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Abstract

Liver cancer is one of the major public health challenges worldwide, characterized by high molecular heterogeneity and
a poor prognosis. In this study, a QSAR (Quantitative Structure-Activity Relationship) analysis was conducted on a series
of phthalocyanine derivatives to evaluate and predict their anticancer activity. The molecular descriptors logP
(hydrophobicity) and TS (surface tension) were calculated using density functional theory (DFT/ B3LYP/LanL2DZ)
with the Gaussian 09 software. The model, constructed using multiple linear regression, demonstrates excellent
statistical performance (R? = 0.9772; S = 0.0602; F = 21.4383). External validation according to Roy's criteria confirms
the robustness and predictive capability of the model. Contribution analysis reveals that logP is the key descriptor for
anticancer activity, while TS plays a complementary role. The applicability domain demonstrates the model's reliability
for predicting new molecules. These results offer promising prospects for the rational design of phthalocyanine
derivatives with anticancer potential.

Keywords: QSAR; Phthalocyanine; Liver Cancer; DFT; Logp; Molecular Modeling.

1. Introduction

Considered one of the most lethal forms of cancer, liver cancer is a major cause of death worldwide and represents a
significant burden on public health systems. Globally, liver cancer is among the most serious cancers, ranking third in
cancer-related deaths and sixth in the most diagnosed cancers, with a slightly higher prevalence in men (5th) than in
women (7th). Available data indicate that at least 800,000 people worldwide are affected by this type of cancer each
year. Its distinctive features include significant molecular heterogeneity, poor prognosis, high metastatic potential,
strong tendency for recurrence, and a lack of effective therapeutic strategies. This diversity of causes results in biological
and genetic variability among tumors, making the disease complex to understand and treat [6, 9, 10]. Therapeutic
options for liver cancer are tailored to each patient and vary depending on the stage of the disease [11]. At an early
stage, liver cancer can be cured by complete surgical resection. In intermediate stages, locoregional interventions,
including transarterial chemoembolization, ablation, and selective internal radiation therapy, are the main therapeutic
options [12]. For advanced stages, available treatment options are primarily systemic therapies such as chemotherapy
and immunotherapy [11, 13]. However, these treatments remain limited and minimally effective [7]. Thus, the
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pharmaceutical industry is heavily investing in the discovery of new molecules with innovative mechanisms of action
and increased selectivity. The distinct structure of macrocyclic compounds and their ability to interact with numerous
biological targets have generated strong interest in this quest [14]. Within this category, phthalocyanines (Pcs) stand
out. Their porphyrin-like structure gives them intense absorption bands in the therapeutic range (600-800 nm), notable
efficiency in singlet oxygen production, and minimal toxicity in the absence of light irradiation, making them particularly
suitable agents for photodynamic therapy (PDT) [15]. Beyond their role in PDT, certain phthalocyanine derivatives have
shown, in recent studies, intrinsic anticancer potential [16, 17]. The development of a drug molecule generally requires
about fifteen years of research [18]. In this context, new research approaches based on predictive methods for the
activities and properties of molecules have emerged, particularly QSAR (Quantitative Structure-Activity Relationship)
methods. These predictive methods have significantly reduced biological testing and facilitated the design of new
therapeutic compounds [19]. In this study, we apply this method, QSAR (Quantitative Structure-Activity Relationship),
with the aim of designing phthalocyanine derivatives with optimized anticancer activity. This work aims to develop
robust models capable of interpreting and predicting anticancer activity, measured by the median inhibitory
concentration (IC50, expressed in pg/ml), of a series of phthalocyanine derivatives. The structures of the molecules

studied are presented in the following table.

