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Abstract 

Liver cancer is one of the major public health challenges worldwide, characterized by high molecular heterogeneity and 
a poor prognosis. In this study, a QSAR (Quantitative Structure-Activity Relationship) analysis was conducted on a series 
of phthalocyanine derivatives to evaluate and predict their anticancer activity. The molecular descriptors logP 
(hydrophobicity) and TS (surface tension) were calculated using density functional theory (DFT/ B3LYP/LanL2DZ) 
with the Gaussian 09 software. The model, constructed using multiple linear regression, demonstrates excellent 
statistical performance (R² = 0.9772; S = 0.0602; F = 21.4383). External validation according to Roy's criteria confirms 
the robustness and predictive capability of the model. Contribution analysis reveals that logP is the key descriptor for 
anticancer activity, while TS plays a complementary role. The applicability domain demonstrates the model's reliability 
for predicting new molecules. These results offer promising prospects for the rational design of phthalocyanine 
derivatives with anticancer potential. 
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1. Introduction

Considered one of the most lethal forms of cancer, liver cancer is a major cause of death worldwide and represents a 
significant burden on public health systems. Globally, liver cancer is among the most serious cancers, ranking third in 
cancer-related deaths and sixth in the most diagnosed cancers, with a slightly higher prevalence in men (5th) than in 
women (7th). Available data indicate that at least 800,000 people worldwide are affected by this type of cancer each 
year. Its distinctive features include significant molecular heterogeneity, poor prognosis, high metastatic potential, 
strong tendency for recurrence, and a lack of effective therapeutic strategies. This diversity of causes results in biological 
and genetic variability among tumors, making the disease complex to understand and treat [6, 9, 10]. Therapeutic 
options for liver cancer are tailored to each patient and vary depending on the stage of the disease [11]. At an early 
stage, liver cancer can be cured by complete surgical resection. In intermediate stages, locoregional interventions, 
including transarterial chemoembolization, ablation, and selective internal radiation therapy, are the main therapeutic 
options [12]. For advanced stages, available treatment options are primarily systemic therapies such as chemotherapy 
and immunotherapy [11, 13]. However, these treatments remain limited and minimally effective [7]. Thus, the 
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pharmaceutical industry is heavily investing in the discovery of new molecules with innovative mechanisms of action 
and increased selectivity. The distinct structure of macrocyclic compounds and their ability to interact with numerous 
biological targets have generated strong interest in this quest [14]. Within this category, phthalocyanines (Pcs) stand 
out. Their porphyrin-like structure gives them intense absorption bands in the therapeutic range (600-800 nm), notable 
efficiency in singlet oxygen production, and minimal toxicity in the absence of light irradiation, making them particularly 
suitable agents for photodynamic therapy (PDT) [15]. Beyond their role in PDT, certain phthalocyanine derivatives have 
shown, in recent studies, intrinsic anticancer potential [16, 17]. The development of a drug molecule generally requires 
about fifteen years of research [18]. In this context, new research approaches based on predictive methods for the 
activities and properties of molecules have emerged, particularly QSAR (Quantitative Structure-Activity Relationship) 
methods. These predictive methods have significantly reduced biological testing and facilitated the design of new 
therapeutic compounds [19]. In this study, we apply this method, QSAR (Quantitative Structure-Activity Relationship), 
with the aim of designing phthalocyanine derivatives with optimized anticancer activity. This work aims to develop 
robust models capable of interpreting and predicting anticancer activity, measured by the median inhibitory 
concentration (IC50, expressed in µg/ml), of a series of phthalocyanine derivatives. The structures of the molecules 
studied are presented in the following table. 

Table 1 Structures, codes, and median inhibitory concentrations (IC50) of the studied molecules 

codes Structures pIC50(HepG2) 
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2. Materials and methods 

2.1. Theoretical framework of computational simulation 

In order to evaluate and predict the anticancer activity of phthalocyanine derivatives, quantum chemistry calculations 
were carried out using the Gaussian 09 software [20]. Calculations based on density functional theory are known for 
their ability to generate a rich and reliable set of molecular properties, which justifies their use in QSAR studies [21, 22]. 
These approaches not only increase the accuracy of QSAR models but also reduce the time required for calculations and 
the costs associated with the rational design of new drug candidates [23, 24]. The determination of molecular 
descriptors was performed based on density functional theory, using the B3LYP/LanL2DZ level of theory. The median 
inhibitory concentrations of the seven phthalocyanine derivative molecules considered in this study are relatively very 
low. Among the parameters considered, the median inhibitory concentration (IC50) is of particular importance, as it 
serves as a quantitative indicator of a compound's potency in inhibiting a specific biological or biochemical target. To 
optimize the statistical robustness of the models, biological activity data are commonly transformed into the negative 
decimal logarithm (-log10(C)), which provides more homogeneous and usable values for biologically active compounds 
[25, 26]. The anticancer efficacy of the compounds is expressed as pIC50, known as the inhibitory concentration 
potential, a parameter obtained according to the following equation : 

