, 2018; Temel ve Yazıcı, 2021; Dumanoglu ve ark., 2021). An annual, cool-season forage crop, fodder pea is used for hay, grain feed, silage, pasture, and green manure (Manga et al., 2003; Acıkbaba et al., 2021). Seed production is carried out to meet both the production material needs and the concentrated feed needs of animals (Sayar, 2021). When harvested at the appropriate time, it is a forage crop with high forage yield and quality. Fodder pea, which grows taller and develops green parts compared to table pea, generally has pink flowers. However, as with table pea, white-flowered varieties are also available.

The environmental stressor known as salinity stress is a member of the chemical stress group that impacts plants under cultivation. Numerous negative effects result from the excessive salt content of the growing environment (Kara et al., 2019). According to Orcutt and Nilsen (2000), these negative effects include oxidative stress, osmotic incompatibility, water intake imbalance, membrane dysfunction, enzyme activation issues, nutritional imbalance, general metabolic process abnormalities, and overall developmental failure.

Some studies have shown that external applications of calcium, potassium, or phosphorus to plants under salt stress compete with sodium in the plant's roots and leaves, reducing its uptake. The plant's capacity to tolerate stress rises as

* Corresponding author: Cenk PAŞA

its levels of these ions climb to a level where it can do so (Hasegawa and Bressan, 2000; Kaya et al., 2001; Kaya and Higgs, 2003).

Applying salicylic acid has been shown to promote seed germination at both high and low temperatures (Korkmaz, 2005; Özden and Kutbay, 2008; Ekin et al. 2011). According to Rivas-San Vicente and Plasencia (2011), salicylic acid is a phenolic molecule that functions as a phytohormone and helps regulate a number of growth and development stages, such as photosynthesis, respiration, flowering, and senescence, of which germination is an essential component. Numerous studies have demonstrated that the effects of salinity on plants can be mitigated by using salicylic acid as a priming therapy (Jini and Joseph, 2017; Anaya et al. 2018).

Ascorbic acid increases the amount of nutrients and water available to plants under salt stress by regulating plant metabolism and development (Torlak 2019). Another strategy to lessen the detrimental effects of salt stress on plants is to use non-enzymatic antioxidant molecules, such as ascorbic acid (Khan et al. 2006).

The purpose of this study was to ascertain the effects of applying salicylic and ascorbic acids on the germination of fodder pea seeds at varying salinity levels.

2. Materials and methods

The study was carried out in 2023 at the Medicinal and Aromatic Plants Laboratory of Balıkesir University Altınoluk Vocational School. Seeds of *Pisum arvense* L. were employed as plant material. In the study, two different priming applications (SA) and (AsA), four distinct concentrations (0, 50, 100, and 150 mM) NaCl and priming application were taken into consideration.

Salt stress was induced using analytical grade NaCl. The seeds were surface sterilized in a 5% sodium hypochlorite solution for ten minutes prior to germination (Uyanık et al., 2014). According to Nazarian (2016), seeds that had been surface sterilized were held in varying concentrations of SA solutions for 12 hours in order to prime them. After that, they were dried on drying papers at room temperature for 24 hours in order to restore their original moisture content (Paşa and Yardan, 2024a).

Following these treatments, the seeds were sown in petri plates at a temperature of 20 ± 1 °C. Seeds were first deemed viable based on ISTA (1996) guidelines. Four-by-twenty-five seeds were germination tested for fourteen days in petri dishes sandwiched between two layers of blotting paper (ISTA, 1996).

The following parameters were measured: average germination time (days), root length (cm), hypocotyl length (cm), germination power (%), germination rate (%), and germination index (%). By dividing the total number of sowed seeds by the number of germinated seeds acquired on the 7th and 14th days, germination power and germination rate were calculated (Akıncı and Çalışkan, 2010; Paşa and Yardan, 2024b).

The TARIŞT statistical tool was used to statistically examine the experiment's data. The means were compared using the LSD test.

3. Results

3.1. The Effect of Ascorbic Acid on Germination Rate

According to the study, the germination rate of fodder pea seeds in varying concentrations of NaCl solution should be analyzed at the 5 % significance level in order to determine the differences between salt doses, ascorbic acid doses, and the Salt x AsA interaction (Table 1).

