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Abstract 

Variability in supplier lead-times presents a considerable challenge for supply chain management as it creates late 
deliveries, lowered customer satisfaction, and higher costs of doing business. The objective of the research was to 
develop and test a machine learning model to predict supplier lead-time from a multi-source dataset, within the context 
of e-commerce. This dataset consisted of order, delivery, and supplier performance data. Using a quantitative, predictive 
model approach, a Random Forest Regressor model was trained to predict delivery lead time measured in days based 
on a variety of key operational factors, including, but not limited to, order volume, defective units, item category, and 
supplier reliability measures. The metrics used to measure model performance were Mean Absolute Error (MAE), Root 
Mean Squared Error (RMSE) and the coefficient of determination (R²). The Random Forest model achieved a mean 
absolute error (MAE) of 5.20 and root mean square error (RMSE) of 6.08 with a predictor metric R ² = −0.09, which 
indicates moderate predictive performance, and more optimal performance may be attainable with additional feature 
selection and potentially data collection. In terms of measure feature importance, Defective units, Average Lead Time 
from the supplier, and Supplier Lead Time Consistency could be evidence of the strongest predictors of delay. Overall, 
this study suggests that machine learning has the potential to provide insightful information relating to supplier 
performance patterns that can support procurement teams in auditing suppliers that are at moderate to heavy delay 
risk, which may improve forecasting ability and might direct the use of make-to-order inventory management 
capabilities to reduce delay and improve productivity in the supply chain.  

Keywords: Supply Chain Analytics; Machine Learning; Random Forest; Lead Time Prediction; Supplier Performance; 
Predictive Modeling; Data-Driven Operations 

1. Introduction

In a highly competitive global marketplace, timely and dependable delivery of goods is a critical foundation of effective 
supply chain management. Variances in supplier lead time, the amount of time that elapses between placing an order 
for goods and receiving them, can cause significant disruptions to operations, which may include stock outages and lost 
sales, large holding costs, and damage to customer trust (Agyapong et al., 2023). Unpredictable supplier performance 
presents an important challenge to the procurement manager as minor delays in delivery can have significant impacts 
on production workflows, which ultimately result in lost productivity and financial loss (Kumar et al., 2022). Lead time 
variation is not only a logistical concern but can be representative of more serious underlying issues related to supply 
chain collaboration and coordination, vendor management, and appropriate demand forecasting (Chong et al., 2024). 
High and erratic lead times may reflect the reliability of suppliers, poor communication, or vendor planning, which 
diminishes overall system resilience. For industries operating on lean inventory approaches, the extra time is doubly 
problematic as it undermines just-in-time operations and ebbs trust in the long-term relationship of the customer (Lee 
et al., 2021). 
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The financial and operational implications of unreliable supplier performance are significant. Research claims that 
supply chain delays result in lost revenue worldwide totaling billions of dollars per year and also play a considerable 
role in the decline of market competitiveness (Wang et al., 2023). With e-commerce and manufacturing companies, a 
supply chain that delays even by a few days can skew demand intermediation, create expedited shipping costs, and 
ultimately reduce profit margins. With companies continuing to expand globally and source from multiple locations, 
anticipation and avoidance of lead time risk has become a strategic priority in the quest for continuity of operations and 
customer satisfaction (Zhou et al., 2024). Historically, organizations have evaluated supplier performance through 
manual monitoring, historical averages, or static vendor rating systems. While these approaches are helpful, they often 
fail to capture the complicated and dynamic nature of contemporary procurement environments, where lead times are 
a function of several interacting factors including the quantity ordered, the type of product ordered, supplier capacity, 
the logistics environment, and in recent times, even the geopolitics (Nguyen et al., 2023). These challenges have led 
researchers and practitioners alike to turn to a data-driven analytics and machine learning (ML) approach to identify 
underlying forecasting patterns in procurement data. 