pIC50 = − log10(IC50 ∗ 10−6) 
Where IC50 is the inhibitory concentration in μM.  

To build the model, three statistical methods were used. Among them, multiple linear regression (MLR) was applied 
using the tools provided by Excel [27] and XLSTAT [28]. 

2.2. Descriptors used 

For the development of our QSAR model, we identified certain theoretical descriptors. The physico-chemical descriptors 
identified are : LogP, the logarithm of the Octanol/Water partition coefficient, which measures the hydrophobicity of a 
molecule, that is, its ability to dissolve in a lipophilic solvent (Octanol) compared to an aqueous solvent, and TS, the 
Surface Tension, used as a descriptor to predict interactions and physico-chemical properties. 

2.3. Estimation of the predictive capacity of a QSAR model 

The validity of a model is assessed using several statistical criteria : the coefficient of determination R², standard 
deviation S, cross-validation correlation Q²CV, and Fisher F test. R², S, and F provide information on the fit between the 
experimental values and those predicted by the model. These parameters indicate the extent to which the model can 
correctly predict outcomes and are used to estimate the reliability of the values obtained for the test set [29, 30]. The 
cross-validation coefficient Q²CV assesses the model's ability to generalize its predictions beyond the data used to 
construct it. This predictive power is referred to as internal since it is obtained from the same compounds that were 
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used to build the model. The coefficient of determination R² indicates how close the calculated values are to the 
experimental values. The accuracy of the model increases when the points are close to the regression line [31], which 
can be assessed using the coefficient of determination. R² is expressed as follows : 

𝑹2 = 1 −
∑(𝑦𝑖,𝑒𝑥𝑝 − 𝑦̂𝑖,𝑡ℎé𝑜)

2

∑(𝑦𝑖,𝑒𝑥𝑝 − 𝑦̅𝑖,𝑒𝑥𝑝)
2                     

Where :  

𝑦̅𝑖,𝑒𝑥𝑝 ∶ Average value of the experimental anticancer activity; 

𝑦𝑖,𝑒𝑥𝑝 ∶ Experimental value of the anticancer activity; 

𝑦̂𝑖,𝑡ℎé𝑜 ∶ Theoretical value of the anticancer activity. 
The closer R2 is to 1, the more accurately the model reproduces the experimental values. 

The Fisher F test is used to determine the statistical validity of the model and the adequacy of the descriptors used. F is 
defined by the following expression : 

𝐅 =
∑(𝑦𝑖,𝑡ℎé𝑜 − 𝑦𝑖,𝑒𝑥𝑝)

2

∑(𝑦𝑖,𝑒𝑥𝑝 − 𝑦𝑖,𝑡ℎé𝑜)
2 ∗

𝑛 − 𝑘 − 1

𝑘
                       

Where : 
n : the total number of data points or observations used to build the model 
k : the number of independent descriptors, explanatory variables used in the model. 

The cross-validation coefficient is used to measure the reliability of predictions on the training set and is determined 
using the following relationship : 

𝑸𝒄𝒗
2 =

∑(𝑦𝑖,𝑡ℎé𝑜 − 𝑦̅𝑖,𝑒𝑥𝑝)
2

− ∑(𝑦𝑖,𝑡ℎé𝑜 − 𝑦𝑖,𝑒𝑥𝑝)
2

∑(𝑦𝑖,𝑡ℎé𝑜 − 𝑦̅𝑖,𝑒𝑥𝑝)
2                         

2.4. Acceptance settings of a model 

According to the criteria proposed by Eriksson et al. [32], a model is satisfactory when 𝐐𝐂𝐕
𝟐  ˃ 𝟎. 𝟓 and excellent when 

𝐐𝐂𝐕
𝟐  ˂ 𝟎. 𝟗. For a given test set, the condition 𝑅2 − 𝑄𝑐𝑣

2 <  0.3 must also be met to assess its performance.  