Table 1 Structures, codes, and median inhibitory concentrations (IC50) of the studied molecules

codes

Structures

pICso(HepG2)

mol1l

5.1169

mol2

5.0516
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e 5.0318
|
mol3
mol4
49306
mol5 5.2440
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mol6

5.2920

mol7

4.7058
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2. Materials and methods

2.1. Theoretical framework of computational simulation

In order to evaluate and predict the anticancer activity of phthalocyanine derivatives, quantum chemistry calculations
were carried out using the Gaussian 09 software [20]. Calculations based on density functional theory are known for
their ability to generate a rich and reliable set of molecular properties, which justifies their use in QSAR studies [21, 22].
These approaches not only increase the accuracy of QSAR models but also reduce the time required for calculations and
the costs associated with the rational design of new drug candidates [23, 24]. The determination of molecular
descriptors was performed based on density functional theory, using the B3LYP/LanL2DZ level of theory. The median
inhibitory concentrations of the seven phthalocyanine derivative molecules considered in this study are relatively very
low. Among the parameters considered, the median inhibitory concentration (IC50) is of particular importance, as it
serves as a quantitative indicator of a compound's potency in inhibiting a specific biological or biochemical target. To
optimize the statistical robustness of the models, biological activity data are commonly transformed into the negative
decimal logarithm (-log10(C)), which provides more homogeneous and usable values for biologically active compounds
[25, 26]. The anticancer efficacy of the compounds is expressed as pIC50, known as the inhibitory concentration
potential, a parameter obtained according to the following equation :

pICso = —logyo(ICs0 * 107°)
Where IC50 is the inhibitory concentration in pM.

To build the model, three statistical methods were used. Among them, multiple linear regression (MLR) was applied
using the tools provided by Excel [27] and XLSTAT [28].

2.2. Descriptors used

For the development of our QSAR model, we identified certain theoretical descriptors. The physico-chemical descriptors
identified are : LogP, the logarithm of the Octanol/Water partition coefficient, which measures the hydrophobicity of a
molecule, that is, its ability to dissolve in a lipophilic solvent (Octanol) compared to an aqueous solvent, and TS, the
Surface Tension, used as a descriptor to predict interactions and physico-chemical properties.

2.3. Estimation of the predictive capacity of a QSAR model

The validity of a model is assessed using several statistical criteria : the coefficient of determination R?, standard
deviation S, cross-validation correlation Q?cv, and Fisher F test. R?, S, and F provide information on the fit between the
experimental values and those predicted by the model. These parameters indicate the extent to which the model can
correctly predict outcomes and are used to estimate the reliability of the values obtained for the test set [29, 30]. The
cross-validation coefficient Q%cv assesses the model's ability to generalize its predictions beyond the data used to
construct it. This predictive power is referred to as internal since it is obtained from the same compounds that were
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used to build the model. The coefficient of determination R? indicates how close the calculated values are to the
experimental values. The accuracy of the model increases when the points are close to the regression line [31], which
can be assessed using the coefficient of determination. R? is expressed as follows :

_ Z(yi,exp - ),\"i,théo)2

RP=1 .
Z(yi,exp - yi,exp)

Where :

Viexp : Average value of the experimental anticancer activity;

Yiexp : Experimental value of the anticancer activity;

Vi tneo : Theoretical value of the anticancer activity.

The closer R2 is to 1, the more accurately the model reproduces the experimental values.

The Fisher F test is used to determine the statistical validity of the model and the adequacy of the descriptors used. F is
defined by the following expression :

F = Z(yi,théo - yi,exp)z N n—k-1
Z(yi,exp - yi,théo)2 k

Where :
n : the total number of data points or observations used to build the model
k : the number of independent descriptors, explanatory variables used in the model.

The cross-validation coefficient is used to measure the reliability of predictions on the training set and is determined
using the following relationship :

2 Z(yi,théo - }_’i,exp)z - Z(yi,théo - yi,exp)z
ch = _ 2
Z(:Vi,théo - yi,exp)

2.4. Acceptance settings of a model

According to the criteria proposed by Eriksson et al. [32], a model is satisfactory when QZ, > 0.5 and excellent when
Q2 < 0.9. For a given test set, the condition R? — Q2, < 0.3 must also be met to assess its performance.