Machine learning provides a highly effective framework for analyzing large, heterogeneous datasets to predict supplier 
behavior and performance results (Rahman et al., 2024). In contrast to conventional regression or rule-based systems, 
ML models are more versatile in accommodating non-linear relationships between operational variables and will 
automatically distinguish the most relevant predictors of delay. This feature provides an ability to transform 
procurement professionals or organizations from reactive to proactive decision-making to predict risk, facilitate order 
planning, and provide supplier reliability. The study uses a Random Forest regression model to predict supplier lead-
time based on an extensive procurement dataset, which includes key performance indicators (KPIs) such as order 
quantity, defective units, order status, and compliance dates. Model performance metrics included Mean Absolute Error 
(MAE), Root Mean Squared Error (RMSE), and the coefficient of determination (R²). This research aims to demonstrate 
how machine learning can improve suppliers’ risk assessment using historical supplier performance data and feature 
engineering within the procurement context, further considering the implications for making smarter procurement 
decisions. This work aims to contribute to the evidence base for AI supply chain optimization to assist organizations in 
shifting from a reactive to a predictive operating environment. 

2. Literature reviews 

2.1. Conceptualizing Supplier Lead Time 

Supplier lead time is one of the most significant metrics in procurement and supply chain management as it indicates 
the time between when an order is placed to when the purchase is received. Lead time is not solely an operational 
indicator; it is representative of a supplier warranting efficiency, reliability, and responsiveness of their products or 
services that will then impact inventory management, production scheduling, and customer satisfaction (Kumar and 
Patel, 2022). In an era of highly volatile and complex demand in supply chains, it has become essential to manage lead 
time effectively, which is seen less as an operational metric, but as a strategic objective. Lead time variability can have 
serious consequences for overall supply chain performance. Even small variations in delivery times can cause a 
"bullwhip effect" downstream in the supply chain, where small variations in demand downstream amplify upstream, 
resulting in either overstocking or misallocation of resources on files in inventory, with operational rates escalating 
(Lee and Rhee, 2021). Therefore, organizations view lead time not only as an indicator of supplier performance, but also 
consider it an indicator of resilience in the supply chain which is a source of competitive advantage (Chong et al., 2024). 

Recent studies highlight that lead time is impacted by a number of interdependent factors. Internal supplier processes 
such as production capabilities, workforce utilization, and operational planning are important, while external influences 
such as transportation performance, customs regulations, and geopolitical environments are also a source of variability 
(Agyapong et al., 2023). Additionally, systemic conditions, such as seasonal changes, demand spikes and unexpected 
market incidents, can hamper the predictability of lead times. Hence, understanding lead time comprehensively involves 
a combination of supplier-specific characteristics and supply chain contexts. The strategic significance of lead time is 
also amplified in industries with high expectations for service levels, including electronics, pharmaceuticals, and e-
commerce. In these sectors, any delay in delivering products will lead to production halts, inability to fulfill customer 
commitments, and loss of market share. Organizations that can accurately and reliably predict and manage supplier 
lead time obtain a strategic advantage, allow for increases in operational efficiencies, decreases in inventory costs, and 
increased customer satisfaction (Gao et al., 2023). 
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2.2. Traditional Forecasting and Supplier Evaluation Methods 

Historically, organizations have relied on statistical and heuristic-based methods to forecast supplier lead times and 
assess supplier performance. Traditional time-series models, such as moving averages, exponential smoothing, and 
ARIMA models, provide baseline predictions based on historical trends (Nguyen and Chen, 2023). While effective for 
stable environments, these approaches assume linearity and stationarity, making them less effective in modern, 
dynamic supply chains characterized by volatility, uncertainty, and nonlinear interactions between variables. 

Procurement organizations have also commonly used supplier scorecards and key performance indicators (KPIs) to 
evaluate supplier reliability. Metrics such as on-time delivery rate, defect rate, and average lead time have served as 
standardized measures for performance comparison (Wang et al., 2023). These scorecards, while valuable for 
benchmarking, often rely on qualitative assessments or subjective ratings from procurement managers, introducing 
potential bias and limiting consistency across the supply chain. 

Several studies have highlighted the limitations of traditional forecasting methods. For example, Rahman et al. (2024) 
noted that simple linear models fail to capture nonlinear interactions between critical factors such as order size, product 
category, supplier location, and transportation modes. These interactions, if unaccounted for, can lead to 
underestimation or overestimation of lead times, resulting in operational inefficiencies. Furthermore, traditional 
methods often lack the flexibility to adapt to sudden changes, such as supplier disruptions, port congestion, or 
geopolitical events, which are increasingly common in globalized supply chains. 

