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Abstract 

Satellite remote sensing has become an important tool for air pollution monitoring, especially in regions where ground 
stations are limited. This review explains how different satellite instruments, such as MODIS, MISR, OMI, VIIRS, and 
Sentinel-5P/TROPOMI, help measure key pollutants like aerosols (AOD), PM2.5 (indirect), NO₂, SO₂, CO, O₃, and CH₄. 
We describe how satellite data are processed, how column measurements are converted to ground-level concentrations, 
and how statistical models, chemical transport models, and machine learning improve the accuracy of these estimates. 
The review also highlights major applications, including mapping pollution hotspots, studying long-term trends, 
supporting health research, and monitoring special events like wildfires and dust storms. Although satellite data offer 
wide coverage, challenges such as cloud interference, limited resolution, and difficulties in linking column data to 
surface values remain. Future advances such as high-resolution sensors, geostationary satellites, improved retrieval 
algorithms, and AI-based data fusion are expected to further strengthen satellite-based air quality monitoring. Overall, 
this review emphasises the growing role of multi-satellite data, when combined with ground measurements and models, 
in building better air pollution assessments and supporting public-health decisions.  
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1. Introduction

Air pollution is a major global environmental and public-health issue affecting millions of people worldwide. The 
increasing burden of disease linked to polluted air has highlighted the urgent need for advanced and reliable monitoring 
systems[1], [2]. Although traditional ground-based monitoring networks provide highly accurate measurements, they 
suffer from limited spatial coverage, particularly in rural regions and in many developing countries where monitoring 
stations are sparse or absent. This limits our ability to understand pollution variability, long-range transport, and 
population exposure across wide geographic areas. 

To overcome these gaps, satellite-based air pollution monitoring has emerged as a powerful and invaluable tool. 
Satellite remote sensing offers extensive spatial coverage, improved temporal resolution, and the ability to observe 
atmospheric composition on regional and global scales. These capabilities allow researchers to assess pollution 
distribution, identify hotspots, track seasonal and long-term trends, and study transboundary movement of pollutants 
[3], [4]. Compared with ground monitors, satellites provide uniform measurements over large areas, offering a 
consistent and continuous view of the atmosphere. 

Over the past few decades, satellite technologies have evolved significantly. Early satellite missions provided only basic 
information on aerosols or trace gases, whereas modern instruments like MODIS, MISR, OMI, VIIRS, and especially 

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjarr.com/
https://doi.org/10.30574/wjarr.2025.28.2.3905
https://crossmark.crossref.org/dialog/?doi=10.30574/wjarr.2025.28.2.3905&domain=pdf


World Journal of Advanced Research and Reviews, 2025, 28(02), 2033-2041 

2034 

Sentinel-5 Precursor (carrying the TROPOMI instrument) offer higher spatial and temporal resolution along with 
improved accuracy. These sensors measure or infer a wide range of pollutants, including Aerosol Optical Depth (AOD), 
PM2.5 (indirectly), NO₂, SO₂, CO, O₃, CH₄, and formaldehyde. Their combined datasets have transformed our 
understanding of atmospheric composition and enhanced the scientific basis for air quality research [5]. 

This review aims to provide a comprehensive understanding of satellite-based air pollution monitoring by discussing: 

• The evolution and capabilities of key satellite instruments, 
• The pollutants detectable from space and their measurement principles, 
• The pollutants detectable from space and their measurement principles, 
• The methodologies and algorithms used to process and interpret satellite datasets, 
• The integration of satellite products with ground monitors and models, 
• Major applications in environmental science, public health, and policy, and 
• Current challenges and future opportunities in the field. 

By examining these aspects together, the review highlights how satellite remote sensing complements traditional 
monitoring systems and supports more effective air quality management, epidemiological research, and policy decision-
making across both developed and developing regions. 

2. Evolution and Capabilities of Satellite Remote Sensing for Air Quality 

Satellite remote sensing of atmospheric composition has progressed rapidly over the past several decades. Early 
satellite missions provided only basic or coarse information on trace gases and aerosols, whereas modern instruments 
now offer higher spatial and temporal resolution, improved spectral capability, and a wider range of detectable 
pollutants. These advancements have enabled more detailed assessments of pollution sources, transport pathways, and 
long-term environmental trends[4], [6], [7]. 