When the averages of salt concentrations were examined, the highest germination rate was 98.50 % in 0 mM NaCl, and the lowest germination rate was 82.00 % in 150 mM NaCl.

Upon analyzing the average ascorbic acid dosages, the greatest germination rate was 97.0 % in 50 mM AsA, while the lowest germination rate was 86.75 % in 0 mM AsA. Examining the salt x AsA interaction, the 0 mM x 50 mM, 0 mM x 100 mM, 50 mM x 50 mM, and 50 mM x 100 mM interactions showed the maximum germination rate of 100.00 %, while the 150 mM X 0 mM interaction showed the lowest germination rate of 73.00 %.

Table 1 Effect of ascorbic acid on seed germination rate (%)^{*}

NaCL /AsA	0 mM	50 mM	100 mM	150 mM	Means
0 mM	94.00 c	100.00 a	100.00 a	100.00 a	98.50 a
50 mM	92.00 d	100.00 a	100.00 a	100.00 a	98.00 a
100 mM	88.00 e	97.00 b	93.00 c	91.00 d	92.25 b
150 mM	73.00 i	91.00 d	85.00 f	79.00 g	82.00 c
Means	86.75 d	97.00 a	94.50 b	92.50 c	

LSD_{salinity}: 3,152; LSD_{AsA}: 1,783; LSD_{Interaction}: 2,844^{*}There is no statistical (p < 0.05) differences between values with the same letters in the same columns.

3.2. The Effect of Salicylic Acid on Germination Rate

With regard to the germination rate of fodder pea seeds in varying concentrations of NaCl solution, the study has demonstrated that the differences between salt doses, salicylic acid doses, and the Salt x SA interaction should be investigated at a 5 % significant level (Table 2).

Table 2 Effect of salicylic acid on seed germination rate (%)^{*}

NaCL /SA	0 mM	50 mM	100 mM	150 mM	Means
0 mM	92.00 d	100.00 a	100.00 a	87.00 f	94.75 a
50 mM	90.00 e	98.00 b	96.00 c	81.00 h	91.25 b
100 mM	89.00 e	95.00 c	85.00 g	78.00 i	86.75 c
150 mM	69.00 m	81.00 h	73.00 l	67.00 n	72.50 d
Means	85.00 c	93.50 a	88.50 b	78.25 d	

LSD_{salinity}: 2,343; LSD_{SA}: 3,192; LSD_{Interaction}: 1,847; *There is no statistical (p < 0.05) differences between values with the same letters in the same columns.

The germination rate was highest at 94.75 % with 0 mM NaCl and lowest at 72.50% with 150 mM NaCl when the averages of salt concentrations were analyzed. A comparison of the typical salicylic acid dosages revealed that the germination rate was 78.25 % in 150 mM SA and 93.50 % in 50 mM SA. Examining the salt x SA interaction, the 0 mM x 50 mM and 0 mM x 100 mM interactions showed the maximum germination rate of 100.00 %, while the 150 mM x 150 mM interaction showed the lowest germination rate of 67.00 %.

3.3. Effect of Ascorbic Acid on Germination Time

In the study, it has been shown that the difference between Salt doses, Ascorbic acid doses and Salt x AsA interaction in terms of germination time of fodder pea seeds in different concentrations of NaCl solution should be examined at the 5 % significance level (Table 3).

Table 3 Effect of ascorbic acid on seed germination time (days)^{*}

NaCL /AsA	0 mM	50 mM	100 mM	150 mM	Means
0 mM	2.58 c	1.37 f	1.93 e	2.82 b	2.18 c
50 mM	2.64 c	2.02 d	2.11 d	2.70 c	2.37 c
100 mM	3.12 b	2.43cd	2.63 c	2.95 b	2.78 b
150 mM	3.94 a	3.74 a	2.75	3.14 b	3.39 a
Means	3.07 a	2.39 c	2.36 c	2.90 b	

LSD_{salinity}: 0,221; LSD_{AsA}: 0, 148; LSD_{Interaction}: 0,315; *There is no statistical (p < 0.05) differences between values with the same letters in the same columns.