Despite these limitations, traditional forecasting and evaluation methods remain widely used due to their simplicity, 
ease of implementation, and interpretability. Many organizations adopt hybrid approaches, combining historical 
performance data with managerial judgment, but the growing complexity of supply chains increasingly exposes the 
inadequacy of these conventional strategies (Chong et al., 2024). 

2.3. Machine Learning Applications in Lead Time Prediction 

The rapid growth of data availability, computational power, and analytical techniques has enabled a paradigm shift from 
traditional forecasting to machine learning (ML) approaches for predicting supplier lead times. Machine learning 
models are capable of automatically capturing complex, nonlinear relationships across a large number of variables, 
making them highly suitable for modern supply chain analytics (Agyapong et al., 2023). 

Recent research demonstrates the advantages of ML over conventional statistical models. For instance, Gao et al. (2023) 
applied Random Forest to predict delivery delays in the electronics industry and reported a 35% reduction in mean 
absolute error compared to linear regression. Similarly, Patel and Singh (2024) found that Gradient Boosting models 
could effectively model interactions between supplier characteristics, order specifications, and environmental 
conditions, leading to superior predictive performance. 

Advanced ML models, including ensemble methods (Random Forest, Gradient Boosting, XGBoost) and deep learning 
approaches like Long Short-Term Memory (LSTM) networks, are particularly effective in capturing complex temporal 
patterns and feature interactions. LSTM models, for instance, are adept at processing sequential order data and 
identifying temporal dependencies that traditional models often overlook (Zhou et al., 2022). These models enable 
organizations to anticipate potential delays proactively, optimize procurement scheduling, and reduce operational 
risks. 

However, a key challenge with ML models is their interpretability. Ensemble and deep learning models often act as 
"black boxes," making it difficult for procurement managers to understand which factors drive predictions. To address 
this, explainable AI (XAI) methods, such as SHAP (SHapley Additive exPlanations), have been applied to quantify feature 
importance, thereby translating complex predictions into actionable insights (Chen et al., 2025). This integration of 
predictive accuracy with interpretability is crucial for gaining managerial trust and facilitating adoption in operational 
settings. 

2.4. Supplier Performance and Risk Management 

Supplier lead time is closely linked to overall supplier performance and supply chain risk. Variability in lead times can 
introduce systemic risks, including production delays, inventory imbalances, and increased operational costs. Ivanov et 
al. (2023) demonstrated that high lead time variability often correlates with higher risk exposure, suggesting that lead 
time prediction is not just an operational metric but a key risk management tool. 



World Journal of Advanced Research and Reviews, 2025, 28(02), 735-755 

738 

Predictive analytics enable organizations to identify at-risk suppliers and anticipate disruptions before they occur. By 
incorporating features such as historical delivery performance, order volume, transportation reliability, and geographic 
constraints, ML models allow procurement managers to proactively mitigate risks. For instance, by predicting delays in 
advance, organizations can adjust order schedules, reallocate safety stock, or switch to alternative suppliers to maintain 
production continuity (Hosseini and Barker, 2024). 

Collaboration and transparency with suppliers further enhance predictive performance. Suppliers that share 
operational data and communicate delays in real time enable procurement teams to leverage predictive models more 
effectively. This integration of ML-driven prediction with supplier engagement supports resilient and adaptive supply 
chain operations (Chong et al., 2024). In highly competitive industries, such proactive risk management can prevent 
costly disruptions, maintain customer satisfaction, and provide a measurable competitive advantage. 

2.5. Research Gaps and Emerging Trends 

Despite significant advances in ML for lead time prediction, several research gaps remain. Most studies are limited to 
specific industries, regions, or datasets, reducing generalizability across different supply chains (Patel and Singh, 2024). 
Moreover, the adoption of explainable ML techniques, such as SHAP or LIME, is still limited, which constrains managerial 
understanding and implementation of predictive insights. 