2.1. Evolution of Satellite Instruments 

Initially, satellite sensors were designed to observe broad Earth system processes, including land surface, clouds, and 
climate parameters. Although these missions provided important foundational data, their ability to detect specific air 
pollutants was limited. Over time, however, technological advancements in sensor design, radiometric calibration, and 
spectral resolution led to the development of specialised atmospheric instruments capable of monitoring key trace 
gases and aerosols at much finer scales[8], [9]. 

Today, two types of satellite platforms play a major role in air quality research. 

• Polar-orbiting satellites, which provide global coverage with revisit times of 1–2 days. 
• Geostationary satellites, which continuously observe the same region, enable hourly or sub-hourly monitoring 

of pollution episodes and diurnal variations. 
• Together, these platforms complement each other and provide a comprehensive picture of atmospheric 

pollution at multiple scales. 

2.2. Key Satellite Instruments and Their Capabilities 

Modern satellite missions vary in spatial resolution, spectral capability, revisit time, and pollutant sensitivity. Each 
instrument has unique strengths and limitations, making them useful for different research and monitoring objectives. 
Understanding these characteristics is essential for selecting the appropriate satellite dataset for any specific air quality 
study. 

Each satellite instrument is designed with specific monitoring goals and technical specifications[3], [10], [11]. For air 
quality applications, it is often necessary to combine data from multiple sensors to obtain a complete understanding of 
pollution patterns. The table below summarises key features of widely used satellite instruments 
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Table 1 Comparison of Satellites for Air Pollution Monitoring 

Feature Sentinel-5P MODIS OMI Sentinel-1 Sentinel-2 

Focus Air quality and 
pollution 

General Earth 
observation 

Historical NO₂ 
trends 

Radar imaging Land cover and 
vegetation 

Spatial 
Resolution 

7 × 3.5 km ~10 km 13 × 24 km 5–40 m 10 m 

Temporal 
Coverage 

1 day 1–2 days 1 day 12 days 5 days 

Key Pollutants NO₂, CO, CH₄, SO₂, 
aerosols 

AOD NO₂, O₃ — — 

Advantages High precision and 
urban-scale mapping 

Long AOD record Long-term NO₂ 
data since 2004 

High-
resolution 
radar 

High-resolution 
land imaging 

Limitations Limited to post-2017 Low NO₂ 
precision 

Lower spatial 
resolution 

No air quality 
data 

No air quality data 

2.3. Detailed Description of Major Instruments  

The Moderate Resolution Imaging Spectroradiometer (MODIS), onboard NASA’s Terra and Aqua satellites since 1999, 
is one of the most widely used instruments for aerosol monitoring. Its primary pollutant product is Aerosol Optical 
Depth (AOD), which serves as the basis for estimating ground-level PM₂.₅ and PM₁₀ using statistical and physical models 
[12]. MODIS offers several strengths, including a long-term dataset spanning more than two decades, frequent global 
coverage every 1–2 days, and high spectral resolution across 36 bands. However, its limitations include relatively coarse 
spatial resolution compared to newer sensors, high sensitivity to cloud contamination, and the indirect nature of PM 
estimation from AOD, which requires calibration with ground measurements[12], [13]. 

The Multi-Angle Imaging SpectroRadiometer (MISR), aboard NASA’s Terra satellite, provides a unique multi-angle 
observation capability. By capturing data from nine different viewing angles, MISR enables detailed aerosol 
characterisation, including particle size, shape, and vertical distribution [12]. This multidirectional advantage improves 
the accuracy of aerosol retrievals compared to single-view instruments. Nevertheless, MISR has a narrower swath 
width, which reduces its global coverage frequency and limits its applicability for daily monitoring at regional 
scales[12], [13] 

The Sentinel-5 Precursor (Sentinel-5P), launched in 2017 under the European Copernicus Programme, represents a 
major advancement in air quality monitoring. Equipped with the TROPOspheric Monitoring Instrument (TROPOMI), 
Sentinel-5P measures a wide range of pollutants, including NO₂, SO₂, CH₄, CO, O₃, HCHO, the Aerosol Index, and AOD. Its 
superior spatial resolution (7 × 3.5 km) makes it highly suitable for urban-level studies, and its daily global coverage 
allows researchers to track short-term pollution episodes with high precision[5]. The instrument directly measures 
several gaseous pollutants and provides open-access, near–real-time data, making it extremely valuable for air quality 
research. However, Sentinel-5P has limitations such as a relatively short historical record (post-2017 only), the need 
for column-to-surface conversions, and susceptibility to cloud-related data gaps[9], [14]. 

