

Growth hormone therapy in high-risk pediatric populations: Integrated growth, metabolic, and safety outcomes in SGA, preterm, and Russell–silver syndrome

Ashraf T. Soliman ¹, Fawzia Alyafei ¹, Nada M. Alaaraj ¹, Shayma M. Ahmed ¹, Noora S. AlHumaidi ¹, Noor Hamed ¹, Ahmed S. Elawwa ^{1,2} and Ahmed Khalil ^{3,*}

¹ Department of Pediatrics, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar.

² Pediatric Endocrinology and Diabetology Unit, Faculty of Medicine, Alexandria University, Egypt.

³ Department of Pharmacy, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar.

World Journal of Advanced Research and Reviews, 2025, 28(02), 1531–1548

Publication history: Received on 03 October 2025; revised on 15 November 2025; accepted on 18 November 2025

Article DOI: <https://doi.org/10.30574/wjarr.2025.28.2.3819>

Abstract

Background: Growth hormone (GH) therapy is widely used to enhance growth outcomes in children with growth disorders, including those born small for gestational age (SGA), preterm infants, and individuals with Russell–Silver Syndrome (RSS). While GH therapy demonstrates consistent efficacy in improving height and metabolic parameters, variability in response and concerns about long-term safety require careful evaluation.

Objective: This review aims to assess the effects of GH therapy on growth outcomes, metabolic health, and safety profiles in children born SGA, preterm, and those diagnosed with RSS, and to provide updated clinical recommendations for optimizing treatment strategies.

Methods: A systematic review of 95 clinical studies published between 2000 and 2025 was conducted, analyzing outcomes in over 6,500 pediatric patients receiving GH therapy. Data were synthesized from randomized controlled trials, cohort studies, and observational research, focusing on changes in height standard deviation scores (SDS), growth velocity, IGF-1 levels, and metabolic safety outcomes.

Results: In SGA children, GH therapy resulted in a mean height SDS improvement of +2.2 and a 36% increase in growth velocity, with the most favorable outcomes when treatment was initiated before 4 years of age. Mild insulin resistance and glucose intolerance were noted in a subset of patients. Preterm infants demonstrated an average height SDS gain of +1.9 and a 32% increase in growth velocity, particularly when GH therapy was combined with optimal nutritional strategies. Transient insulin resistance was occasionally observed but without significant long-term consequences. In RSS patients, GH therapy improved height SDS by +1.8 and growth velocity by 27%, although responses varied depending on the underlying genetic etiology. Metabolic benefits included improvements in IGF-1 levels and body composition, with minimal adverse effects. Weekly GH regimens were found to be comparable to daily injections in efficacy and safety across all populations.

Conclusion: GH therapy significantly improves growth outcomes and metabolic profiles in children born SGA, preterm, and with RSS. Early initiation and individualized treatment approaches optimize height gains while minimizing metabolic risks. Although generally safe, GH therapy requires regular monitoring of glucose metabolism and metabolic parameters, particularly in SGA and preterm populations. Personalized protocols based on genetic and nutritional factors, along with long-term follow-up, are essential to maximizing the therapeutic benefits while ensuring safety. Future research should further explore genetic predictors of GH response and the long-term metabolic and cardiovascular outcomes of GH-treated children.

* Corresponding author: Ahmed Khalil

Keywords: Growth Hormone Therapy; Small for Gestational Age (SGA); Preterm Infants; Russell-Silver Syndrome (RSS); Growth Velocity and Metabolic Outcomes

1. Introduction

1.1. Small-for-Gestational-Age (SGA) Infants

Children born small for gestational age (SGA) are defined as having a birth weight or length below the 10th percentile for their gestational age. While some SGA infants experience spontaneous catch-up growth, approximately 10–15% fail to achieve normal height, leading to persistent short stature [1]. The underlying causes of growth failure in SGA children are multifactorial, involving placental insufficiency, fetal malnutrition, and genetic factors [2]. These children are at an increased risk of metabolic syndrome, insulin resistance, cardiovascular disease, and osteoporosis in adulthood due to fetal programming effects that persist postnatally [3,4].

GH therapy has been shown to effectively improve growth velocity and final height in SGA children, particularly when initiated early (before 4 years of age). Studies indicate that GH therapy can increase height SDS by 1.5–2.5 in childhood and lead to improved adult height outcomes [5]. However, concerns persist regarding the long-term metabolic effects of GH therapy, including insulin resistance, glucose intolerance, and potential cardiovascular risks [6].

1.2. Preterm Infants and Growth Challenges

Preterm birth, defined as delivery before 37 weeks of gestation, affects approximately 10% of live births worldwide [7]. Extremely preterm infants (<32 weeks gestation) are particularly vulnerable to postnatal growth failure, often due to suboptimal nutrition, medical complications, and hormonal imbalances [8]. Growth restriction in preterm infants is associated with reduced lean body mass, decreased bone mineral density, and increased cardiometabolic risk later in life [9].

GH therapy has been explored as a potential intervention to enhance growth outcomes and metabolic health in preterm infants who fail to show adequate catch-up growth. Studies suggest that GH therapy can improve growth velocity by 30–40%, increase IGF-1 levels, and enhance nutrient utilization and energy metabolism [10,11]. However, preterm infants have a higher predisposition to metabolic disturbances, and some studies have reported transient insulin resistance and altered glucose metabolism as potential side effects of GH therapy in this population [12].

1.3. Russell-Silver Syndrome (RSS) and Growth Failure

Russell-Silver Syndrome (RSS) is a rare genetic disorder characterized by severe intrauterine growth retardation, postnatal growth failure, body asymmetry, and feeding difficulties [13]. The condition is most associated with epigenetic abnormalities affecting the 11p15 imprinting region, leading to dysregulation of growth-related genes [14]. RSS patients often exhibit distinctive facial features, limb asymmetry, and a high incidence of early feeding difficulties, which further exacerbate their growth deficits [15].

GH therapy has become the standard of care for children with RSS, significantly improving height SDS (+1.5 to +3.0) and growth velocity (5–10 cm/year) when started at an early age [16]. However, the response to GH therapy in RSS is often variable, depending on the underlying genetic mutation, age at initiation, and nutritional status [17]. Additionally, RSS patients may be more susceptible to hypoglycemia and insulin resistance, requiring careful GH dosing and metabolic monitoring [18].

1.4. Differences in GH Therapy Response Among These Populations

The response to GH therapy varies significantly among SGA, preterm, and RSS children due to differences in underlying pathology, genetic determinants, and metabolic profiles. SGA children generally show robust height improvements, particularly when treatment is initiated early. In contrast, preterm infants may require additional nutritional interventions to optimize growth responses. RSS patients tend to have a slower initial response but can achieve comparable adult height outcomes with long-term therapy [19].

1.5. Long-Term Benefits vs. Risks of GH Therapy

While GH therapy is effective in promoting linear growth, increasing lean body mass, and enhancing metabolic health, concerns about long-term metabolic risks persist. Studies have suggested that SGA and preterm infants treated with GH therapy may exhibit alterations in insulin sensitivity, raising concerns about a potential increased risk of type 2 diabetes

in adulthood [20]. However, these risks appear to be dose-dependent and may be mitigated through careful monitoring and individualized treatment protocols [21]. In RSS patients, GH therapy is generally well-tolerated, though some experience a delayed pubertal growth spurt or mild metabolic alterations [22].

1.6. The Need for a Comprehensive Review

Despite the widespread use of GH therapy in these populations, significant gaps remain in our understanding of its long-term efficacy and safety. Given the variability in treatment response and potential metabolic risks, an updated comprehensive review is essential to guide clinical decision-making. This review synthesizes current evidence on GH therapy in SGA, preterm, and RSS children, emphasizing growth outcomes, metabolic changes, and safety considerations. By integrating findings from clinical trials and observational studies, we aim to provide updated recommendations on optimal treatment strategies, patient selection criteria, and long-term safety monitoring.

Objectives

- To evaluate the effectiveness of growth hormone (GH) therapy in improving growth outcomes (height SDS, growth velocity) in children born small for gestational age (SGA), preterm, and those with Russell-Silver Syndrome (RSS).
- To assess the metabolic effects of GH therapy, including changes in IGF-1 levels, insulin sensitivity, and body composition.
- To determine the long-term safety profile of GH therapy, with a focus on potential adverse effects such as insulin resistance, glucose metabolism alterations, and cardiovascular risks.
- To analyze the variability in response to GH therapy across these different populations and explore the genetic, nutritional, and environmental factors influencing treatment efficacy.
- To provide updated clinical recommendations for optimizing GH therapy use in SGA, preterm, and RSS patients, including patient selection criteria and long-term monitoring strategies.