The fastest germination time 2.18 days was observed at 0 mM NaCl when the average salt concentrations were analyzed, while the slowest germination time 3.39 days was observed at 150 mM NaCl. The earliest germination times in 50 mM AsA and 100 mM AsA were 2.39 and 2.33 days, respectively, when the average ascorbic acid dosages were analyzed. The latest germination time in 0 mM AsA was 3.07 days. The earliest germination time was found to be 1.37 days in the 0 mM x 50 mM interaction when the salt x AsA interaction was investigated. The latest germination times were found to be 3.94 days in the 150 mM x 0 mM interaction and 3.74 days in the 150 mM x 50 mM interaction.

3.4. Effect of Salicylic Acid on Germination Time

The study demonstrated that the germination period of fodder pea seeds in varying concentrations of NaCl solution should be analyzed at a 5 % significance level in order to compare the effects of salt doses, salicylic acid dosages, and the Salt x SA interaction (Table 4).

Table 4 Effect of salicylic acid on seed germination time (days)*

NaCl /SA	0 mM	50 mM	100 mM	150 mM	Means
0 mM	2.62 e	1.56 g	2.14 f	3.74 b	2.52 c
50 mM	2.69 e	2.12 f	2.53 e	3.56 c	2.73 c
100 mM	3.24 d	2.73 e	3.15 d	4.08 a	3.30 b
150 mM	4.11 a	3.97 a	3.86 b	4.03 a	3.99 a
Means	3.17 b	2.60 d	2.92 c	3.85a	

LSD_{salinity}: 0,326; LSD_{SA}: 0, 273; LSD_{Interaction}: 0,184; *There is no statistical (p <0.05) differences between values with the same letters in the same columns.

In terms of germination time, the earliest was 2.52 and 2.73 days at 0 mM NaCl and 50 mM NaCl, and the latest was 3.99 days at 150 mM NaCl, when the averages of salt concentrations were analyzed. The earliest germination period was 2.60 days at 50 mM SA, and the latest germination time was 3.85 days at 150 mM SA, when the average salicylic acid dosages were analyzed. Upon analyzing the salt x SA interaction, the fastest germination time (1.56 days) was recorded in the 0 mM x 50 mM interaction. Conversely, the slowest (latest) germination times were observed under high salinity, such as 4.11 days in the 150 mM x 0 mM interaction and 4.08 days in the 100 mM x 150 mM interaction.

3.5. The Effect of Ascorbic Acid on Root Length

In the study, it has been shown that the difference between Salt doses, Ascorbic acid doses and Salt x AsA interaction in terms of root length of fodder pea seeds in different concentrations of NaCl solution should be examined at a 5% significance level (Table 5). When the average salt concentrations were examined, the highest root length was found with 6.49 cm in 0 mM NaCl, and the lowest root length was found at 4.59 cm in 150 mM NaCl. When the average of ascorbic acid doses were examined, the highest root length was determined as 6.65 cm and 6.41 cm in 100 mM AsA and 50 mM AsA, and the lowest root length was 4.37 cm in 0 mM AsA. When the salt x AsA interaction was examined, the highest root length was determined as 7.40 cm in the 0 mM x 100 mM interaction, and the lowest root length was 3.28 cm in the 150 mM X 0 mM interaction.

Table 5 Effect of ascorbic acid on root length (cm)*

NaCl /AsA	0 mM	50 mM	100 mM	150 mM	Means
0 mM	5.08 f	6.88 b	7.40 a	6.60 c	6.49 a
50 mM	4.74 g	6.56 c	7.32 a	6.13 d	6.19 b
100 mM	4.36 h	6.32 d	6.74 b	5.78 e	5.80 c
150 mM	3.28 l	5.89de	5.12 f	4.08 i	4.59 d
Means	4.37 c	6.41 a	6.65 a	5.65 b	

LSD_{salinity}: 0,336; LSD_{AsA}: 0,342; LSD_{Interaction}: 0,248; *There is no statistical (p <0.05) differences between values with the same letters in the same columns.

3.6. Effect of Salicylic Acid on Root Length

In order to investigate the effects of salt doses, salicylic acid dosages, and the Salt x SA interaction, the study showed that the root length of fodder pea seeds in different concentrations of NaCl solution should be examined at a 5% significant level (Table 6).