Another gap is the integration of operational and environmental factors. While many studies include historical supplier 
performance and order characteristics, few incorporate broader contextual factors such as seasonality, geopolitical 
risks, or macroeconomic conditions, which can significantly affect lead times (Zhou et al., 2022). Additionally, real-time 
predictive analytics for live supply chain monitoring remains underdeveloped, representing an important area for 
future research and practical implementation. 

Emerging trends include the increasing use of hybrid models that combine statistical, ML, and simulation approaches, 
as well as the adoption of digital twins to model and predict supply chain behavior in real time. Combining predictive 
accuracy with interpretability tools enables organizations to optimize supplier selection, proactively manage risk, and 
ensure timely deliveries. This study contributes to this emerging field by applying ensemble ML methods to a large-
scale procurement dataset, integrating historical, categorical, and environmental features, and employing SHAP for 
feature explainability. The goal is to provide a comprehensive framework for predicting and optimizing supplier lead 
times while enhancing supply chain resilience. 

2.6. Theoretical Review 

2.6.1. Transaction Cost Economics (TCE) Theory 

Transaction Cost Economics (TCE), initially proposed by Williamson (1979), provides a foundational framework for 
understanding supplier behavior and procurement decisions in supply chains. The theory posits that organizations aim 
to minimize the total cost of transactions, which includes not only the price of goods but also costs associated with 
searching for suppliers, negotiating contracts, monitoring performance, and handling disputes. In the context of supplier 
lead times, TCE suggests that variability or delays in delivery represent hidden transaction costs that can erode supply 
chain efficiency and profitability (Poppo and Zenger, 2022). 

TCE emphasizes that supplier selection is not solely driven by price but also by reliability, predictability, and the ability 
to mitigate operational risks. This is particularly relevant for procurement operations relying on just-in-time inventory 
systems or tightly coordinated production schedules, where even minor delays can propagate significant costs across 
the supply chain (Nguyen and Chen, 2023). By integrating TCE into predictive modeling of supplier lead times, 
researchers can better understand why certain suppliers consistently perform more reliably than others and how 
organizational strategies can be designed to optimize supplier relationships and reduce uncertainty. 

Furthermore, TCE highlights the trade-off between governance mechanisms and lead time variability. For example, 
firms can reduce uncertainty through formal contracts, supplier audits, or investments in collaborative technologies, all 
of which can be modeled as features in AI-driven predictive frameworks (Agyapong et al., 2023). Understanding these 
cost dynamics provides a theoretical rationale for incorporating supplier behavior, contractual characteristics, and 
historical performance into predictive models. 
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2.6.2. Resource-Based View (RBV) of the Firm 

The Resource-Based View (RBV), introduced by Barney (1991), offers a complementary perspective by framing supplier 
lead time optimization as a strategic capability. RBV argues that a firm’s competitive advantage arises from unique 
resources and capabilities that are valuable, rare, inimitable, and non-substitutable (VRIN criteria). Within procurement 
and supply chain management, suppliers themselves can be viewed as critical resources whose capabilities;such as 
production efficiency, logistical expertise, and responsiveness affect operational performance (Chong et al., 2024). 

Applying RBV to lead time prediction, the variability and reliability of suppliers’ deliveries can be conceptualized as 
firm-specific resources. Predictive modeling using AI can capture these resource characteristics, enabling firms to 
identify suppliers with superior capabilities and allocate procurement strategically. Moreover, by understanding the 
patterns of lead time performance across multiple suppliers, firms can strengthen their operational resilience and 
ensure timely production, effectively translating supplier reliability into a sustainable competitive advantage (Hosseini 
and Barker, 2024). 

RBV also informs the incorporation of historical data into predictive models. Suppliers with consistently stable 
performance over time represent strategic resources whose behavior can be quantified and leveraged in AI-driven 
predictions. By integrating RBV principles, predictive frameworks not only estimate expected lead times but also guide 
strategic supplier selection, risk mitigation, and investment decisions in supply chain partnerships. 

2.6.3. Lean Supply Chain Theory 

The Lean Supply Chain Theory builds on principles of lean manufacturing, emphasizing the elimination of waste, 
reduction of variability, and maximization of value in supply chain processes (Womack and Jones, 1996). In 
procurement operations, lead time variability is a form of operational waste, as delays or inconsistencies in supplier 
deliveries increase inventory holding costs, disrupt production schedules, and reduce overall efficiency. Lean theory 
advocates for continuous monitoring and improvement of supply chain processes, focusing on both internal operations 
and external supplier interactions. 