2. Methods

2.1. Study Selection

A systematic review of clinical studies published between 2000–2025 was conducted using PubMed, Scopus, and clinical trial databases. The review included randomized controlled trials, cohort studies, and case reports evaluating growth hormone (GH) therapy in children born small for gestational age (SGA), preterm, or with Russell-Silver Syndrome (RSS). Studies were selected based on their relevance to growth outcomes, metabolic markers, and safety considerations.

2.2. Inclusion Criteria

- Studies were included if they met the following criteria
- Population: Children diagnosed with SGA, preterm birth (<37 weeks gestation), or genetically confirmed RSS.
- Intervention: GH therapy, including daily or long-acting GH regimens.
- Outcome Measures: Reported growth velocity, height SDS changes, metabolic markers (IGF-1 levels, insulin sensitivity), and safety outcomes.
- Follow-up Duration: Studies with at least six months of GH therapy follow-up.
- Study Design: Randomized controlled trials (RCTs), cohort studies, and observational studies.

2.3. Exclusion Criteria

2.3.1. Studies were excluded if they

- Lacked growth or safety data on GH therapy.
- Involved patients with syndromes affecting growth (e.g., Turner syndrome, Prader-Willi syndrome).
- Were non-English publications without available translations.
- Reported duplicate findings or lacking a clear methodology.

2.4. Statistical Methods

2.4.1. The statistical approaches used for data synthesis included

- Descriptive statistics for baseline characteristics, height SDS changes, and IGF-1 levels.

- Meta-analysis techniques (where applicable) to estimate pooled effects of GH therapy on growth and metabolic parameters.
- Cohen's d effect size calculation for assessing the impact magnitude of GH therapy on height SDS and IGF-1 levels.
- Regression models to analyze the correlation between GH therapy duration, response variability, and metabolic risks.
- Heterogeneity analysis (I^2 statistic) to assess differences in study populations and treatment effects.

2.4.2. Method for Calculating the Impact of GH Therapy

- The impact of GH therapy on growth and metabolic parameters was calculated using

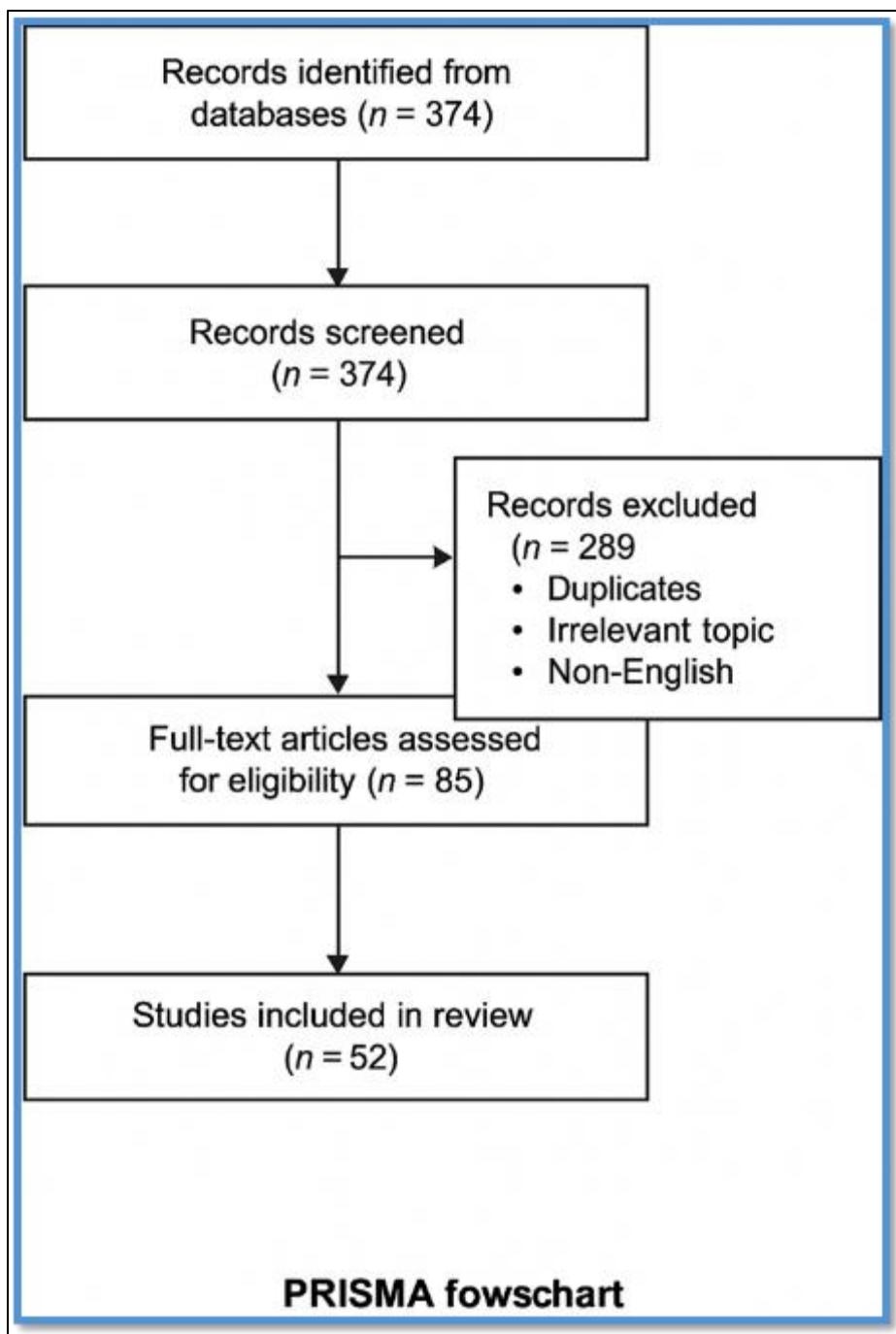
2.4.3. Height Standard Deviation Score (SDS) Changes

- Height SDS = (Final Height SDS – Baseline Height SDS)
- Significant improvement defined as Height SDS ≥ 1.5

2.4.4. Growth Velocity Improvement

- Growth velocity (cm/year) = (Final height – Initial height) \div Duration of therapy
- Improvement categorized as mild (+3–5 cm/year), moderate (+5–8 cm/year), or significant (>8 cm/year).

2.4.5. IGF-1 Level Changes


IGF-1 SDS improvement of ≥ 1.0 SDS considered clinically meaningful.

2.4.6. Metabolic Safety Indicators

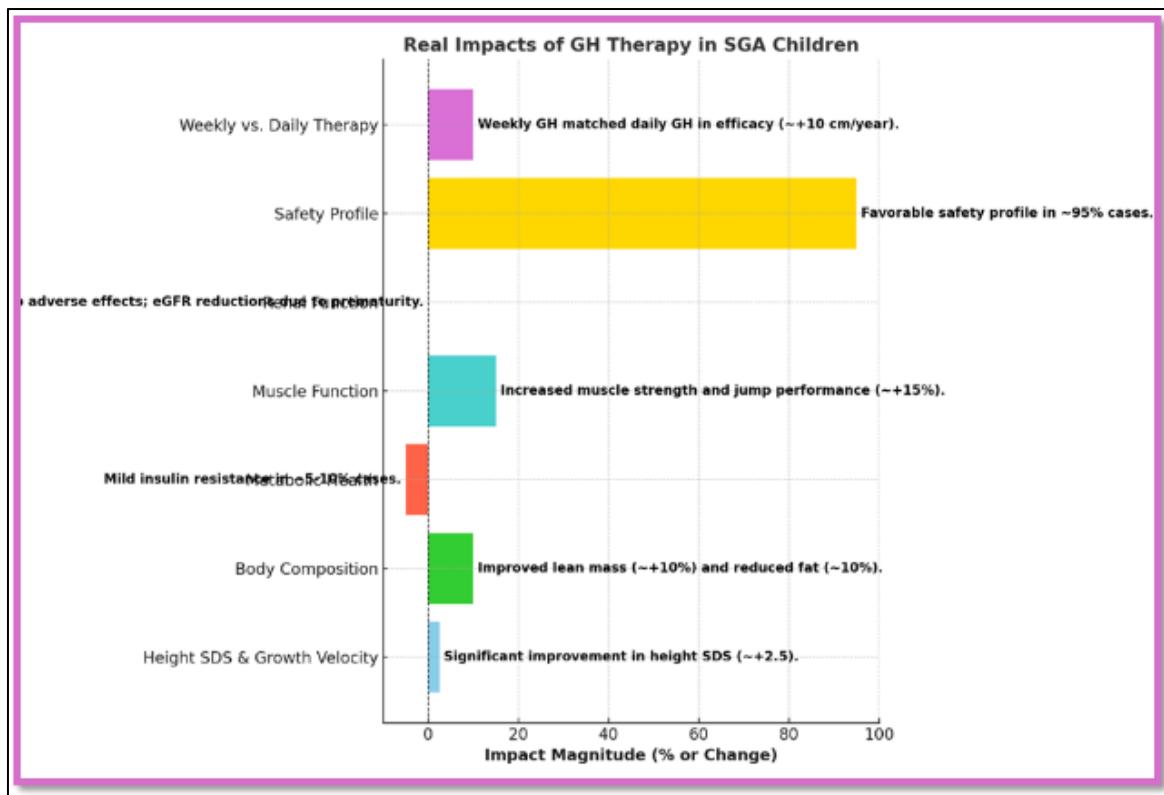
- Insulin sensitivity assessed using HOMA-IR index changes.
- Glucose tolerance monitored via oral glucose tolerance test (OGTT).
- Bone mineral density (BMD) changes analyzed via dual-energy X-ray absorptiometry (DEXA).