Table 6 Effect of salicylic acid on root length (cm)*

NaCL /SA	0 mM	50 mM	100 mM	150 mM	Ortalama
0 mM	4.38d	5.26a	5.31a	5.09b	5.01a
50 mM	4.08e	4.93bc	5.14b	4.80c	4.74b
100 mM	3.24f	4.44d	4.70c	4.38d	4.19c
150 mM	2.86g	3.24f	4.08e	2.92g	3.28d
Ortalama	3.64c	4.47b	4.81a	4.30b	

LSD salinity: 0,261; LSD _{SA}:0,288; LSD Interaction: 0,14; *There is no statistical (p <0.05) differences between values with the same letters in the same columns.

Upon analyzing the average salt concentrations, the longest root length was 5.01 cm in 0 mM NaCl, while the shortest was 3.28 cm in 150 mM NaCl. The greatest root length, 4.81 cm in 100 mM SA, and the smallest, 3.64 cm in 0 mM SA, were found when the average salicylic acid dosages were analyzed. The largest root lengths, 5.31 cm and 5.26 cm in the 0 mM x 100 mM and 0 mM x 50 mM interactions, and the smallest, 2.92 cm and 2.86 cm in the 150 mM x 150 mM and 150 mM x 0 mM interactions, were found when the salt x SA interaction was investigated.

3.7. The Effect of Ascorbic Acid on Hypocotyl Length

In the study, it has been shown that the difference between Salt doses, Ascorbic acid doses and Salt x AsA interaction in terms of hypocotyl length of fodder pea seeds in different concentrations of NaCl solution should be examined at a 5% significance level (Table 7).

Table 7 Effect of ascorbic acid on hypocotyl length (cm)*

NaCL /AsA	0 mM	50 mM	100 mM	150 mM	Ortalama
0 mM	3.33c	3.44b	3.48a	3.53a	3.45a
50 mM	3.14d	3.18d	3.20d	3.27c	3.20b
100 mM	2.73f	2.91e	2.76f	2.86e	2.82c
150 mM	2.31g	2.10h	1.98i	2.35g	2.18d
Ortalama	2.88c	2.91b	2.86c	3.00a	

LSD salinity: 0,188; LSD AsA:0,723; LSD Interaction: 0,839; *There is no statistical (p <0.05) differences between values with the same letters in the same columns.

When the average salt concentrations were examined, the highest hypocotyl length was found with 3.45 cm in 0 mM NaCl, and the lowest hypocotyl length was found at 2.18 cm in 150 mM NaCl. When the average of ascorbic acid doses were examined, the highest hypocotyl length was determined as 3.00 cm 150 mM AsA, and the lowest hypocotyl length was 2.88 cm in 0 mM AsA. When the salt x AsA interaction was examined, the highest hypocotyl length was determined as 3.48 cm in the 0 mM x 100 mM interaction, and the lowest hypocotyl length was 1.98 cm in the 150 mM X 100 mM interaction.

3.8. Effect of Salicylic Acid on Hypocotyl Length

The study demonstrated that the hypocotyl length of fodder pea seeds in varying concentrations of NaCl solution should be analyzed at a 5 % significance level in order to compare the effects of salt doses, salicylic acid dosages, and the Salt x SA interaction (Table 8).

Table 8 Effect of salicylic acid on hypocotyl length (cm)*

NaCl /SA	0 mM	50 mM	100 mM	150 mM	Ortalama
0 mM	3.86cd	4.23c	4.55b	3.68d	4.08a
50 mM	3.58d	4.38b	5.01a	2.83f	3.95b
100 mM	3.21e	4.11c	4.53b	2.52f	3.59c
150 mM	2.17g	3.33e	3.86cd	2.11g	2.87d
Ortalama	3.21c	4.01b	4.49a	2.79d	

LSD salinity: 0,105; LSD_{SA}:0,382; LSD Interaction: 0,373; *There is no statistical (p <0.05) differences between values with the same letters in the same columns.

Examining the average salt concentrations, the hypocotyl lengths in 0 mM NaCl and 150 mM NaCl were found to be the highest and lowest, respectively, at 4.08 cm and 2.87 cm. The greatest hypocotyl length, measured at 4.49 cm in 100 mM SA, and the smallest, measured at 2.79 cm in 150 mM SA, were found when the average salicylic acid dosages were analyzed. Examining the salt x SA interaction, the 50 mM x 100 mM interaction had the largest hypocotyl length (5.01 cm), whereas the 150 mM X 150 mM and 150 mM X 0 mM interactions had the lowest hypocotyl lengths (2.11 cm and 2.17 cm, respectively).