Finally, Roy and Roy [33] enhanced the tools for evaluating QSAR models by introducing the index 𝒓𝒎
𝟐   and   ∆𝒓𝒎

𝟐 , 
referred to as metric values. The 𝒓𝒎

𝟐  index indicates the agreement between observed and predicted activities. These 
metrics are calculated from experimental and theoretical data and can be determined for both the training set and the 
test set. According to them, the acceptance of a model is based on meeting these two criteria : 

𝑟𝑚
2̅̅ ̅ =

(𝑟𝑚
2 +𝑟′𝑚

2 )

2
 > 0.5 et  ∆𝑟𝑚

2 = |𝑟𝑚
2 − 𝑟′𝑚

2 | < 0.2 

Où :  𝑟𝑚
2 = 𝑟2 ∗ (1 − √(𝑟2 − 𝑟0

2))   𝑒𝑡   𝑟′𝑚
2 = 𝑟2 ∗ (1 − √(𝑟2 − 𝑟′0

2)) 

2.5. Statistical Analysis: Multiple Linear Regressions (MLR) 

Multiple linear regression is a statistical approach aimed at establishing an equation linking a property to a set of 
descriptors. In the context of QSAR, it facilitates the development of mathematical models capable of predicting the 
biological activity of compounds that have not been experimentally tested. The objective of this method is to minimize 
the difference between experimental data and calculated values. It represents the benchmark approach for handling 
multidimensional data. In this work, it was carried out using the pre-programmed tools of XLSTAT : 

𝑦 = 𝑎 + (𝑏𝑥1 + 𝑐𝑥2 + 𝑑𝑥3 + 𝑒𝑥4) + (𝑓𝑥12 + 𝑔𝑥22 + ℎ𝑥32 + 𝑖𝑥42)        

Where : x1, x2, x3, x4,... represent the variables and  a, b, c, d,... represent the parameters 
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2.6. Model relevance domain 

The applicability domain of a QSAR model is the set of physicochemical, structural, and biological limits within which 
the model can reliably predict the properties of new molecules [34]. It represents the perimeter of the chemical space 
that includes the compounds of the training set and those homologous to them, similar in their structural and 
physicochemical characteristics [35]. Being built on a limited set of compounds and descriptors chosen from a wide 
range, the model cannot provide universal and reliable predictions for all molecules. Therefore, identifying the domain 
of applicability is a fundamental requirement for any QSAR model, in accordance with the recommendations of the 
Organization for Economic Co-operation and Development (OECD) [36]. The determination of a model's applicability 
domain can be carried out using various methods [34]. In this study, we use the so-called leverage approach. The 
principle of this method is to examine the variation of standardized residuals as a function of the distance of the 
descriptor values from their mean, called leverage [37]. The hii represent the diagonal elements of the matrix H. H is the 
projection matrix that associates the experimental observations Yexp with their estimates Ypred in the regression 
space, and is defined by the expression :  

𝑌𝑝𝑟é𝑑 = 𝐻𝑌𝑒𝑥𝑝é   

H is defined by the expression : 

𝐻 = 𝑋(𝑋𝑡𝑋)−1𝑋𝑡  

The domain of applicability is defined by a leverage threshold, denoted h*. This threshold is generally calculated 

according to the relation h* = 
3(𝑝+1)

𝑛
, where n represents the number of compounds in the training set and p the number 

of descriptors included in the model [38, 39]. Standardized residuals are generally considered acceptable when they fall 
within the range of ±3σ, with σ representing the standard deviation of the experimental measurements of the response 
variable [40]; this principle is commonly referred to as "the three-sigma rule" [41]. 

3. Results and discussion 

The modeling of anticancer activity based on structure relies on the following descriptors: LogP, the logarithm of the 
partition coefficient (hydrophobicity), and TS, Surface Tension. For each molecule studied, the descriptors and the 
values of the minimum inhibitory concentration potential were summarized in the following table. 

Table 2 Experimental physicochemical characteristics and pIC50 used for the training and validation datasets. 

Observation logP TS pIC50(HepG2) 

Training Set 

mol2 12.1600 82.6000 5.0516 

mol5 12.8000 183.7000 5.2440 

mol7 3.4600 109.1000 4.7058 

mol1 11.2700 100.8000 5.1169 

Test Set 

mol4 5.2900 236.0000 4.9306 

mol6 15.6400 87.1000 5.2920 

mol3 2.4700 269.4000 5.0318 

We observe a dispersion of logP values. reflecting the diversity of hydrophobic behaviors of the molecules studied. 
Notable differences also appear in the pIC50 values. which can be correlated with the chemical structure of the 
compounds. For example. the molecule mol6. having the highest logP (15.6400). has a pIC50 of (5.2920). illustrating 
both significant inhibitory activity and the key role of hydrophobicity in its biological effect. 