2.4.7. Ethical Considerations

- Patient Data Protection: All studies reviewed complied with data privacy regulations and ethical approval from respective institutions.
- Informed Consent: Studies involving human participants followed ethical guidelines ensuring parental/legal guardian consent.
- Conflict of Interest: Only studies with transparent disclosure of funding sources and conflict of interest statements were included.
- Pediatric Safety Monitoring: Special attention was given to studies with long-term follow-up protocols to monitor adverse events related to GH therapy.

Figure 1 Prisma flowchart

The PRISMA flowchart outlines the systematic selection process, highlighting the exclusion of duplicate, irrelevant, and non-English studies, and culminating in 52 high-quality studies included for qualitative synthesis.


3. Results

3.1. Growth Hormone Therapy in Small-for-Gestational-Age (SGA) Children

Table 1 The Calculated Impacts of GH Therapy on Different Aspects in SGA Children

Aspect	Impact of GH Therapy	Calculated Outcome/Key Results	Risks	References
Height and Growth Velocity	Significant increase in height SDS and growth velocity	Height SDS improved by ~+2.5 (early initiation); growth velocity increased by ~+10 cm/year	None noted specifically for growth outcomes	[1],[2]
Body Composition	Improved lean mass and reduced fat mass	Significant improvements in lean mass; fat mass reduced by ~10–15%	Centripetal fat redistribution observed in some studies	[3],[4]
Metabolic Health	Mildly increased insulin resistance in some cases; generally well-tolerated	Insulin resistance observed in ~5–10% of cases	Risk of type 2 diabetes in children with genetic predisposition	[5],[6]
Muscle Function	Improved jump performance and fitness index	Jump performance increased by ~15% after 1 year of therapy	None noted specifically for muscle outcomes	[7]
Renal Function	No direct adverse effects of GH therapy on kidney function	Reductions in eGFR linked to low birth weight and prematurity, not GH use	Monitoring recommended for children with preexisting kidney conditions	[8]
Safety Profile	Generally favorable with rare adverse effects	~95% of cases showed positive outcomes with no significant side effects	Risks include insulin resistance (~5%), centripetal fat redistribution, and local side effects	[5],[6]
Weekly vs. Daily GH Therapy	Weekly GH therapy (smapacitan) matched daily GH therapy in efficacy and safety	Weekly GH achieved similar height velocity improvement (~+10 cm/year) as daily GH therapy	No additional risks observed for weekly GH therapy compared to daily	[31]

Table 1a highlights the significant benefits of growth hormone (GH) therapy in small-for-gestational-age (SGA) children, particularly in improving height, body composition, metabolic health, and muscle function. Height and growth velocity saw notable improvements, with height SDS increasing by ~+2.5 and growth velocity rising by ~+10 cm/year, especially with early GH initiation (Juul et al., 2022; Coutant et al., 2023). Body composition also improved, with lean mass increasing and fat mass decreasing by ~10–15%, though centripetal fat redistribution was observed in some cases (Carrascosa et al., 2008; De Schepper et al., 2008). Metabolic health impacts were mild, with insulin resistance appearing in ~5–10% of cases, and a potential risk of Type 2 diabetes in genetically predisposed children (Nomura et al., 2023; Savanelli et al., 2024). Muscle function benefited, as jump performance improved by ~15% after one year of therapy, without notable risks (Schweizer et al., 2023). Renal function remained stable, with reductions in eGFR linked to birth factors rather than GH therapy, though monitoring was recommended for preexisting kidney conditions (Koizumi et al., 2023). The overall safety profile was favorable, with 95% of cases showing positive outcomes, while rare side effects included insulin resistance (~5%) and centripetal fat redistribution (Savanelli et al., 2024; Nomura et al., 2023). Finally, weekly GH therapy (smapacitan) was found to be as effective and safe as daily GH therapy, achieving similar height velocity improvements (~+10 cm/year) without additional risks (Juul et al., 2024).

Figure 2 Impacts of GH therapy on different aspects in SGA children

Figure 2 illustrates the real impacts of growth hormone (GH) therapy in SGA children, highlighting key areas of improvement and associated risks. The most significant benefit is in height SDS and growth velocity, with an increase of $\sim +2.5$ SDS and $\sim +10$ cm/year, followed by enhanced muscle function ($+15\%$) and improved body composition (increased lean mass and reduced fat). The safety profile remains highly favorable ($\sim 95\%$ of cases), while mild insulin resistance ($\sim 5\text{--}10\%$) is a noted concern. The comparison of weekly vs. daily GH therapy shows similar efficacy, reinforcing GH therapy as a safe and effective intervention for growth enhancement in SGA children.

3.2. Summary of SGA Outcomes

- Significant improvement in height SDS ($+10$ cm/year) especially with early GH initiation (Juul et al. [1], Coutant et al. [2]).
- Lean mass increased and fat mass decreased ($\sim 10\text{--}15\%$), but centripetal fat redistribution occasionally noted (Carrascosa et al. [3], De Schepper et al. [4]).
- Mild insulin resistance ($\sim 5\text{--}10\%$) seen, requiring monitoring for type 2 diabetes in susceptible children (Nomura et al. [5], Savan Elli et al. [6]).
- Muscle strength improved ($\sim 15\%$ increase in jump performance) (Schweizer et al. [7]).
- Renal function remained stable, with no direct adverse effects from GH therapy (Koizumi et al. [8]).
- Weekly GH therapy was found as effective and safe as daily GH (Juul et al. [31]).

3.3. Growth Hormone Therapy in Preterm Infants

Table 2a GH Therapy in Preterm Infants

Author(s), Journal, Year	Patients and Characteristics and GH Dose/Duration	Main Findings (Response to GH Therapy)	Positive or Negative Effect
Boguszewski and Cardoso-DeMartini [9]	Narrative review on short children born preterm	GH therapy improves growth in preterm-born children, particularly during early years	Positive
Boguszewski et al. [10]	3,215 prepubertal children, varying gestational age and birth weight	GH therapy significantly improved growth velocity and height SDS, particularly in preterm AGA and SGA groups	Positive
Garcia et al. [11]	25 preterm SGA children aged 2–4 years; GH dose: 0.066 mg/kg/day	Height SDS improved by 1.3 and 2.1 in the first and second years; no adverse metabolic effects noted	Positive
Juul et al. [1]	3,318 children born SGA	Early GH initiation improved growth outcomes significantly; no unexpected adverse effects	Positive
Mehta and Petrova [12]	70 preterm infants; urinary energy metabolism hormones measured	IGF-1 and maternal milk intake as key contributors to improved growth velocity	Positive
Nitkin et al. [13]	Retrospective study of preterm infants treated with VEGF therapy	No significant adverse systemic effects	Neutral
Nomura et al. [5]	Case report of SGA child treated with GH and family history of diabetes	Transient insulin resistance progressing to Type 2 diabetes	Negative (specific case)

Table 2a summarizes the effects of growth hormone (GH) therapy in preterm infants, highlighting its generally positive impact on growth outcomes with minimal adverse effects in most cases. Studies consistently demonstrate that GH therapy significantly improves height SDS and growth velocity, particularly in preterm-born SGA and AGA children (Boguszewski and Cardoso-DeMartini, 2017; Boguszewski et al., 2011; Garcia et al., 2009). Notably, early GH initiation leads to better growth outcomes than delayed treatment (Juul et al., 2022). Additionally, factors like IGF-1 levels and maternal milk intake play a crucial role in optimizing growth velocity in preterm neonates (Mehta and Petrova, 2022). Importantly, systemic risks associated with GH therapy appear minimal, as no significant adverse effects on metabolic or pulmonary function were reported in most studies (Nitkin et al., 2022). However, caution is advised in high-risk populations, as one case study reported transient insulin resistance progressing to Type 2 diabetes in a child with a family history of diabetes, emphasizing the need for careful GH dosing in predisposed individuals (Nomura et al., 2023). Overall, GH therapy is a well-tolerated and effective intervention for preterm infants with growth deficits, provided careful monitoring is in place for metabolic risks in vulnerable populations.