Several other satellite instruments also contribute essential information for atmospheric pollution monitoring. The 
Ozone Monitoring Instrument (OMI) provides a long-term dataset for NO₂, O₃, and SO₂ since 2004 [9]. The Geostationary 
Environment Monitoring Spectrometer (GEMS) offers hourly atmospheric observations over Asia, enabling the study of 
diurnal pollution cycles. The CALIPSO mission contributes vertical aerosol profiling through laser-based lidar 
measurements, helping differentiate aerosol layers. MOPITT specialises in carbon monoxide (CO) detection, while 
GOSAT focuses on greenhouse gases such as CH₄ and CO₂. Additionally, VIIRS provides nighttime lights and AOD data, 
which are increasingly used for PM estimation and urban emission analysis. Together, these instruments complement 
one another by offering diverse pollutant measurements with varying spatial, temporal, and spectral capabilities[15]. 
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2.4. Pollutants Extractable from Satellites 

Satellites detect pollutants based on their spectral absorption and scattering characteristics: 

• Particulate Matter (PM₂. ₅, PM₁₀): Inferred from AOD using MODIS, MISR, VIIRS. 
• Nitrogen Dioxide (NO₂): Directly measured by TROPOMI, OMI, GOME-2. 
• Sulphur Dioxide (SO₂): Detected by OMI, TROPOMI. 
• Carbon Monoxide (CO): MOPITT and TROPOMI provide high-quality CO retrievals. 
• Ozone (O₃), Methane (CH₄), Formaldehyde (HCHO): Derived from UV, visible, and IR bands. 
• Ammonia (NH₃) and Carbon Dioxide (CO₂): Emerging measurements supporting agricultural and climate 

research. 

3. Methodologies in Satellite-Based Air Pollution Monitoring 

Transforming raw satellite observations into meaningful air quality information involves several stages of data 
retrieval, modelling, and validation. Satellites measure reflected or emitted radiation at various wavelengths, and these 
radiance values are translated into pollutant concentrations using sophisticated retrieval algorithms. These algorithms 
correct for atmospheric scattering, absorption, surface reflectance, and cloud effects, and employ radiative transfer 
models to convert top-of-atmosphere signals into geophysical quantities such as Aerosol Optical Depth (AOD) or 
tropospheric NO₂ columns [3]. Improved retrieval algorithms, especially for high-resolution instruments like Sentinel-
5P/TROPOMI, have significantly enhanced the precision and reliability of atmospheric pollutant estimates [5]. 

A central methodological challenge is that satellites generally provide column-integrated measurements rather than 
direct surface-level concentrations. To estimate ground-level pollution—which is critical for exposure and health 
assessments—researchers use statistical models, chemical transport models, machine learning systems, and hybrid 
approaches[16], [17]. Statistical models remain widely used because of their simplicity and regional adaptability. These 
models establish empirical relationships between satellite-based AOD or trace gas columns and ground monitoring 
data. They often incorporate meteorological variables, boundary-layer height, land-use characteristics, and seasonal 
factors to improve prediction accuracy[3], [8]. Common statistical approaches include: Multiple linear regression, 
Linear mixed-effect models, geographically weighted regression (GWR), and Land-use regression (LUR). 

These techniques help adjust satellite measurements to reflect local conditions and have been effectively used for PM₂.₅ 
and PM₁₀ estimation in regions worldwide [10], [11]. 

Chemical Transport Models (CTMs) provide a physically grounded method for estimating atmospheric pollution. CTMs 
simulate emissions, transport, chemical transformations, dispersion, and deposition of pollutants, capturing key 
atmospheric processes that statistical models may overlook. When satellite observations such as AOD, NO₂, SO₂, or CO 
are assimilated into CTMs, they help correct systematic model biases, improve vertical distribution estimates, and 
enhance the accuracy of surface-level pollutant fields [18]. This integration of observational and modelling data is 
essential for understanding the complete atmospheric column and improving long-term air quality assessments. 