4. Discussion

The ASA system functions dynamically in seeds, despite the fact that the processes for generating and using ascorbic acid (ASA) can vary based on the developmental and functional stages of the seed. Tullio and Arrigoni (2007) state that orthodox seeds have a minor amount of dehydroascorbic acid (DHA) and considerable ASA recycling enzyme activity, but neither ASA nor ASA peroxidase at quiescence. This is due to the fact that in orthodox seeds, ASA content and ASA peroxidase activity rise in the early phases of development before falling throughout the desiccation phase. In addition to controlling the physiology of stress in plants, ascorbic acid (AsA) is necessary for the germination phase (Arrigoni et al. 1997; Noctor and Foyer, 1998; Conklin, 2001).

The results of this investigation regarding AsA align with those of Mohsen et al. (2013), Bassuony et al. (2008), and Erkoyuncu and Yorgancilar's (2020) studies.

It was discovered that when increasing SA concentrations were coupled with increasing salt concentrations, the parameters analyzed in this study were negatively affected. Under conditions of extreme salt stress, salicylic acid helps seeds germinate by reducing oxidative damage (Lee et al., 2010). The findings of this study, where SA applications mitigated the negative effects of salinity, align with previous research. For example, similar to the work of El-Tayeb (2005) on barley, our results showed that SA can enhance germination under salt stress. This protective effect is also consistent with findings from studies by Yaver and Paşa (2009), Farahbakhsh (2012), Jam et al. (2012), Soliman et al. (2016), Ramanujam et al. (1998), Mendoza et al. (2002), Tari et al. (2002), Paşa (2022), Paşa and Yardan (2024a), and Paşa and Yardan (2024b).

5. Conclusion

Thus, it was found that increasing NaCl concentrations had a negative effect on the root and hypocotyl lengths of fodder pea seeds, as well as the germination rate and number of days to germination. However, these parameters peaked in treatments with 50 and 100 mM of both SA and AsA. It was found that proper SA and AsA application may have a beneficial effect on the germination of fodder pea plants under saline circumstances.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