Finally, Roy and Roy [33] enhanced the tools for evaluating QSAR models by introducing the index 12, and ArZ,
referred to as metric values. The 2, index indicates the agreement between observed and predicted activities. These
metrics are calculated from experimental and theoretical data and can be determined for both the training set and the
test set. According to them, the acceptance of a model is based on meeting these two criteria :

— _ (rh4riE)

72 = >05et A2 = |2 —1'2] < 0.2

Ou: 2 =r%x (1 —J@% - roz)) et 2 =1%x% (1 —J@% - r’ﬁ))

2.5. Statistical Analysis: Multiple Linear Regressions (MLR)

Multiple linear regression is a statistical approach aimed at establishing an equation linking a property to a set of
descriptors. In the context of QSAR, it facilitates the development of mathematical models capable of predicting the
biological activity of compounds that have not been experimentally tested. The objective of this method is to minimize
the difference between experimental data and calculated values. It represents the benchmark approach for handling
multidimensional data. In this work, it was carried out using the pre-programmed tools of XLSTAT :

y=a+ (bx; +cx, +dxs +exy) + (fxgp + gxoy + hxgy + ixy,)

Where : X1, X2, X3, X4,... represent the variables and a, b, c, d,... represent the parameters
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2.6. Model relevance domain

The applicability domain of a QSAR model is the set of physicochemical, structural, and biological limits within which
the model can reliably predict the properties of new molecules [34]. It represents the perimeter of the chemical space
that includes the compounds of the training set and those homologous to them, similar in their structural and
physicochemical characteristics [35]. Being built on a limited set of compounds and descriptors chosen from a wide
range, the model cannot provide universal and reliable predictions for all molecules. Therefore, identifying the domain
of applicability is a fundamental requirement for any QSAR model, in accordance with the recommendations of the
Organization for Economic Co-operation and Development (OECD) [36]. The determination of a model's applicability
domain can be carried out using various methods [34]. In this study, we use the so-called leverage approach. The
principle of this method is to examine the variation of standardized residuals as a function of the distance of the
descriptor values from their mean, called leverage [37]. The hii represent the diagonal elements of the matrix H. H is the
projection matrix that associates the experimental observations Yexp with their estimates Ypred in the regression
space, and is defined by the expression :
Yorea = HYexpe
H is defined by the expression :

H = X(Xtx)~1xt

The domain of applicability is defined by a leverage threshold, denoted h*. This threshold is generally calculated

h* = 3(p+1)
n

according to the relation , where n represents the number of compounds in the training set and p the number

of descriptors included in the model [38, 39]. Standardized residuals are generally considered acceptable when they fall
within the range of +30, with o representing the standard deviation of the experimental measurements of the response
variable [40]; this principle is commonly referred to as "the three-sigma rule" [41].

3. Results and discussion

The modeling of anticancer activity based on structure relies on the following descriptors: LogP, the logarithm of the
partition coefficient (hydrophobicity), and TS, Surface Tension. For each molecule studied, the descriptors and the
values of the minimum inhibitory concentration potential were summarized in the following table.

Table 2 Experimental physicochemical characteristics and pIC50 used for the training and validation datasets.

Observation | logP TS pIC50(HepG2)
Training Set

mol2 12.1600 82.6000 5.0516

mol5 12.8000 183.7000 5.2440

mol7 3.4600 109.1000 4.7058

mol1 11.2700 100.8000 5.1169

Test Set

mol4 5.2900 236.0000 4.9306

mol6 15.6400 87.1000 5.2920

mol3 2.4700 269.4000 5.0318

We observe a dispersion of logP values. reflecting the diversity of hydrophobic behaviors of the molecules studied.
Notable differences also appear in the pIC50 values. which can be correlated with the chemical structure of the
compounds. For example. the molecule mol6. having the highest logP (15.6400). has a pIC50 of (5.2920). illustrating
both significant inhibitory activity and the key role of hydrophobicity in its biological effect.