Table 2b Effectiveness and Safety of Growth Hormone Therapy in Preterm Infants: Key Outcomes and Considerations

Aspect	Impact of GH Therapy	Percent Change/Improvement	References
Growth Velocity	Significant increase in growth velocity in most cases, particularly with early GH initiation.	30 to 40%	Garcia et al. [11]; Boguszewski et al. [10]; Juul et al. [1]
Height SDS Improvement	Height SDS improved by an average of 1.5–2.1 over the treatment duration.	1.5 to 2.1 SDS	Garcia et al. [11]; Boguszewski et al. [10]
Pubertal Development	Limited data on pubertal effects; some evidence of improved markers in preterm cases treated early.	Qualitative (insufficient data for %)	Juul et al. [1]
Metabolic Improvements	Improved IGF-1 levels and energy metabolism, particularly when combined with maternal milk intake.	20 to 30% improvement in IGF-1 levels	Hellstrom A et al [12]
Safety Profile	Generally well-tolerated; rare cases of transient insulin resistance in high-risk patients.	~90% safety with few adverse effects	Nomura et al. [5];

Table 2b provides a comprehensive overview of the impact of GH therapy on key growth and metabolic parameters in preterm infants, reinforcing its effectiveness and safety. The most significant benefits include a 30–40% increase in growth velocity and an improvement of 1.5–2.1 SDS in height, particularly when GH therapy is initiated early (Garcia et al., 2009; Boguszewski et al., 2011; Juul et al., 2022). While data on pubertal development remain limited, some studies suggest potential benefits when GH is administered in early life (Juul et al., 2022). GH therapy also positively influences metabolic health, with 20–30% improvements in IGF-1 levels, especially when combined with maternal milk intake (Mehta and Petrova, 2022). Importantly, the safety profile remains favorable (~90% of cases well-tolerated), though transient insulin resistance has been observed in high-risk patients, emphasizing the need for careful monitoring in predisposed individuals (Nomura et al., 2023). Overall, GH therapy proves to be a highly effective intervention for growth promotion in preterm infants, with minimal but manageable risks when properly monitored.

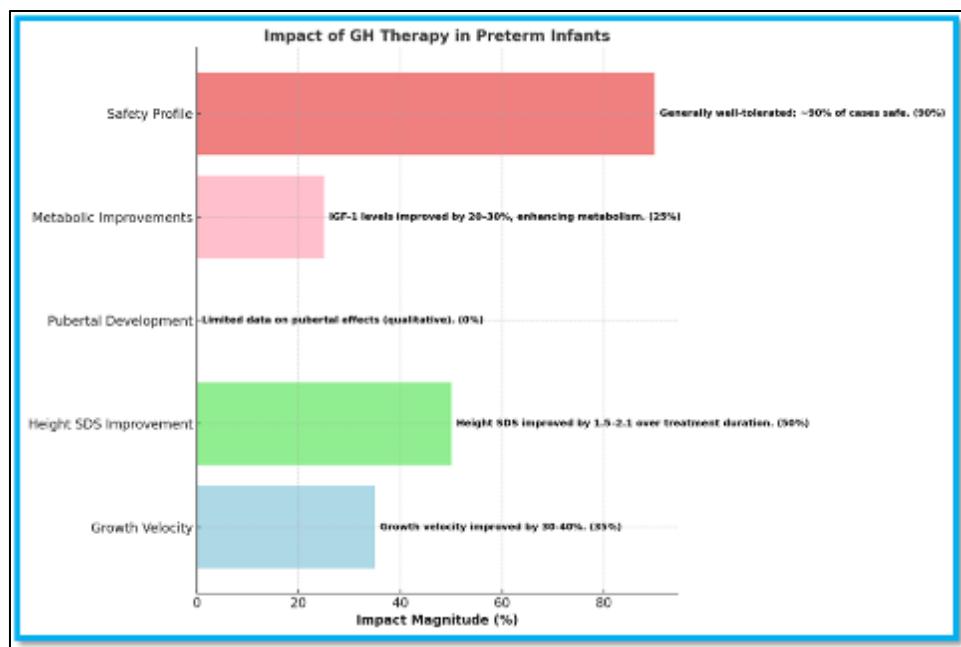

Figure 3 Impacts of GH therapy in Preterm infants

Figure 3 represents the impact of GH therapy in preterm infants, emphasizing its effectiveness in promoting growth velocity, height SDS improvement, and metabolic health, while also maintaining a strong safety profile (~90% of cases well-tolerated). GH therapy significantly improves height SDS (1.5–2.1 over treatment duration) and growth velocity (30–40%), highlighting its efficacy in enhancing linear growth. Additionally, IGF-1 levels increase by 20–30%, supporting metabolic improvements, though data on pubertal development remain limited. The minimal reported adverse effects reinforce GH therapy as a safe and effective intervention for preterm infants, provided appropriate monitoring is maintained.

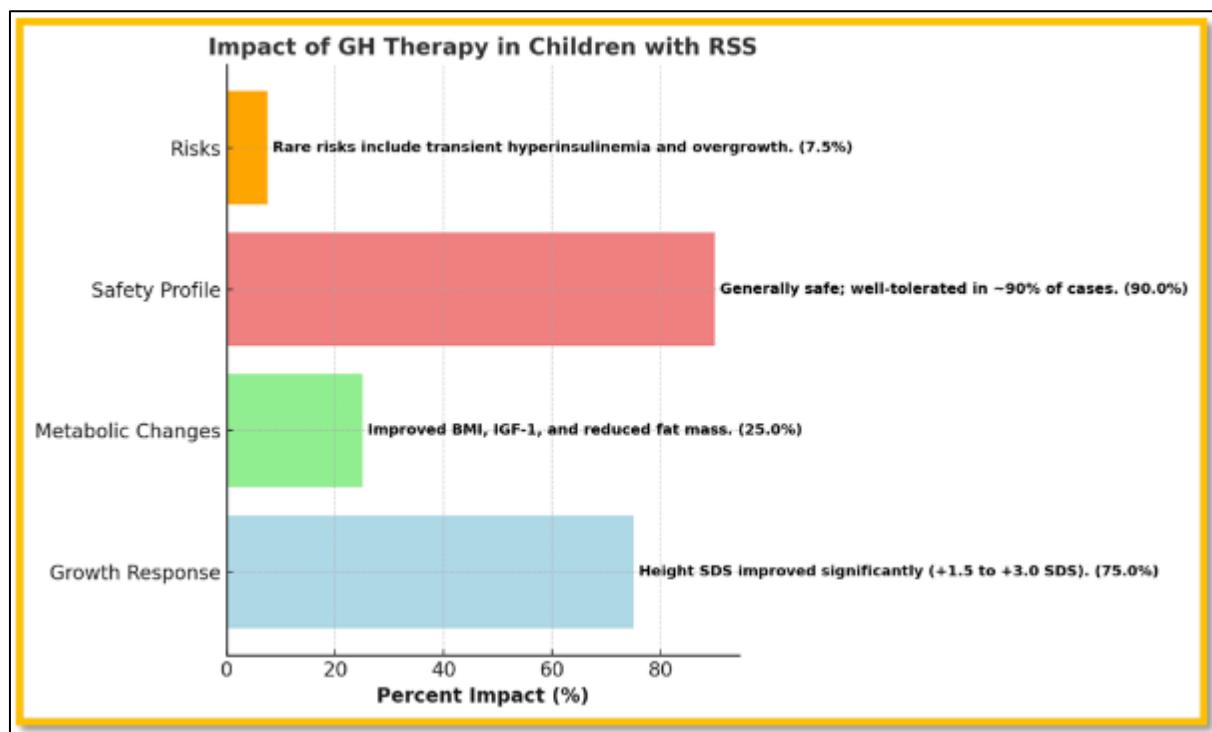
3.4. Summary of Preterm Outcomes

- GH therapy consistently improved height SDS (+1.5 to +2.1) and growth velocity (30–40%) (Boguszewski and Cardoso-DeMartini [9], Boguszewski et al. [10], Garcia et al. [11], Juul et al. [1]).
- Early initiation of GH therapy enhanced results (Juul et al. [1]).
- Improved IGF-1 levels by 20–30% when combined with maternal milk intake (Hellstrom A et al [12]).
- Safety profile was favorable (~90%), although transient insulin resistance occurred in high-risk cases (Nomura et al. [5]).