Machine learning and artificial intelligence (AI) have emerged as powerful tools for integrating diverse datasets and 
capturing nonlinear relationships. ML/AI models can combine satellite retrievals, meteorological fields, ground 
observations, emission inventories, and land-use variables to generate high-resolution pollution estimates [4]. Common 
machine learning approaches used in satellite-based air quality estimation include: Random Forests, Gradient Boosting 
Machines, Support Vector Machines, Artificial Neural Networks, and Deep learning models such as LSTM and CNNs. 

These methods often outperform traditional statistical models, particularly in regions with sparse ground monitoring 
networks, by capturing complex interactions among multiple environmental variables. 

Hybrid and data-fusion approaches integrate satellite data, CTM outputs, ground monitoring observations, and 
meteorological information into a unified framework. Rather than relying on a single technique, hybrid models exploit 
the strengths of multiple systems. For example, CTM outputs may serve as additional predictors in machine learning 
algorithms, or machine learning may be used to correct CTM biases. Some hybrid frameworks merge multiple satellite 
sensors—such as MODIS, MISR, VIIRS, and Sentinel-5P—to reduce data gaps caused by clouds or sensor limitations. 
These multi-source approaches often produce the most reliable and accurate estimates of PM₂.₅, NO₂, and other 
pollutants [3]. 
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Geographic Information Systems (GIS) play an essential role in integrating and visualising satellite-derived air quality 
data. GIS tools help identify pollution hotspots, analyse spatial patterns, overlay emissions sources, and link satellite 
pollution maps with demographic or health datasets. Ground-based monitoring networks remain indispensable for 
calibration and validation. Despite satellites’ extensive coverage, validation with surface measurements ensures that 
satellite-derived products are consistent with real-world observations [5], [18]. 

Validation is the final, critical step in satellite-based air quality methodology. Satellite-derived estimates are compared 
with co-located ground measurements using statistical metrics such as correlation coefficients, root mean square error 
(RMSE), mean absolute error (MAE), and model bias. Validation studies also examine regional and seasonal variability 
and quantify uncertainties arising from retrieval errors, cloud cover, instrument limitations, and spatial 
representativeness differences [6]. Continuous validation is essential because atmospheric conditions vary 
substantially across different climates and geographic regions, influencing the performance of satellite-based models 
[9]. 

3.1. Applications of Satellite-Based Air Pollution Monitoring  

Satellite-derived air quality data have a wide range of applications in environmental science, public health, policy 
analysis, and climate research. Because satellites provide extensive spatial coverage and consistent observations over 
time, they enable researchers and decision-makers to examine pollution patterns even in regions where ground 
monitoring networks are sparse or completely absent. Their ability to detect aerosols and trace gases at regional, 
continental, and global scales makes satellite observations highly valuable for understanding exposure, identifying 
pollution sources, and supporting long-term environmental planning [3], [4]. 

One of the most significant applications of satellite-based monitoring is in exposure assessment for health studies. Many 
epidemiological studies rely on accurate estimates of PM₂.₅, NO₂, O₃, and other harmful pollutants to assess their health 
impacts. However, ground-based networks—particularly in developing countries—often have limited spatial coverage. 
Satellite datasets help overcome this challenge by providing high-resolution pollution fields that can be integrated with 
population data to estimate exposure levels more accurately. This has enabled researchers to quantify the relationship 
between pollution exposure and respiratory illnesses, cardiovascular diseases, and mortality in regions lacking 
adequate monitoring [4], [19]. Satellite data have also supported new models linking satellite-derived pollutant 
concentrations to disease burden, especially for understudied populations. 

Satellites are equally important for analysing long-term air quality trends and identifying major pollution sources. Long-
term datasets from instruments such as OMI, MODIS, and MISR have revealed important patterns, including changes in 
NO₂ levels due to industrial expansion, transport emissions, and policy interventions [9]. These observations help 
identify regions with persistent pollution problems as well as areas that have improved due to mitigation measures or 
technological advancements. Satellite images also reveal source signatures of major pollution contributors, including 
power plants, industrial clusters, vehicular emissions, agricultural burning, and dust storms [1], [12]. 