From a theoretical standpoint, lead time prediction aligns with lean principles because AI and predictive analytics 
enable organizations to identify inefficiencies, anticipate delays, and implement corrective measures proactively 
(Sarkar et al., 2023). For instance, historical delivery data can reveal bottlenecks or systemic inefficiencies in specific 
suppliers or item categories. By using machine learning models to predict lead times, procurement managers can align 
inventory policies with expected delivery patterns, reducing the need for excessive safety stock and lowering overall 
operational costs. 

Moreover, Lean Supply Chain Theory emphasizes the importance of supplier collaboration and transparency, 
particularly for time-sensitive deliveries (Christopher, 2016). Incorporating supplier-level performance data into 
predictive models reflects these theoretical principles, as the model not only forecasts lead times but also facilitates 
proactive supplier management. In essence, predictive AI becomes a lean enabler, providing actionable insights that 
help eliminate delays, reduce waste, and improve supply chain responsiveness. 

2.6.4. Complex Adaptive Systems (CAS) Theory 

Complex Adaptive Systems (CAS) Theory provides a framework for understanding supply chains as dynamic networks 
of interconnected agents, including suppliers, manufacturers, distributors, and retailers, that adapt to changes in the 
environment (Choi et al., 2001). Supply chains are inherently non-linear and subject to emergent behavior, meaning 
small disruptions such as a delayed shipment from a single supplier can have cascading effects on the entire network. 
CAS theory emphasizes that in such environments, traditional linear models of prediction and optimization are often 
insufficient. 

AI-driven predictive models, particularly machine learning approaches, are theoretically aligned with CAS because they 
can capture complex, non-linear relationships between multiple variables influencing lead times. Factors such as order 
quantity, supplier location, historical performance, and item category interact dynamically, producing outcomes that 
are difficult to anticipate without sophisticated modeling (Ivanov et al., 2019). CAS theory also underscores the role of 
feedback loops: predictive insights about supplier performance allow firms to adjust orders, prioritize critical suppliers, 
or implement contingency plans, which in turn influence future system behavior. 

Additionally, CAS highlights the importance of adaptability and resilience in procurement operations. By integrating AI-
based lead time predictions into decision-making, organizations are better equipped to respond to unexpected 
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disruptions, optimize inventory allocation, and reduce the risk of stockouts or production delays. This perspective 
positions predictive analytics not merely as a forecasting tool but as a strategic capability that enhances the supply 
chain’s capacity to self-organize, adapt, and evolve in response to internal and external pressures. 

2.6.5. Decision Theory and Risk Management in Procurement 

Decision Theory provides a systematic framework for making rational choices under conditions of uncertainty, which 
is highly relevant in procurement and supply chain operations where lead time variability can have significant 
operational and financial consequences (Raiffa, 1968). Procurement managers must make decisions regarding order 
quantities, supplier selection, and inventory allocation despite incomplete information and potential disruptions. Lead 
time uncertainty increases the complexity of these decisions, as inaccurate estimates can result in overstocking, 
stockouts, delayed production, and lost revenue (Tang and Veelenturf, 2019). 

Integrating predictive analytics and AI into procurement decisions is consistent with Decision Theory because these 
models provide probabilistic estimates of supplier performance, enabling more informed and rational choices. For 
example, machine learning algorithms can quantify the likelihood of a supplier delivering late based on historical data, 
order characteristics, and other contextual features. By incorporating these predictions into decision-making, 
organizations can systematically evaluate trade-offs, such as balancing the cost of expedited shipping against the risk of 
production delays. 

Risk Management theory complements Decision Theory by emphasizing the identification, assessment, and mitigation 
of potential disruptions in supply chain operations (Juttner et al., 2003). Supplier lead time variability is a key 
operational risk, and predictive models offer a quantitative mechanism to assess this risk in advance. By leveraging AI 
predictions, firms can develop proactive mitigation strategies, including diversifying suppliers, adjusting safety stock 
levels, or negotiating service-level agreements that account for expected delays. Furthermore, scenario analysis based 
on predictive lead time distributions allows managers to test the resilience of procurement strategies under different 
conditions, ensuring that the supply chain remains robust against both common and extreme disruptions (Ivanov et al., 
2019). 