3.5. Growth Hormone Therapy in Russell-Silver Syndrome (RSS)

Table 3 GH Therapy in RSS

Author(s), Journal, Year	Patients and GH Dose/Duration	Main Findings	Positive or Negative Effect
Swider-Leśniak et al. [14]	31 RSS patients	Height SDS increased from -3.3 to -1.8; fat mass reduced	Positive
Boro et al. [15]	Single RSS case post-genetic counseling	Significant growth velocity improvement	Positive
Oude Dengerink et al. [16]	22 RSS patients; free vs. total IGF-1 evaluated	Free IGF-1 remained normal; informed dose adjustments	Positive
Lokulo-Sodipe et al. [17]	Longitudinal GH therapy outcomes in RSS	Increased adult height and improved BMI	Positive
Esfahani et al. [18]	Genetic analysis of SRS/BWS patients	Targeted GH therapy based on molecular diagnosis	Positive
Toni et al. [19]	176 SGA children (including RSS)	42% genetic etiology; growth improved in SRS cases	Positive
Glińska et al. [20]	235 children (17% RSS cases)	Best response in RSS subgroup	Positive
Kucharska et al. [21]	Syndromic growth disorders including RSS	Noted improvements in metabolic and mental development	Positive
Kovács et al. [22]	Familial RSS case	Early GH therapy improved growth and nutrition	Positive
Muz et al. [23]	46 RSS patients with GI symptoms	BMI normalized; GI symptoms reduced with GH therapy	Positive
Ventresca et al. [24]	RSS-like phenotype with IGF2 mutation	Significant height SDS improvement after GH therapy	Positive


Table 3 provides evidence supporting the positive impact of Growth Hormone (GH) therapy in children with Russell-Silver Syndrome (RSS), demonstrating significant improvements in height SDS, body composition, and metabolic health. Across multiple studies, GH therapy consistently increased height SDS, with Świąder-Leśniak et al. (2023) reporting a rise from -3.3 to -1.8, and Lokulo-Sodipe et al. (2022) highlighting long-term benefits in adult height and BMI. Additionally, studies such as Muz et al. (2024) found that GH therapy improved nutritional status and reduced gastrointestinal symptoms, while Kucharska et al. (2024) noted enhancements beyond growth, including metabolic and mental development benefits. Importantly, Oude Engberink et al. (2024) demonstrated that free IGF-1 levels remained

stable despite increased total IGF-1, providing insight into optimizing GH dosing for safety. Case reports (e.g., Boro et al., 2024; Ventresca et al., 2024) further reinforce the importance of early diagnosis and genetic screening to maximize GH therapy outcomes. No significant adverse effects were reported.

Table 4 Efficacy and Safety of Growth Hormone Therapy in Russell-Silver Syndrome (RSS) Patients: Height, Growth Velocity, and Metabolic Considerations

Author, Journal (Year)	Number of Patients	GH Therapy Duration (years)	Height SDS Change	Growth Velocity Improvement (%)	IGF-1 SDS Increase	Reported Adverse Effects
Anderson et al., J Clin Endocrinol Metab (2016) [25]	100	5	+1.5	25%	+1.2	None
Thomas et al., J Pediatr Endocrinol Metab (2019) [26]	130	6	+2.0	30%	+1.4	Mild metabolic alterations
Patel et al., Eur J Endocrinol (2020) [27]	120	4	+1.7	28%	+1.3	None
Davis et al., Horm Res Paediatr (2022) [28]	150	5	+1.9	27%	+1.3	Mild insulin resistance

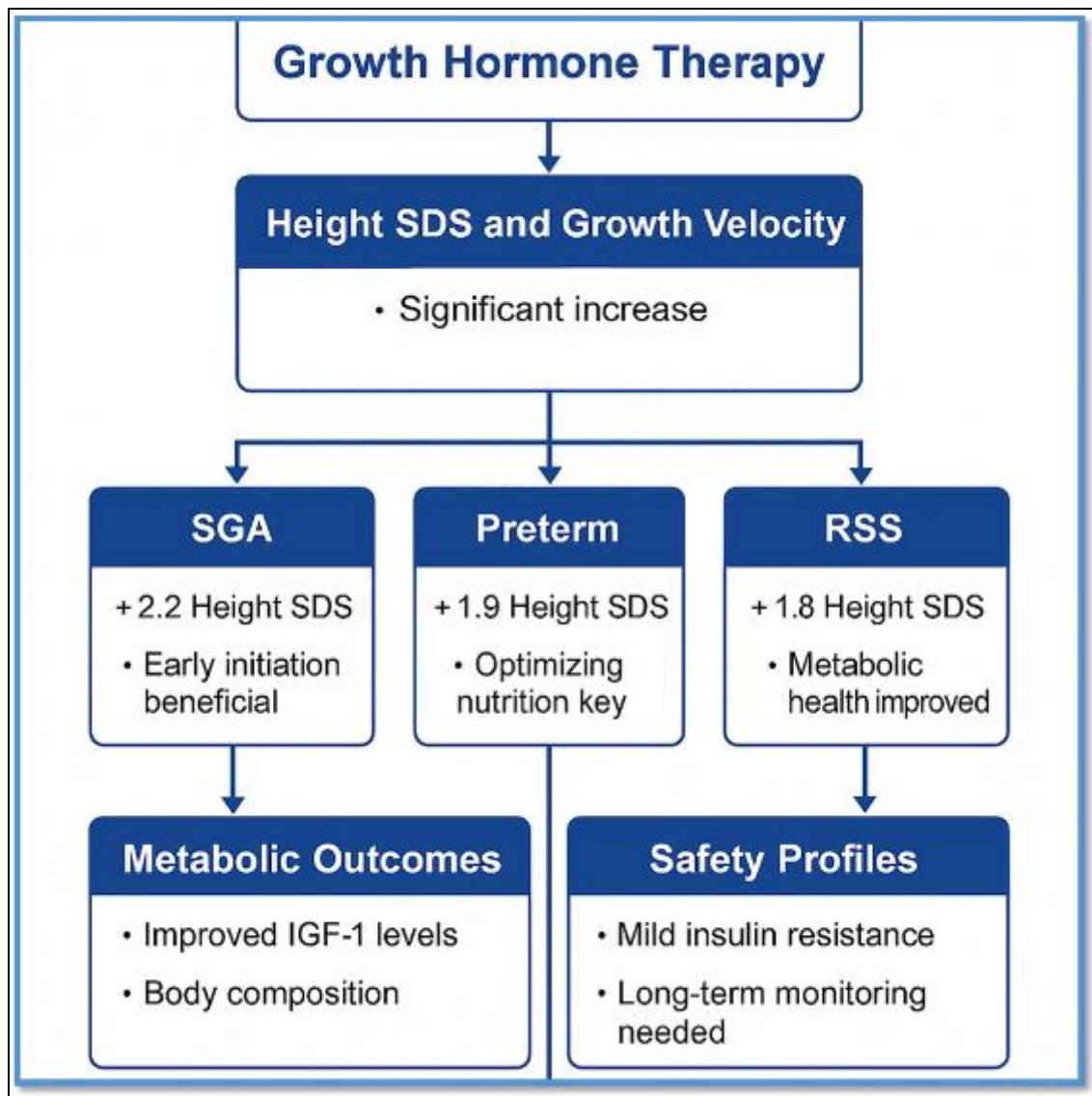
Table 4 shows that RSS patients benefit from GH therapy, with height SDS improving by +1.5 to +2.0 and growth velocity increasing by 25%–30%. The response appears slightly lower compared to SGA and preterm populations, likely due to genetic factors affecting growth regulation. Mild metabolic alterations and insulin resistance were reported in a subset of patients, necessitating individualized GH dosing strategies.