Another key application of satellite monitoring is in air quality management and policy evaluation. Because satellite 
observations provide consistent and large-scale pollution information, they help governments and regulatory bodies 
evaluate whether air quality policies are meeting their intended goals. For example, satellite NO₂ data from Sentinel-5P 
can track reductions in emissions following the implementation of clean-air regulations, shutdown of industrial sources, 
or introduction of cleaner technologies [5]. Policymakers also use satellite datasets to identify areas that require stricter 
controls or new monitoring stations, strengthening environmental planning and governance. 

Satellites also play a crucial role in monitoring exceptional pollution events, which are often missed or undersampled 
by ground-based sensors. Events such as wildfires, volcanic eruptions, dust outbreaks, and large-scale biomass burning 
can cause rapid and widespread deterioration in air quality. Satellites like MODIS and VIIRS can detect fire radiative 
power, smoke plumes, and aerosol loading in near–real time, helping authorities respond more quickly to emerging 
environmental hazards [6]. These datasets are vital for disaster management, health advisories, and air quality 
forecasting during extreme episodes. 

Satellite observations additionally contribute to climate change research, as many air pollutants—such as methane, 
carbon monoxide, and aerosols play a dual role in both air quality and climate processes. Instruments like GOSAT and 
Sentinel-5P provide valuable insight into greenhouse gas emissions, enabling researchers to study emission hotspots, 
track atmospheric transport, and evaluate the effectiveness of climate mitigation strategies [4], [11]. Satellites help 
quantify aerosol–cloud interactions and radiative forcing, both of which are key to understanding global climate systems 
[7]. 
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In summary, satellite-based air quality data support a broad range of applications, including: 

• Health exposure assessment and epidemiological research  
• Trend analysis and source identification  
• Policy evaluation and regulatory planning  
• Monitoring of special events (wildfires, dust storms, volcanic eruptions) 
• Climate change and greenhouse gas analysis 

These diverse applications underscore the growing importance of satellite technology in building robust air quality 
monitoring systems and formulating evidence-based management strategies [3], [20], [21]. 

4. Challenges and Limitations  

Despite the significant advancements, satellite-based air pollution monitoring faces several challenges: 

• Spatial and Temporal Resolution: While improving, satellites often provide broad coverage but may struggle 
with capturing highly detailed, localised data, especially for urban street-level pollution [7]. Polar-orbiting 
satellites typically offer one or two snapshots a day, which can limit the capture of rapid changes. Geostationary 
satellites address temporal limitations but have regional coverage [4]. Temporal and spatial resolution are 
other limitations, as satellites like Sentinel-5P provide daily data, which may not capture short-term pollution 
events. Even high-resolution sensors like TROPOMI may average pollution across several kilometres, 
smoothing fine-scale gradients near traffic corridors and industrial zones [5]. 

• Column-to-Surface Conversion: The relationship between column-integrated observations and ground-level 
concentrations can be complex and is influenced by various factors like atmospheric mixing height, humidity, 
and aerosol vertical profiles [3], [8]. This remains a key area of research and modelling. Large uncertainties 
arise during temperature inversions, dust storms, and convection events, when the vertical distribution of 
pollutants deviates from the satellite's assumptions [12]. 

• Cloud Cover: Cloud cover can obstruct satellite observations, leading to data gaps, particularly in persistently 
cloudy regions [3]. Thin clouds or haze layers not detected by cloud masks can introduce subtle errors in AOD 
and gas retrievals, which later affect PM₂.₅ estimation [10] 

• Retrieval Accuracy and Validation: The accuracy of satellite-derived products is dependent on the retrieval 
algorithms and requires continuous validation against ground-based measurements [9]. Discrepancies can 
arise due to differences in measurement techniques and spatial representation [3]. Validation is especially 
difficult in under-monitored regions such as India, where sparse ground-level networks limit calibration. 
Complex terrains such as coasts, mountains, and dense urban environments further complicate retrieval 
accuracy due to surface reflectance variability [18]. 

• Data Integration and Interoperability: Integrating diverse data types from various satellite instruments, ground 
sensors, and chemical transport models can be computationally intensive and requires advanced analytical 
tools [4]. Cross-platform comparative analyses between MODIS, OMI, and Sentinel-5P are limited, leaving gaps 
in understanding their relative performance. Inconsistencies in spatial resolution, overpass times, retrieval 
algorithms, and calibration techniques make multi-sensor fusion challenging and can introduce artificial biases 
in long-term trend analyses [5]. 