- [1] Açıkbabaş, S., Özyazıcı, M.A., 2021. Effect of silicon seed pretreatment on germination development of forage pea [*Pisum sativum* ssp *arvense* (L.) Poir] exposed to salt stress. Middle East International Conference on Contemporary Scientific Studies-V, 27-28 March, Ankara, Vol. III, pp. 148-158.
- [2] Akinci IE, Çalışkan U, 2010. Effect of lead on seed germination and tolerance levels in some summer vegetables. *Ekoloji Dergisi*, 19: 164-172.
- [3] Arrigoni O, Calabrese G, De Gara L, Bitonti MB, Liso R, 1997. Correlation between Changes in Cell Ascorbate and Growth of *Lupinus albus* Seedlings. *Journal of Plant Physiology*, 150 (3):302-308.
- [4] Bassuony F, Hassanein R, Baraka D, Khalil R, 2008. Physiological Effects of Nicotinamide and Ascorbic Acid on *Zea mays* Plant Grown Under Salinity Stress. II-Changes in Nitrogen Constituents, Protein Profiles, Protease Enzyme and Certain Inorganic Cations. *Australian Journal of Basic and Applied Sciences*, 2 (3): 350-359.
- [5] Conklin PL, 2001. Recent Advances in the Role and Biosynthesis of Ascorbic Acid in Plants. *Plant, Cell & Environment*, 24 (4): 383-394.
- [6] Dumanoglu, Z., Çaçan, E., Kökten K., 2021. Determination of the physical properties of seeds of sainfoin (*Onobrychis viciifolia* Scop.) genotypes. *Journal of Anatolian Environmental and Animal Sciences*, 6(1): 18-24.
- [7] Ekinci M, Yıldırım E, Dursun A, 2011. Effects of Different Salicylic Acid and Temperature Applications on Seed Germination in Some Cool Climate Vegetable Species. *Türkiye IV. Seed Production Congress*, p:154-160, 14-17 June, Samsun.
- [8] El-Tayeb MA, 2005. Response of barley grains to the interactive effect of salinity and salicylic acid. *Plant Growth Regulation*, 45: 215-224.
- [9] Erkoyuncu MT, Yorgancılar M, 2020. The Effect of Priming Applications (Salicylic Acid and Ascorbic Acid) on Germination in Canola (*Brassica napus* L.) Exposed to Salt Stress, *Iğdır University Journal of the Institute of Science and Technology*, 10(4): 3109-3121, 2020.
- [10] Farahbakhsh H, 2012. Germination and Seedling Growth in Unprimed and Primed Seeds of Fennel as Affected by Reduced Water Potential Induced by NaCl. *International Research Journal of Applied and Basic Sciences*, 3 (4):737-744.
- [11] Growth of Safflower Seeds under CaCl₂ Stress. *International Journal of Agricultural Research And Reviews*, 2:1097-1105.
- [12] Hasegawa, P.P., & Bressan, R.A. (2000). Plant cellular and molecular responses to high salinity. *The Annual Review of Plant Biology, Plant Molecular Biology*, 51:463-499.
- [13] ISTA 1996, International rules for seed testing, Edition 1996/6, International Seed Testing Association, Zurich. Switzerland, pp: 196.
- [14] Jam B, Shekari F, Azimi M, Zangani E, 2012. Effect of Priming by Salicylic Acid on Germination and Seedling.
- [15] Jini D, Joseph B, 2017. Physiological Mechanism of Salicylic Acid for Alleviation of Salt Stress in Rice. *Rice Science*, 24 (2): 97-108.
- [16] Kadioğlu, S., Tan, M., (2018). Determination of seed yields and some characteristics of some feed pea lines and varieties under Erzurum conditions. *Atatürk University Journal of Faculty of Agriculture*, 49(2): 143-149.
- [17] Kara, M., 2012. Physical Properties of Biological Products. *Atatürk University, Faculty of Agriculture Publications* No: 242, Erzurum.
- [18] Kaya, C., Higgs, D., & Kirnak, H. (2001). The effects of high salinity and supplementary phosphorus and potassium on physiology and nutrition development of spinach. *Bulgarian Journal of Plant Physiology*, 27(3-4):47-59.
- [19] Kaya, C., & Higgs, D. (2003). Supplementary potassium nitrate improves salt tolerance in bell pepper plants. *Journal of Plant Nutrition*, 26(7):1367-1382.
- [20] Khan A, Ahmad MSA, Athar RE, Ashraf M, 2006. Interactive effect of foliarly applied ascorbic acid and salt stress on wheat (*Triticum aestivum* L.) at the seedling state. *Pakistan Journal of Botany*, 38, 1407-1414.
- [21] Korkmaz A, 2005. Inclusion of Acetyl Salicylic Acid and Methyl Jasmonate into the Priming Solution Improves Low Temperature Germination and Emergence of Sweet Pepper. *Hortscience*, 40(1):197-200.
- [22] Lee S, Kim S, Park C, 2010. Salicylic Acid Promotes Seed Germination Under High Salinity By Modulating Antioxidant Activity In *Arabidopsis*, *New Phytologist*, 188 (2):626-637.