3.1. Internal validation

The correlation matrix of the descriptors used in the model is presented in the following table. It reveals the
relationships between the descriptors.

812



World Journal of Advanced Research and Reviews, 2025, 28(02), 806-818

Table 3 Matrix illustrating the correlation relationships between different physicochemical descriptors.

Variables | logP TS
logP 1.0000 0.2481
TS 0.2481 1.0000

With a correlation of 0.2481 between logP and TS. these two descriptors seem to have distinct effects on activity.
Integrating additional descriptors could enrich the model and optimize the prediction.

The QSAR (HepG2) model of this study is represented by the following equation.
pIC50(HepG2)P™¢¢ = 4.40321 + 0.04722 « logP + 0.00133 = TS

The coefficients of the equation show that logP has a positive influence on pIC50. while TS has a negligible effect. The
positive effect of lipophilicity indicates that the higher the logP. the greater the pIC50. reflecting enhanced biological
activity. With a high logP. molecules are more lipophilic. which promotes their cellular absorption and their interaction
with biological targets. This hydrophobicity also affects protein binding and tissue distribution.

For surface tension. a positive value of the coefficient indicates that even a small increase leads to a slight increase in
pIC50. suggesting a moderate role in biological activity. Measuring the energy required to increase the surface of a
liquid. surface tension influences how biological molecules interact with cell membranes. A lower surface tension can
facilitate cellular diffusion and improve the intracellular bioavailability of compounds.

Even though its impact is limited compared to logP. surface tension could influence the ability of molecules to penetrate
complex biological environments and interact with membranes. thereby contributing to their anticancer activity. In
summary. this equation allows for predicting the activity of new molecules. helping to optimize drug discovery. The
following table summarizes the statistical parameters of the developed model.

Table 4 Statistical analysis of the RML model

R? Q%, F S
0.9772 | 0.9772 | 21.4383 | 0.0602

The coefficient of determination R? shows to what extent the model explains the variance in the data. With an R? of
0.9772.97.72% of the variations in pIC50 are explained by logP and TS. The high R? value attests to the accuracy of the
model and highlights the importance of physicochemical properties. such as hydrophobicity and surface tension. in
predicting the biological activity of compounds. The Q2, coefficient is used to test the model's ability to predict external
data. A Q?, equivalent to R? indicates that the model is robust and well-generalized. The relationships between
descriptors and biological activity are reliable. ensuring that the model can be used for new compounds in drug
discovery.

The F test allows measuring the overall significance of the model. Here. an F value of 21.4383 indicates that the model
is superior to a model without explanatory variables and that logP and TS play a significant role in predicting biological
activity. validating their importance in biological interactions. S represents the dispersion of the predicted pIC50 values
around the experimental values. A low value (0.0602. here) indicates that the model is reliable and that the chemical
properties of the molecules determine their biological activity in a measurable way. The following figure shows the
regression line of the obtained model.
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Figure 1 The regression line of the RML model

Figure 1 highlights the excellent fit of the QSAR model. with an R? and a slope close to unity. confirming the accuracy of
the biological activity predictions. This underscores the role of hydrophobicity and surface tension descriptors in the
activity of the compounds and their relevance for drug design. This observation is reinforced by Figure 2. where a near-
perfect match between the experimental and predicted curves is observed. reflecting the excellent performance of the
model.

tho ot
= ok W R

ER

Ak
e s

pICS0{HepG2)
& !

4.5

&
*

1 2 3 4 5 I 7
Molecules

== pICSH(HepG2) == pred (pICS0{HepG2))

Figure 2 HepG2 Model Similarity Curve

The similarity curve presented shows the relationship between the experimental pIC50 values and the values predicted
by the QSAR model for the compounds tested on HepG2 cells. Most of the data points overlap. indicating a good
agreement between the predicted and experimental values. In addition to model validation. these results open up
prospects for the design of new active molecules. suggesting that optimizing certain descriptors could increase their
biological efficacy. However, although the overall performance is very encouraging. the study of individual deviations
remains essential for refining the model and improving its accuracy.