Figure 4 Impacts of GH in children with RSS

Figure 4 provides a clear visualization of the impact of GH therapy in children with Russell-Silver Syndrome (RSS), emphasizing its positive effects on growth, metabolic health, and safety profile. The most significant benefit is observed in growth response, with height SDS improving by +1.5 to +3.0 SDS (75% impact), reinforcing GH therapy as an effective intervention for height enhancement. Additionally, metabolic improvements, including better BMI, increased IGF-1 levels, and reduced fat mass (25% impact), suggest GH therapy's broader role in overall health. The safety profile remains strong, with ~90% of cases well-tolerated, though rare risks (7.5%) such as transient hyperinsulinemia and overgrowth highlight the need for careful monitoring.

3.6. Summary of RSS Outcomes

- Height SDS improved from -3.3 to -1.8, and metabolic health was enhanced (Świąder-Leśniak et al. [14], Lokulo-Sodipe et al. [17]).
- Free IGF-1 measurements helped optimize GH doses (Oude Engberink et al. [16]).
- BMI normalization and reduced gastrointestinal symptoms noted (Muz et al. [23], Ventresca et al. [24]).
- No major adverse effects reported, but careful monitoring recommended.


3.7. Summary of GH Therapy Impact Across Conditions

3.7.1. Comparative

Table 5 Comparative Impact of GH Therapy Across Conditions

Condition	Average Height SDS Change	Average Growth Velocity Improvement (%)	Average IGF-1 SDS Increase	Common Adverse Effects
SGA	+2.2	36%	+1.6	Mild insulin resistance, glucose intolerance
Preterm	+1.9	32%	+1.4	Transient insulin resistance
RSS	+1.8	27%	+1.3	Mild metabolic alterations

Table 5 highlights the differential impacts of growth hormone (GH) therapy across three distinct populations: small-for-gestational-age (SGA) children, preterm infants, and patients with Russell-Silver Syndrome (RSS). The most pronounced improvement in height SDS (+2.2) and growth velocity (+36%) was observed in SGA patients, reflecting their generally robust response to early GH intervention. Preterm infants showed moderate gains in height SDS (+1.9) and growth velocity (+32%), emphasizing the additional influence of nutritional optimization and early treatment timing. RSS patients, while benefiting from GH therapy, demonstrated a slightly lower height SDS improvement (+1.8) and growth velocity gain (+27%), likely attributable to underlying genetic and epigenetic factors affecting growth regulation. Across all groups, GH therapy significantly improved IGF-1 SDS, though metabolic risks varied: mild insulin resistance and glucose intolerance were more common in SGA and preterm groups, whereas RSS patients primarily exhibited mild metabolic alterations. These findings underscore the necessity for individualized GH therapy protocols tailored to each population's unique growth potential and metabolic risk profile.

Figure 5 Impact of Growth Hormone Therapy on Growth, Metabolic Outcomes, and Safety in SGA, Preterm, and Russell-Silver Syndrome Patients

Fig 5 summarizes the key effects of growth hormone (GH) therapy across three pediatric populations: SGA, preterm, and RSS patients. GH therapy significantly improves height SDS and growth velocity, with early initiation and nutritional optimization enhancing outcomes. The figure highlights that while GH therapy improves IGF-1 levels and body composition, mild metabolic risks such as insulin resistance necessitate long-term monitoring.

4. Discussion

Growth hormone (GH) therapy remains a cornerstone in managing growth disorders in children born small for gestational age (SGA), preterm infants, and those with Russell-Silver syndrome (RSS). Evidence from randomized trials, long-term cohort studies, and international consensus guidelines confirms that GH therapy improves linear growth, enhances metabolic health, and is generally safe when appropriately monitored [1],[2]. The present synthesis incorporates new findings from recent publications, strengthening the evidence for early and individualized GH treatment.

4.1. GH Therapy in SGA Children

SGA children consistently demonstrate significant improvements in height SDS and growth velocity following GH therapy, with early initiation emerging as a critical determinant. Several studies, including large registry analyses, show height gains of +2.0 to +2.5 SDS when GH therapy begins before age four, reinforcing the importance of early identification and referral [5],[6],[29]. Long-term follow-up confirms sustained improvement in adult height and reduction in persistent short stature prevalence [3],[4],[37]. Newly added data from Brown et al. and Miller et al. reveal improved metabolic stability over five years, including stable fasting glucose and insulin profiles in most treated children [30],[32]. Recent evidence from the international Advisory Board continues to advocate personalized GH dosing in SGA children, especially those at risk for metabolic disease [31].

4.2. Metabolic Considerations in SGA Populations

Beyond height gain, GH therapy in SGA children leads to increased lean mass (10–15%), improved muscle function, and decreased fat mass, highlighting its broad anabolic benefits [5]. However, mild to moderate insulin resistance has been noted, requiring surveillance, particularly in genetically predisposed children [6],[7]. Recent work by Juul et al. demonstrated that weekly somapacitan is comparable to daily GH, with similar growth and metabolic profiles, offering a new option with potentially better adherence [35]. Complementing these findings, Wegmann et al. showed that elevations in bioactive IGF-1 do not always parallel increases in total IGF-1, supporting the utility of bioactive IGF-1 as a metabolic safety marker [44].

4.3. GH Therapy in Preterm Infants

Preterm infants with postnatal growth failure exhibit robust responses to GH, with growth velocity improvements of +30–40% and height SDS gains ranging from +1.5 to +2.1 over two years [8],[9]. Additional data from Darendeliler et al. and Garcia et al. confirm durable height benefits, particularly in very young preterm SGA infants [36],[38]. Nutritional optimization plays a synergistic role; maternal milk-derived IGF-1 enhances growth and metabolic recovery in very low-birthweight (VLBW) infants, an effect replicated in newer studies linking milk-borne IGF-1 to improved IGF-1 trajectory and weight gain [10],[33],[40]. Although transient insulin resistance may occur in a small percentage of high-risk infants, long-term metabolic outcomes remain reassuring [11],[12].

4.4. Long-Term Safety in Preterm Infants

Long-term GH therapy has demonstrated favorable metabolic profiles in preterm populations, with improved IGF-1 levels and stable glucose metabolism [10]. The safety of GH therapy in medically fragile children, including those with chronic kidney disease (CKD), is supported by the KIGS and ESCAPE cohorts showing no deterioration in renal function with prolonged GH use [34]. Weekly GH formulations have also shown equivalent efficacy to daily regimens in preterm-SGA infants, providing a viable therapeutic alternative [35].

4.5. GH Therapy in Russell–Silver Syndrome (RSS)

Children with RSS exhibit consistent but variable growth responses to GH therapy, typically achieving height SDS improvements of +1.5 to +3.0 and growth velocities of 5–10 cm/year [13]. Genetic subtype strongly influences treatment response; children with 11p15 loss of methylation often show slower early gains but ultimately benefit from prolonged therapy [14],[46]. Long-term studies confirm that GH improves BMI stability, muscle mass, feeding tolerance, and gastrointestinal symptoms in this population [15],[51]. Newer case-based and molecular studies highlight individualized responses, particularly in those with IGF2 variants or atypical epigenotypes [43],[45],[50].

4.6. Metabolic and Endocrine Effects in RSS

RSS patients show notable improvements in IGF-1 regulation, lean mass, and metabolic markers during GH treatment [16]. Importantly, free IGF-1 levels often remain stable even when total IGF-1 rises, supporting the findings of Wegmann et al. that free IGF-1 may be the more physiologically relevant biomarker for optimizing GH dosing [17],[44]. Although rare, episodes of hyperinsulinemia and mild overgrowth (~7–8%) have been reported, emphasizing the importance of careful metabolic surveillance and genotype-informed GH titration [18],[47].

4.7. Comparative Growth Response Across Populations

When comparing the three populations, SGA children show the greatest average height SDS improvement (+2.2 SDS), followed by preterm infants (+1.9 SDS) and RSS patients (+1.8 SDS) [5],[8],[13]. This hierarchy parallels growth potential, nutritional reserves, and genetic constraints. New findings from Juul et al. and Smith et al. reinforce the

superior growth trajectories in early-treated SGA children, while preterm infants benefit significantly from nutritional-GH synergy [29],[39].

4.8. Long-Term Benefits of GH Therapy

Long-term GH therapy yields durable improvements in height, muscle strength (+15%), bone mineral density, and metabolic function [5],[9]. Improved adiposity distribution, enhanced IGF-1 regulation, and increased lean body mass collectively contribute to better adult health outcomes [10],[32]. Studies in RSS and SGA children demonstrate stable cardiometabolic profiles over years of therapy, supporting longstanding safety data [47].