- [23] Manga, İ., Acar, Z., Ayan, I., 2003. Baklagil Yembitkileri. Ondokuz Mayıs Üniversitesi, Ziraat Fakültesi, Ders Kitabı No: 7, (Genişletilmiş II. Baskı), Samsun.
- [24] Mendoza AB, Rodriguez HR, Torres VR, Davila J H, Mezquitic JGR, Tellez EB, Rangel AS, Garcia MAB, 2002. Seed Treatment with Salicylates Modifies Stomatal Distribution, Stomatal Density, Seedlings. Proceedings of the 16th International Pepper Conference Tampico, Tamaulipas, Mexico, November 10-12.
- [25] Mohsen A, Ebrahim M, Ghoraba W, 2013. Effect of Salinity Stress on *Vicia faba*. Productivity with Respect to Ascorbic Acid Treatment. Iranian Journal Of Plant Physiology, 3 (3): 725-736.
- [26] Nazarian G, 2016. The Effect of Priming Application of Salicylic Acid on the Morphological and Physiological Characteristics of Canola Plant under Salinity Stress, Ege University Institute of Science and Technology, Master's Thesis (Printed).
- [27] Noctor G, Foyer CH, 1998. Ascorbate and Glutathione: Keeping Active Oxygen under Control, Annual Review of Plant Biology, 49 (1): 249-279.
- [28] Özden Y, Kutbay HG, 2008. Effect of Salinity and Temperature on Germination of *Spergularia marina* Seeds and Ameliorating Effect of Ascorbic and Salicylic Acids. Journal of Environmental Biology, 29 (6):959-964.
- [29] Paşa, C. (2022). The response of some *calendula* cultivars (*Calendula officinalis* L.) to salt during the germination period, GSC Biological and Pharmaceutical Sciences. 21 (2), 263-268.
- [30] Paşa, C. and Yordan A., (2024a) The Effect of Ascorbic Acid on The Germination of Catnip (*Nepeta cataria*) Plants at Different Salt Concentrations. GSC Advanced Research And Reviews: GSC Online Press, 2024, 21.2: 359-365.
- [31] Paşa, C. and Yordan A., (2024b). Impact of Salicylic Acid on *Echinacea* (*Echinacea purpurea* L.) Plant Germination at Different Salt Levels. GSC Advanced Research And Reviews: GSC Online Press, 2024, 21.2: 366-372.
- [32] Ramanujam M P, Jaleel V A, Kumaravelu G, 1998. Effect of salicylic acid on nodulation, nitrogenous compounds and related enzymes of *Vigna mungo*. Biologia Plantarum 41: 307-311.
- [33] Rivas-San Vicente M, Plasencia J, 2011. Salicylic Acid beyond Defence: its Role in Plant Growth and Development, Journal of Experimental Botany, 62 (10):3321-3338.
- [34] Sayar, M.S., 2021. Yem bezelyesi tarımı ve GAP Pembesi yem bezelyesi çeşidinin önemli tarımsal özellikleri. Dicle Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(1): 73-82.
- [35] Soliman M, Al-Juhani R, Hashash M, Al-Juhani F, 2016. Effect of Seed Priming With Salicylic Acid on Seed Germination and Seedling Growth of Broad Bean (*Vicia faba* L.). International Journal of Agricultural Technology, 12 (6):1125-1138.
- [36] Tari I, Csiszár J, Szalai G, Horváth F, Pécsvárad A, Kiss G, Szepesi A, Szabó M, Erdei L, 2002. Acclimation of tomato plants to salinity stress after a salicylic acid pretreatment. Acta Biologica 46(3-4):55-56, Szegediensis.
- [37] Temel, S., Yazıcı, E., 2021. Ağrı-Elezkirt koşullarında yazılık olarak farklı zamanlarda ekilen yem bezelyesi çeşitlerinin ot verimi ve bazı kalite özelliklerinin belirlenmesi. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 7(2): 306-314.
- [38] Timurağaoğlu, K.A., Genç, A., Altınok, S., 2004. Ankara koşullarında yem bezelyesi hatlarında yem ve tane verimleri. Tarım Bilimleri Dergisi, 19(4): 457-461.
- [39] Torlak 2019. Investigation of the Physiological and Biochemical Effects of Ascorbic Acid Applications on Corn (*Zea mays* L.) Plants Under Salt Stress. Sakarya University Institute of Science and Technology, Master's Thesis (Printed).
- [40] Tullio, M.C. and Arrigoni, O. (2007). The ascorbic acid system in seeds: to protect and to serve. Seed Science Research, Vol. 13, Issue 4, pp: 249-260. <https://doi.org/10.1079/SSR2003143>
- [41] Uyanık M, Kara SM, Korkmaz K, 2014. Determination of Responses of Some Winter Rapeseed (*Brassica napus* L.) Varieties to Salt Stress during the Germination Period. Journal of Agricultural Sciences, 20 (2014): 368-375.
- [42] Uzun, A., Gün, H., Açıkgöz, E., 2012. Farklı gelişme dönemlerinde biçilen bazı yem bezelyesi (*Pisum sativum* L.) çeşitlerinin ot, tohum ve ham protein verimlerinin belirlenmesi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 26(1): 27-38.
- [43] Yaver, S, Paşa, C. (2009). Application of different NaCl concentrations on seed germination of flax (*Linum usitatissimum* L.) cultivar. Agricultural Science and Technology, 2009, Vol. 1, No. 3, 103-105 ref. 12.