3.1. Internal validation 

The correlation matrix of the descriptors used in the model is presented in the following table. It reveals the 
relationships between the descriptors. 
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Table 3 Matrix illustrating the correlation relationships between different physicochemical descriptors. 

Variables logP TS 

logP 1.0000 0.2481 

TS 0.2481 1.0000 

With a correlation of 0.2481 between logP and TS. these two descriptors seem to have distinct effects on activity. 
Integrating additional descriptors could enrich the model and optimize the prediction. 

The QSAR (HepG2) model of this study is represented by the following equation. 

𝒑𝑰𝑪𝟓𝟎(𝑯𝒆𝒑𝑮𝟐)𝒑𝒓é𝒅  =  𝟒. 𝟒𝟎𝟑𝟐𝟏 + 𝟎. 𝟎𝟒𝟕𝟐𝟐 ∗ 𝒍𝒐𝒈𝑷 + 𝟎. 𝟎𝟎𝟏𝟑𝟑 ∗ 𝑻𝑺 

The coefficients of the equation show that logP has a positive influence on pIC50. while TS has a negligible effect. The 
positive effect of lipophilicity indicates that the higher the logP. the greater the pIC50. reflecting enhanced biological 
activity. With a high logP. molecules are more lipophilic. which promotes their cellular absorption and their interaction 
with biological targets. This hydrophobicity also affects protein binding and tissue distribution. 

For surface tension. a positive value of the coefficient indicates that even a small increase leads to a slight increase in 
pIC50. suggesting a moderate role in biological activity. Measuring the energy required to increase the surface of a 
liquid. surface tension influences how biological molecules interact with cell membranes. A lower surface tension can 
facilitate cellular diffusion and improve the intracellular bioavailability of compounds. 

Even though its impact is limited compared to logP. surface tension could influence the ability of molecules to penetrate 
complex biological environments and interact with membranes. thereby contributing to their anticancer activity. In 
summary. this equation allows for predicting the activity of new molecules. helping to optimize drug discovery. The 
following table summarizes the statistical parameters of the developed model. 

Table 4 Statistical analysis of the RML model 

𝑹𝟐 𝑸𝒄𝒗
𝟐  F S 

0.9772 0.9772 21.4383 0.0602 

The coefficient of determination R² shows to what extent the model explains the variance in the data. With an R² of 
0.9772. 97.72% of the variations in pIC50 are explained by logP and TS. The high R² value attests to the accuracy of the 
model and highlights the importance of physicochemical properties. such as hydrophobicity and surface tension. in 
predicting the biological activity of compounds. The 𝑸𝒄𝒗

𝟐  coefficient is used to test the model's ability to predict external 
data. A 𝑸𝒄𝒗

𝟐  equivalent to R² indicates that the model is robust and well-generalized. The relationships between 
descriptors and biological activity are reliable. ensuring that the model can be used for new compounds in drug 
discovery. 

The F test allows measuring the overall significance of the model. Here. an F value of 21.4383 indicates that the model 
is superior to a model without explanatory variables and that logP and TS play a significant role in predicting biological 
activity. validating their importance in biological interactions. S represents the dispersion of the predicted pIC50 values 
around the experimental values. A low value (0.0602. here) indicates that the model is reliable and that the chemical 
properties of the molecules determine their biological activity in a measurable way. The following figure shows the 
regression line of the obtained model. 
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Figure 1 The regression line of the RML model 

Figure 1 highlights the excellent fit of the QSAR model. with an R² and a slope close to unity. confirming the accuracy of 
the biological activity predictions. This underscores the role of hydrophobicity and surface tension descriptors in the 
activity of the compounds and their relevance for drug design. This observation is reinforced by Figure 2. where a near-
perfect match between the experimental and predicted curves is observed. reflecting the excellent performance of the 
model. 

 

Figure 2 HepG2 Model Similarity Curve 

The similarity curve presented shows the relationship between the experimental pIC50 values and the values predicted 
by the QSAR model for the compounds tested on HepG2 cells. Most of the data points overlap. indicating a good 
agreement between the predicted and experimental values. In addition to model validation. these results open up 
prospects for the design of new active molecules. suggesting that optimizing certain descriptors could increase their 
biological efficacy. However, although the overall performance is very encouraging. the study of individual deviations 
remains essential for refining the model and improving its accuracy. 