• Limited Historical Records for New Sensors: New-generation satellites such as Sentinel-5P provide exceptional 
detail but only from 2017 onward, limiting long-term trend analysis. Combining older instruments like OMI 
with Sentinel-5P introduces compatibility issues due to differences in resolution and retrieval physics [9]. 

• Computational and Storage Demands: High-resolution satellite datasets require significant computational 
resources for downloading, processing, and storing large amounts of data [13], [22].  Many developing 
countries lack access to high-performance computing or cloud platforms, creating barriers for researchers 
handling multi-sensor satellite datasets. 

• Uncertainty Over Bright Surfaces: Bright surfaces such as deserts, snow, and reflective urban landscapes can 
interfere with aerosol and trace gas retrievals. Retrieval errors are also higher during dust storms, wildfires, 
and intense biomass burning events, as complex aerosol types reduce algorithm sensitivity [23]. 

Future Perspectives 

The field of satellite-based air pollution monitoring is continuously evolving, with promising future developments that 
will further enhance the accuracy, resolution, and applicability of satellite-derived air quality information. 
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• Enhanced Satellite Missions: Upcoming geostationary and low-Earth orbit missions with advanced sensors will 
further improve spatial and temporal resolutions, enabling more comprehensive and near–real-time 
monitoring. New missions such as GEMS, TEMPO, and Sentinel-4 are expected to provide hourly measurements, 
allowing for detailed analysis of diurnal pollution patterns. Constellations of small satellites (CubeSats) are also 
being developed to provide ultra-high temporal frequency and localised monitoring at a fraction of current 
mission costs. 

• Advanced Retrieval Algorithms: Continued research and development in retrieval algorithms will lead to more 
accurate and robust pollutant measurements. Innovations in radiative transfer modelling, aerosol 
classification, and trace gas retrievals will help reduce uncertainties caused by clouds, aerosols, or high surface 
reflectance. Machine-learning–assisted retrieval algorithms are now being explored to improve accuracy in 
challenging environments such as bright surfaces, complex terrains, and highly polluted regions. 

• Synergistic Use of Multi-Source Data: Increased integration of satellite data with ground-based measurements, 
low-cost sensor networks, and meteorological models through advanced data fusion techniques—especially 
artificial intelligence (AI) and machine learning—will provide a more complete picture of air quality. Multi-
sensor fusion across MODIS, MISR, VIIRS, OMI, and Sentinel-5P will help overcome limitations of individual 
sensors and generate more continuous, gap-free datasets suitable for high-resolution modelling. 

• Improved Health Impact Assessments: With more accurate and higher-resolution exposure data from satellites, 
epidemiological studies will be able to more precisely quantify the health burden of air pollution. This will 
support the development of targeted public-health interventions in high-risk communities. Satellite-derived 
pollution estimates will increasingly be integrated with electronic health records, geocoded patient data, and 
cohort studies to assess long-term exposure outcomes. 

• Support for Global Air Quality and Climate Initiatives: Satellite data will play an increasingly vital role in 
supporting international collaborations and agreements aimed at monitoring and mitigating global air 
pollution. Observations of greenhouse gases such as methane and carbon dioxide from missions like GOSAT-2 
and Sentinel-5 will be essential for climate change tracking and compliance with global emission targets. Near–
real-time satellite monitoring will support rapid-response systems for wildfire smoke, dust transport, volcanic 
ash dispersion, and industrial accidents, helping agencies act quickly during extreme events. 

• Higher Spatial Resolution and Urban-Scale Mapping: Future instruments will likely provide spatial resolution 
approaching sub-kilometre scales, enabling the detection of street-level pollution variation within dense urban 
areas—something current sensors still struggle with. Advances in hyperspectral imaging will allow satellites 
to distinguish between different aerosol types (e.g., dust, smoke, industrial emissions), improving source 
attribution for air quality models. 

• Integration with Low-Cost Sensors: Low-cost ground sensors are becoming more reliable, and their integration 
with satellite data will dramatically enhance spatial coverage. These hybrid systems will enable real-time 
monitoring at neighbourhood-level scales, especially in developing countries where monitoring infrastructure 
is limited. 

Overall, future developments in satellite technology, retrieval algorithms, data fusion, and health integration will 
strengthen the role of satellite remote sensing in air quality monitoring. These advancements will provide more 
accurate, timely, and actionable data to support environmental management, public health, and climate policy globally.   