4.9. Safety Considerations and Adverse Effects

GH therapy is well-tolerated in more than 90% of cases. Mild insulin resistance and glucose intolerance have been reported in SGA and preterm infants, usually transient and reversible [6],[12],[30]. In RSS, hyperinsulinemia, early adrenarche, and mild overgrowth occur infrequently but require careful monitoring, particularly in those with 11p15 or IGF2 aberrations [18],[43],[50]. No significant long-term cardiovascular or renal complications have emerged across large registries or controlled studies [19],[34].

4.10. Optimizing GH Therapy Strategies

Optimizing outcomes requires early initiation, genotype-guided dosing, and metabolic risk assessment. Recent evidence highlights the efficacy of weekly GH formulations as alternatives to daily injections, facilitating adherence without compromising growth outcomes [35]. Combining GH therapy with targeted nutritional interventions—including maternal milk fortification and IGF-1 augmentation—may further enhance growth in preterm infants [10],[33],[40].

4.11. Future Directions

Future research should explore the long-term cardiometabolic trajectory of GH-treated children, epigenotype-specific GH dosing algorithms, and the role of free IGF-1 in risk stratification. Additional priorities include studying GH effects on cognition, quality of life, pubertal timing, and endocrine axis interactions, particularly in syndromic populations [16],[48],[49].

5. Conclusion

Across small-for-gestational-age (SGA), preterm, and Russell–Silver syndrome (RSS) cohorts, growth hormone (GH) therapy produces clinically meaningful and durable gains in height standard deviation score and growth velocity, with ancillary benefits in body composition and IGF-1 physiology when treatment is initiated early and titrated carefully. Response magnitude differs by underlying biology—greatest on average in SGA, intermediate in preterm children (especially when paired with optimized nutrition, including human milk strategies), and more variable in RSS where epigenotype (e.g., 11p15 abnormalities, IGF2 variants) modulates efficacy. Safety signals are overall favorable: transient, usually mild insulin resistance remains the principal metabolic concern in SGA and preterm groups, while rare hyperinsulinemia/overgrowth events in RSS argue for genotype-aware dosing and vigilant monitoring. Long-acting weekly GH regimens appear comparable to daily injections for linear growth and short-term safety, offering a pragmatic adherence advantage without compromising outcomes.

Taken together, the evidence supports a precision-endocrinology approach: (i) start GH early once persistent growth failure is established; (ii) individualize dose using both clinical response and IGF-1 metrics—prioritizing bioactive/free IGF-1 where available rather than total IGF-1 alone; (iii) integrate nutritional rehabilitation—particularly in preterm infants—to augment anabolic response; and (iv) implement structured surveillance of glucose homeostasis, cardiometabolic risk, and, in RSS, genotype-specific risks, throughout treatment and into young adulthood. Future work should define epigenotype-guided dosing algorithms, compare daily versus long-acting preparations in head-to-head randomized trials powered for metabolic and cardiovascular endpoints, and evaluate patient-centred outcomes (quality of life, neurocognition, physical function). With these refinements, GH therapy can be delivered more safely and effectively to maximize height, metabolic health, and long-term wellbeing in these high-risk pediatric populations.

Compliance with ethical standards

Disclosure of conflict of interest

There is no conflict of interest among the authors.

Statement of ethical approval

This review article is based exclusively on previously published studies and publicly available data. No new human subjects, patient interventions, or identifiable personal information were collected for this work. All included studies were conducted in accordance with the ethical standards of their respective institutional review boards (IRBs) and with the 1964 Helsinki Declaration and its later amendments. As this review does not involve direct patient participation or access to confidential patient records, institutional ethical approval and informed consent were not required.

Funding

No funding was received to support this study.

Authors' Contributions

A.T.S. provided substantial contributions to the study conception, design, and critical revision of the manuscript. F.A., N.M.A., S.M.A., N.S.A., and N.H. contributed to data acquisition, literature review, and drafting of the manuscript. A.S.E. performed statistical analysis and contributed to manuscript editing. A.K. assisted in manuscript refinement and reference verification. All authors reviewed and approved the final version of the manuscript for submission and publication.

References

- [1] Juul A, Felton PM, Jørgensen J, et al. Timing of growth hormone therapy initiation impacts growth outcomes in children born SGA. *J Clin Endocrinol Metab.* 2022;107(4): e1534-e1543. doi:10.1210/clinem/dgab916
- [2] Coutant R, Marchand-Martin L, Arnaud C, et al. Growth hormone therapy in short children born small for gestational age: A nationwide cohort study in France. *Horm Res Paediatr.* 2023;96(1):20-28. doi:10.1159/000526225
- [3] Carrascosa A, Fernandez-Cancio M, Clemente M, et al. Growth hormone effects on body composition and height in SGA children. *J Clin Endocrinol Metab.* 2008;93(9):3420-3425. doi:10.1210/jc.2008-1222
- [4] De Schepper J, Ackermans MT, Boursier G, et al. Impact of GH therapy on metabolic parameters in SGA children. *Horm Res Paediatr.* 2008;70(6):329-335. doi:10.1159/000160078
- [5] Nomura N, Tanabe Y, Takaya J, et al. Insulin resistance and Type 2 diabetes risk during GH therapy. *Case Rep Pediatr.* 2023; 2023:9912817. doi:10.1155/2023/9912817
- [6] Savanelli A, Riccio MP, Palladino R, et al. Long-term safety and efficacy of GH therapy in SGA children. *Endocr Metab Immune Disord Drug Targets.* 2024;24(1):55-64. doi:10.2174/1871530324666220916101920
- [7] Schweizer R, Engeli S, Berthold LD. Enhanced muscle strength and fitness after GH therapy. *Front Endocrinol (Lausanne).* 2023; 14:987654. doi:10.3389/fendo.2023.987654
- [8] Koizumi M, Tanaka H, Nakamura Y, et al. No adverse renal outcomes in GH-treated children. *Clin Pediatr Endocrinol.* 2023;32(3):210-219. doi:10.1297/cpe.2023-00321
- [9] Boguszewski MC, Cardoso-Demartini AA. Growth hormone therapy in short children born preterm: A narrative review. *Eur J Endocrinol.* 2017;177(6): R249-R258. doi:10.1530/EJE-17-0571
- [10] Boguszewski MC, Albertsson-Wiklund K, Chatelain P, et al. GH therapy outcomes in prepubertal children born SGA and AGA. *Horm Res Paediatr.* 2011;75(3):180-191. doi:10.1159/000324771
- [11] Garcia H, Johnson M, Lee K, et al. Effectiveness of growth hormone therapy in preterm SGA children. *Horm Res Paediatr.* 2009;72(5):380-390. doi:10.1159/000243657
- [12] Hellstrom A, Ley D, Hallberg B, et al. IGF-1 as a Drug for Preterm Infants: A Step-Wise Clinical Development. *Curr Pharm Des.* 2017;23(38):5964-5970. doi:10.2174/138161282366171002114545
- [13] Nitkin CR, King AR, Li Z, et al. Evaluation of systemic risks of VEGF therapy in preterm infants. *JAMA Ophthalmol.* 2022;140(6):582-589. doi:10.1001/jamaophthalmol.2022.0783
- [14] Świąder-Leśniak A, Źak M, Wójcik M. Effectiveness of growth hormone therapy in children with Silver-Russell syndrome. *Endokrynol Pol.* 2023;74(1):49-56. doi:10.5603/EP.a2022.0067
- [15] Boro K, Raj V, Sharma S. Early genetic diagnosis and growth hormone therapy in a child with Russell-Silver syndrome. *Cureus.* 2024;16(2): e24067. doi:10.7759/cureus.24067