3.2. External validation

In order to strengthen the reliability of the obtained QSAR model. external validation was carried out through the
calculation of the statistical parameters proposed by Roy et al. These indicators allow for the assessment of the model's
robustness and predictive power on independent data. The corresponding values are presented in the following table:
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Table 5 Roy's Criteria

r2, r2 ArZ, < 0.2 r2,> 0.5

0.731405 0.61592 0.115485 0.6736625

Table 4 compiles Roy's criteria. which serve as fundamental indicators for assessing the reliability and robustness of a
QSAR model. They provide key information on the model's effectiveness. particularly regarding its ability to generalize
to new compounds. Firstly. the parameter Ar2,. with a reference value below 0.2. gives an indication of the dispersion
of residuals. The calculated value (0.115485). being below this threshold. results in limited dispersion. which attests to

a well-fitted model and reliable predictions relative to the experimental data. Next. the parameter rZ,. used to evaluate
the stability of the model. must exceed the threshold of 0.5. With an obtained value of 0.6736625. the model fully meets
this criterion. This suggests that even when tested on various data subsets. it retains a good capacity to explain the
observed variability. In practice. this reinforces confidence in the reliability of the logP and TS descriptors for accurately
predicting the biological activity of compounds. The high values of 72,(0.731405) and 2, (0.61592). which are above
the critical threshold of 0.5. confirm that the selected descriptors effectively capture the variance of these biological
data. This reflects a good fit between the physicochemical properties and the measured activity. Thus. the analysis of
Roy's criteria. presented in Table 4. reveals that the QSAR model is both robust and reliable. capable of generalizing its
predictions to new molecules.

3.3. Evaluation of the contribution of descriptors

W loghk ETS

Figure 3 Contribution of descriptors in the RQSA model

The pie chart shown in Figure 3 highlights the proportional contribution of physicochemical descriptors within the
established QSAR model. The analysis reveals that logP and TS are the main descriptors involved in predicting the
biological activity of our different compounds. The majority contribution of logP (78%) underscores its dominant role
in model construction. Although TS contributes (22%) to the model. its share remains significantly lower than that of
logP. This indicates that TS plays a complementary role in explaining biological activity. without competing with the
central importance of logP. The comparison of the contributions of logP and TS highlights the need to prioritize logP
when designing new compounds.

3.4. Scope of the model

The evaluation of the model's applicability domain was carried out using the leverage method. The result obtained is
shown in the following figure.
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Figure 4 Applicability domain of the QSAR model

Figure 4 illustrates the applicability domain of the QSAR model obtained using the leverage method. The analysis of the
plotindicates that all the molecules are below the critical value. The leverage threshold h* for our QSAR model is defined
as h* = 2.25. Furthermore. all the residuals fall within the range [-30. 30]. This result demonstrates the absence of
outliers and confirms the robustness of the model. which can be used to predict the biological activity of new molecules
within the applicability domain.

4., Conclusion

As part of this work. a QSAR analysis was performed on a series of phthalocyanine derivatives to evaluate their
anticancer activity. The model. developed using multiple linear regression. is based on two molecular descriptors: LogP.
the logarithm of the partition coefficient (hydrophobicity). and TS. the Surface Tension. The model demonstrates strong
statistical performance (R? = 0.9772; S = 0.0602; F = 21.4383). reflecting its robustness. External validation using Roy's
criteria confirms its predictive power. Furthermore. analysis of the descriptor contribution plot reveals that LogP is the
most effective in explaining the anticancer activity of the studied series of phthalocyanine derivatives. Finally. the
obtained applicability domain validates the reliability of the model and its potential for predicting new derived
structures. These results provide a reliable basis for the rational design of new phthalocyanine derivatives aimed at
hepatocellular targets.
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