3.2. External validation 

In order to strengthen the reliability of the obtained QSAR model. external validation was carried out through the 
calculation of the statistical parameters proposed by Roy et al. These indicators allow for the assessment of the model's 
robustness and predictive power on independent data. The corresponding values are presented in the following table: 
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Table 5 Roy's Criteria 

𝒓𝒎
𝟐  𝒓𝒎

𝟐′ ∆𝒓𝒎
𝟐 < 𝟎. 𝟐 𝒓𝒎

𝟐 > 𝟎. 𝟓 

0.731405 0.61592 0.115485 0.6736625 

Table 4 compiles Roy's criteria. which serve as fundamental indicators for assessing the reliability and robustness of a 
QSAR model. They provide key information on the model's effectiveness. particularly regarding its ability to generalize 
to new compounds. Firstly. the parameter ∆𝒓𝒎

𝟐 . with a reference value below 0.2. gives an indication of the dispersion 
of residuals. The calculated value (0.115485). being below this threshold. results in limited dispersion. which attests to 

a well-fitted model and reliable predictions relative to the experimental data. Next. the parameter 𝒓𝒎
𝟐 . used to evaluate 

the stability of the model. must exceed the threshold of 0.5. With an obtained value of 0.6736625. the model fully meets 
this criterion. This suggests that even when tested on various data subsets. it retains a good capacity to explain the 
observed variability. In practice. this reinforces confidence in the reliability of the logP and TS descriptors for accurately 
predicting the biological activity of compounds. The high values of  𝒓𝒎

𝟐 (𝟎. 𝟕𝟑𝟏𝟒𝟎𝟓) and 𝒓𝒎
𝟐′ (0.61592). which are above 

the critical threshold of 0.5. confirm that the selected descriptors effectively capture the variance of these biological 
data. This reflects a good fit between the physicochemical properties and the measured activity. Thus. the analysis of 
Roy's criteria. presented in Table 4. reveals that the QSAR model is both robust and reliable. capable of generalizing its 
predictions to new molecules. 

3.3. Evaluation of the contribution of descriptors 

 

Figure 3 Contribution of descriptors in the RQSA model 

The pie chart shown in Figure 3 highlights the proportional contribution of physicochemical descriptors within the 
established QSAR model. The analysis reveals that logP and TS are the main descriptors involved in predicting the 
biological activity of our different compounds. The majority contribution of logP (78%) underscores its dominant role 
in model construction. Although TS contributes (22%) to the model. its share remains significantly lower than that of 
logP. This indicates that TS plays a complementary role in explaining biological activity. without competing with the 
central importance of logP. The comparison of the contributions of logP and TS highlights the need to prioritize logP 
when designing new compounds. 

3.4. Scope of the model 

The evaluation of the model's applicability domain was carried out using the leverage method. The result obtained is 
shown in the following figure. 
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Figure 4 Applicability domain of the QSAR model 

Figure 4 illustrates the applicability domain of the QSAR model obtained using the leverage method. The analysis of the 
plot indicates that all the molecules are below the critical value. The leverage threshold h* for our QSAR model is defined 
as h* = 2.25. Furthermore. all the residuals fall within the range [-3σ. 3σ]. This result demonstrates the absence of 
outliers and confirms the robustness of the model. which can be used to predict the biological activity of new molecules 
within the applicability domain. 

4. Conclusion 

As part of this work. a QSAR analysis was performed on a series of phthalocyanine derivatives to evaluate their 
anticancer activity. The model. developed using multiple linear regression. is based on two molecular descriptors: LogP. 
the logarithm of the partition coefficient (hydrophobicity). and TS. the Surface Tension. The model demonstrates strong 
statistical performance (R² = 0.9772; S = 0.0602; F = 21.4383). reflecting its robustness. External validation using Roy's 
criteria confirms its predictive power. Furthermore. analysis of the descriptor contribution plot reveals that LogP is the 
most effective in explaining the anticancer activity of the studied series of phthalocyanine derivatives. Finally. the 
obtained applicability domain validates the reliability of the model and its potential for predicting new derived 
structures. These results provide a reliable basis for the rational design of new phthalocyanine derivatives aimed at 
hepatocellular targets. 
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