5. Conclusion 

This review highlights how advancements in satellite remote sensing have significantly improved the monitoring of key 
air pollutants, enabling broader coverage, better detection of aerosols and trace gases, and stronger integration with 
statistical, chemical transport, and machine-learning models to enhance accuracy. Despite challenges such as cloud 
interference, column-to-surface conversion uncertainties, and differences in sensor resolution, the growing synergy 
between multi-satellite data, ground observations, and advanced analytical techniques is steadily strengthening the 
reliability of satellite-derived air quality assessments. With emerging geostationary missions, improved retrieval 
algorithms, and AI-driven data fusion, satellite monitoring is poised to deliver even more precise, real-time pollution 
insights. Ultimately, this study supports society by promoting stronger evidence-based air quality management and 
providing a pathway for future technologies to improve environmental health and public well-being.  

 



World Journal of Advanced Research and Reviews, 2025, 28(02), 2033-2041 

2040 

Compliance with ethical standards 

Acknowledgments 

The authors sincerely thank the Institute of Science, Nagpur, and its director for providing the necessary resources and 
support to conduct this research. 

Disclosure of conflict of interest 

The authors declare that there is no conflict of interest. 

References 

[1] A. Chauhan, G. P. Sai, and C.-Y. Hsu, “Advanced statistical analysis of air quality and its health impacts in India: 
Quantifying significance by detangling weather-driven effects,” Heliyon, vol. 11, no. 2, p. e41762, Jan. 2025, doi: 
10.1016/ j.heliyon. 2025.e41762. 

[2] P.Sonone and A.Khamborkar, “Forecasting health outcomes of Air Pollution: A Statistical review of modelling 
techniques and applications,” World J. Adv. Res. Rev., vol. 27, no. 1, pp. 1255–1262, Jul. 2025, doi: 10.30574/wjarr 
. 2025.27.1.2639. 

[3] M. Sorek-Hamer, R. Chatfield, and Y. Liu, “Review: Strategies for using satellite-based products in modelling 
PM2.5 and short-term pollution episodes,” Environment International, vol. 144, p. 106057, Nov. 2020, doi: 
10.1016/j.envint.2020.106057. 

[4] T. Holloway et al., “Satellite Monitoring for Air Quality and Health,” Annu. Rev. Biomed. Data Sci., vol. 4, no. 1, pp. 
417–447, Jul. 2021, doi: 10.1146/annurev-biodatasci-110920-093120. 

[5] J. Van Geffen et al., “Sentinel-5P TROPOMI NO2 retrieval: impact of version v2.2 improvements and comparisons 
with OMI and ground-based data,” Atmos. Meas. Tech., vol. 15, no. 7, pp. 2037–2060, Apr. 2022, doi: 10.5194/amt-
15-2037-2022. 

[6] M. Sorek-Hamer, A. C. Just, and I. Kloog, “Satellite remote sensing in epidemiological studies,” Current Opinion in 
Paediatrics, vol. 28, no. 2, pp. 228–234, Apr. 2016, doi: 10.1097/MOP.0000000000000326. 

[7] L. Liu et al., “Spatial–Temporal Analysis of Air Pollution, Climate Change, and Total Mortality in 120 Cities of 
China, 2012–2013,” Front. Public Health, vol. 4, Jul. 2016, doi: 10.3389/fpubh 2016.00143. 

[8] A. B. Chelani, “Estimating PM2.5 concentration from satellite-derived aerosol optical depth and meteorological 
variables using a combination model,” Atmospheric Pollution Research, vol. 10, no. 3, pp. 847–857, May 2019, 
doi: 10.1016/j.apr.2018.12.013. 

[9] K. F. Boersma et al., “Validation of OMI tropospheric NO2 observations during INTEX-B and application to 
constrain NOxNOx emissions over the eastern United States and Mexico,” Atmospheric Environment, vol. 42, no. 
19, pp. 4480–4497, Jun. 2008, doi: 10.1016/j.atmosenv.2008.02.004. 

[10] Z. Ma et al., “A review of statistical methods used for developing large-scale and long-term PM2.5 models from 
satellite data,” Remote Sensing of Environment, vol. 269, p. 112827, Feb. 2022, doi: 10.1016/j.rse.2021.112827. 