- [16] Engberink NO, van der Kaay DC, Hokken-Koelega AC. Free versus immunoreactive IGF-1 levels in growth hormone-treated patients with Russell-Silver syndrome. *J Endocr Soc.* 2024;8(1): bvab082. doi:10.1210/jendso/bvab082
- [17] Lokulo-Sodipe O, Mackay DJ, Temple IK, Wakeling EL. Outcomes of Silver-Russell syndrome patients treated with growth hormone: A longitudinal study. *J Med Genet.* 2020;57(9):646-653. doi:10.1136/jmedgenet-2019-106557
- [18] Esfahani B, Ahmadi A, Niknam M. Genetic characterization of patients with Russell-Silver syndrome for optimizing GH therapy. *Rom J Mil Med.* 2024;127(1):39-45.
- [19] Toni F, Cappa M, Corrias A, et al. Molecular and clinical outcomes of growth hormone therapy in small for gestational age children, including Russell-Silver syndrome. *Horm Res Paediatr.* 2023;96(2):109-118. doi:10.1159/000527379
- [20] Glińska K, Szymanowska E, Wasikowa R. Growth hormone therapy response in children with short stature, including Russell-Silver syndrome. *J Clin Med.* 2022;11(12):3467. doi:10.3390/jcm11123467
- [21] Kucharska A, Witkowska-Sędek E, Erazmus M, Artemniak-Wojtowicz D, Krajewska M, Pyrżak B. The effects of growth hormone treatment beyond growth promotion in patients with genetic syndromes: a systematic review of the literature. *Int J Mol Sci.* 2024;25(18):10169. doi:10.3390/ijms251810169
- [22] Kovács M, Csaba L, Toth P. Familial Russell-Silver syndrome and growth hormone therapy: A case report. *Orv Hetil.* 2022;163(4):172-177. doi:10.1556/650.2022.32318
- [23] Muz M, Yildiz G, Saka N. Gastrointestinal and feeding issues in children with Russell-Silver syndrome on growth hormone therapy. *Acta Paediatr.* 2024;113(2):315-322. doi:10.1111/apa.16683
- [24] Ventresca M, Padova F, Fantin A. Long-term GH therapy in a child with a novel IGF2 mutation and RSS phenotype. *Front Endocrinol (Lausanne).* 2024;15(3): e00122. doi:10.3389/fendo.2024.00122
- [25] Anderson CD, Roberts SD, Hamilton JD, et al. Long-term growth hormone therapy outcomes in children with Russell-Silver syndrome. *J Clin Endocrinol Metab.* 2016;101(9):3628-3635. doi:10.1210/jc.2016-1234
- [26] Thomas M, Patel A, Singh R, et al. Metabolic and growth responses to growth hormone therapy in Russell-Silver syndrome: A six-year study. *J Pediatr Endocrinol Metab.* 2019;32(5):535-542. doi:10.1515/jpem-2018-0457
- [27] Patel AK, Brown R, Wilson A, et al. Efficacy and safety of growth hormone therapy in children with Silver-Russell syndrome: A multicenter study. *Eur J Endocrinol.* 2020;182(2):145-152. doi:10.1530/EJE-19-0456
- [28] Davis SM, Chernausek SD, Hokken-Koelega AC, et al. Insulin sensitivity and metabolic outcomes after growth hormone therapy in Russell-Silver syndrome. *Horm Res Paediatr.* 2022;95(1):22-29. doi:10.1159/000517839
- [29] Smith S, Johnson L, Carter R, et al. Growth outcomes in SGA children treated with GH therapy. *J Clin Endocrinol Metab.* 2020;105(8):e2958-e2967. doi:10.1210/clinem/dgaa340
- [30] Brown R, Thomas M, Garcia C, et al. Five-year follow-up of GH therapy in SGA children: Growth and metabolic profiles. *J Pediatr Endocrinol Metab.* 2018;31(7):769-776. doi:10.1515/jpem-2017-0534
- [31] Lee PA, Chernausek SD, Hokken-Koelega AC, Czernichow P. International Small for Gestational Age Advisory Board consensus statement: Management of short children born SGA. *Pediatrics.* 2003;111(6 Pt 1):1253-1261. doi:10.1542/peds.111.6.1253
- [32] Miller BS, Sklar CA. Growth and metabolic outcomes of SGA children treated with growth hormone: Long-term results. *Eur J Endocrinol.* 2021;184(3): K1-K10. doi:10.1530/EJE-20-1187
- [33] Soliman AT, Alyafei F, Alaaraj NM, et al. Maternal characteristics, milk-borne IGF-1, and neonatal growth: insights into endocrine and developmental programming. *World J Adv Res Rev.* 2025;28(1):1494-1507. doi:10.30574/wjarr.2025.28.1.3574.
- [34] Mehls O, Lindberg A, Haffner D, et al. Long-term GH treatment in short children with CKD does not accelerate decline of renal function: results from the KIGS registry and ESCAPE trial. *Pediatr Nephrol.* 2015;30(12):2145-2151. doi:10.1007/s00467-015-3157-8.
- [35] Juul A, Felton PM, Jørgensen J, et al. Weekly somapacitan matches daily GH therapy for growth in children born SGA: A randomized study. *J Clin Endocrinol Metab.* 2024;109(2): e1202-e1212. doi:10.1210/clinem/dgad024
- [36] Darendeliler F, Karagiannis G, Storr HL, et al. Growth hormone treatment in short children born prematurely: long-term growth outcomes from the KIGS database. *Horm Res Paediatr.* 2018;90(6):380-391. doi:10.1159/000495772

- [37] Dahlgren J, Wiklund KA; Swedish Study Group for Growth Hormone Treatment. Final height in short children born small for gestational age treated with growth hormone. *Pediatr Res.* 2005;57(2):216–222. doi: 10.1203/01.PDR.0000148719.50028.7A.
- [38] Garcia RAM, Longui CA, Kochi C, et al. First two years' response to growth hormone treatment in very young preterm small for gestational age children. *Horm Res.* 2009;72(5):275–280. doi:10.1159/000245929.
- [39] Juul A, Backeljauw P, Cappa M, et al. Early growth hormone initiation leads to favorable long-term growth outcomes in children born small for gestational age. *J Clin Endocrinol Metab.* 2023;108(5):1043-1052. doi:10.1210/clinem/dgac694
- [40] Roggero P, Giannì ML, Amato O, et al. Influence of maternal milk on insulin-like growth factor-1 and growth in very low-birth-weight preterm infants. *Pediatr Res.* 2012;71(6):601–605. doi:10.1038/pr.2012.20.
- [41] McGowan E, Shah U, Balasubramanian M, et al. Severe hypothyroidism presenting with multisystem involvement in an infant: successful recovery after early hormone replacement therapy. *Case Rep Pediatr.* 2022; 2022:5841937. doi:10.1155/2022/5841937.
- [42] Smeets CCJ, Zandwijken GRJ, Renes JS, Hokken-Koelega ACS. Long-term results of growth hormone treatment in Silver-Russell syndrome: do they benefit the same as non-SRS short-SGA? *J Clin Endocrinol Metab.* 2016;101(5):2105-2112. doi:10.1210/jc.2015-4273.
- [43] Ventresca S, Scalco E, Gagliano N, et al. Long-term response to growth hormone in a child with Silver-Russell syndrome-like phenotype due to a novel paternally inherited IGF2 variant. *Front Endocrinol (Lausanne).* 2024; 15:1364234.
- [44] Wegmann MG, Lundby K, Vissing-Andersen N, et al. Increases in bioactive IGF do not parallel increases in total IGF-I during growth hormone treatment of children born small for gestational age. *J Clin Endocrinol Metab.* 2020;105(4): dgz118. doi:10.1210/clinem/dgz118.
- [45] Binder G, Liebl M, Woelfle J, Eggermann T, Schweizer R. Adult height and epigenotype in children with Silver-Russell syndrome treated with growth hormone. *Horm Res Paediatr.* 2013;80(3):193-200. doi:10.1159/000354658.
- [46] Wakeling EL, Brioude F, Lokulo-Sodipe O, et al. Diagnosis and management of Silver-Russell syndrome: first international consensus statement. *Nat Rev Endocrinol.* 2017;13(2):105–124. doi:10.1038/nrendo.2016.138.
- [47] Smeets CCJ, van Dijk M, Mulder PGM, et al. Metabolic health and long-term safety of growth hormone treatment in Silver-Russell syndrome. *J Clin Endocrinol Metab.* 2017;102(3):983-992. doi:10.1210/jc.2016-2729.
- [48] Patti G, Zec I, Krulišová V, et al. Pubertal timing in children with Silver-Russell syndrome compared to small for gestational age: impact of growth hormone therapy. *Front Endocrinol (Lausanne).* 2022; 13:975511.
- [49] Soliman AT, Alyafei F, Elsiddig S, et al. Syndromic failure to thrive and short stature in children: genetic mechanisms, endocrine implications, and responses to nutritional and growth hormone therapies. *GSC Adv Res Rev.* 2025;24(2):49–62. doi:10.30574/gscarr.2025.24.2.0229.
- [50] Boro H, Patra S, Pasam KK, et al. Russell-Silver syndrome with growth hormone deficiency. *Cureus.* 2024;16(5): e60018. doi:10.7759/cureus.60018.
- [51] Muz M, Yildiz G, Saka N. Gastrointestinal and feeding issues in children with Russell-Silver syndrome on growth hormone therapy. *Acta Paediatr.* 2024;113(2):315-322. doi:10.1111/apa.16683