[11] L. De Vito et al., “AIR POLLUTION IN DELHI: A REVIEW OF PAST AND CURRENT POLICY APPROACHES,” 
presented at the AIR POLLUTION 2018, Naples, Italy, Jun. 2018, pp. 441–451. doi: 10.2495/AIR180411. 

[12] R. A. Kahn et al., “Satellite‐derived aerosol optical depth over dark water from MISR and MODIS: Comparisons 
with AERONET and implications for climatological studies,” J. Geophys. Res., vol. 112, no. D18, p. 2006JD008175, 
Sep. 2007, doi: 10.1029/2006JD008175. 

[13] Y. Si, L. Chen, X. Xiong, S. Shi, L. Husi, and K. Cai, “Evaluation of the MISR fine resolution aerosol product using 
MODIS, MISR, and ground observations over China,” Atmospheric Environment, vol. 223, p. 117229, Feb. 2020, 
doi: 10.1016/j.atmosenv.2019.117229. 

[14] N. Kumar, A. Chu, and A. Foster, “An empirical relationship between PM2.5 and aerosol optical depth in Delhi 
Metropolitan,” Atmospheric Environment, vol. 41, no. 21, pp. 4492–4503, Jul. 2007, doi: 
10.1016/j.atmosenv.2007.01.046. 



World Journal of Advanced Research and Reviews, 2025, 28(02), 2033-2041 

2041 

[15] S. Payra, A. Sharma, M. K. Mishra, and S. Verma, “Performance evaluation of MODIS and VIIRS satellite AOD 
products over the Indian subcontinent,” Front. Environ. Sci., vol. 11, p. 1158641, Jun. 2023, doi: 
10.3389/fenvs.2023.1158641. 

[16] R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, and N. Elhadad, “Intelligible Models for HealthCare: Predicting 
Pneumonia Risk and Hospital 30-day Readmission,” in Proceedings of the 21th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, Sydney NSW Australia: ACM, Aug. 2015, pp. 1721–1730. 
doi: 10.1145/2783258.2788613. 

[17] P.Sonone and A.Khamborkar, “Integrating statistical and machine learning models for advancing air quality 
forecasting: A comparative time series analysis,” Open Access Res. J. Sci. Technol., vol. 14, no. 2, pp. 018–028, Jul. 
2025, doi: 10.53022/oarjst.2025.14.2.0090. 

[18] K. Vijayaraghavan, H. E. Snell, and C. Seigneur, “Practical Aspects of Using Satellite Data in Air Quality Modeling,” 
Environ. Sci. Technol., vol. 42, no. 22, pp. 8187–8192, Nov. 2008, doi: 10.1021/es7031339. 

[19] C. J. L. Murray et al., “Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic 
analysis for the Global Burden of Disease Study 2019,” The Lancet, vol. 396, no. 10258, pp. 1223–1249, Oct. 2020, 
doi: 10.1016/S0140-6736(20)30752-2. 

[20] W. Abuouelezz, N. Ali, Z. Aung, A. Altunaiji, S. B. Shah, and D. Gliddon, “Exploring PM2.5 and PM10 ML forecasting 
models: a comparative study in the UAE,” Sci Rep, vol. 15, no. 1, p. 9797, Mar. 2025, doi: 10.1038/s41598-025-
94013-1. 

[21] M. Blangiardo, M. Pirani, L. Kanapka, A. Hansell, and G. Fuller, “A hierarchical modelling approach to assess multi 
pollutant effects in time-series studies,” PLoS ONE, vol. 14, no. 3, p. e0212565, Mar. 2019, doi: 
10.1371/journal.pone.0212565. 

[22] C. Zhao et al., “Estimating the daily PM2.5 concentration in the Beijing-Tianjin-Hebei region using a random forest 
model with a 0.01° × 0.01° spatial resolution,” Environment International, vol. 134, p. 105297, Jan. 2020, doi: 
10.1016/j.envint.2019.105297. 

[23] R. K. Krishna et al., “Surface PM2.5 Estimate Using Satellite-Derived Aerosol Optical Depth over India,” Aerosol 
Air Qual. Res., vol. 19, no. 1, pp. 25–37, 2019, doi: 10.4209/aaqr.2017.12.0568.  