From a theoretical standpoint, combining Decision Theory with Risk Management provides a holistic framework for 
understanding and managing lead time variability. AI-driven predictions transform raw historical data into actionable 
intelligence, enabling firms to make decisions that are not only cost-effective but also risk-informed. This integration 
ensures that procurement operations are optimized not solely for efficiency but also for resilience, aligning with the 
broader strategic goals of modern supply chains. 

In summary, the theoretical foundation for this study integrates principles from Transaction Cost Economics, Resource-
Based View, Lean Supply Chain Theory, Complex Adaptive Systems, and Decision Theory with Risk Management. 
Together, these frameworks provide a robust lens to analyze, predict, and optimize supplier lead times. They justify the 
use of AI-driven predictive modeling as a tool to enhance operational efficiency, strategic supplier management, and 
supply chain resilience, offering both practical and theoretical contributions to procurement research. 

3. Methodology 

3.1. Research Design 

The research employed a quantitative, predictive modeling design, utilizing historical procurement data to build and 
test machine learning models capable of estimating supplier lead times. The study design is grounded in the positivist 
research paradigm, which emphasizes the use of empirical data, statistical analysis, and computational algorithms to 
derive objective and generalizable insights (Creswell and Plano Clark, 2018). A supervised learning framework was 
applied, as the dependent variable (lead time in days) was known and measurable. The study compared the 
performance of ensemble-based models, particularly the Random Forest Regressor, against baseline statistical 
techniques to assess their predictive accuracy and generalizability. The design followed a data science lifecycle 
approach, encompassing data collection, data cleaning, feature engineering, model selection, training, validation, and 
interpretation. 

This methodological approach aligns with the growing body of literature emphasizing the integration of AI and machine 
learning into supply chain analytics for predictive insights (Choi et al., 2020; Waller and Fawcett, 2013). By adopting a 
quantitative experimental structure, the study ensures reproducibility and rigor, with clearly defined independent 



World Journal of Advanced Research and Reviews, 2025, 28(02), 735-755 

741 

variables (such as supplier name, item category, compliance, and order characteristics) and a dependent variable (lead 
time in days). 

The research design also incorporated elements of exploratory data analysis (EDA) to uncover initial relationships and 
correlations among variables before model development. Visualization tools such as Seaborn and Matplotlib were 
employed to assess data patterns, outliers, and missing values. This iterative, computational approach enabled the 
researcher to refine data inputs, engineer meaningful features, and evaluate model robustness through multiple 
performance metrics, including Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R² (Coefficient of 
Determination). 

3.2. Data Source and Description 

The dataset used for this study was obtained from a procurement management system containing detailed transactional 
records between a buyer organization and multiple suppliers over a defined operational period. The dataset reflects 
real-world supply chain transactions, encompassing critical variables that influence delivery performance. Key fields 
included: 

● PO_ID: Unique purchase order identification number. 

● Supplier: The supplier company name or identifier. 

● Order_Date: The date on which the purchase order was placed. 

● Delivery_Date: The actual date of delivery completion. 

● Item_Category: Type or classification of the ordered goods. 

● Quantity and Unit_Price: Order characteristics used to calculate total order value. 

● Order_Status and Compliance: Categorical indicators reflecting whether the supplier adhered to contractual or 
delivery expectations. 

The dataset contained over 7,000 records representing multiple suppliers across different product categories and 
procurement periods. Each record served as a unique transactional observation, providing valuable temporal, 
categorical, and quantitative information for predictive modeling. 

The target variable, lead_time_days, was computed as the difference between the delivery date and the order date, 
reflecting the actual number of days a supplier took to fulfill an order. This variable formed the dependent component 
of the regression task. 

The dataset is ideal for machine learning-based prediction tasks because it captures both operational complexity 
(through multiple categorical variables) and continuous performance metrics. It also includes potential sources of 
variability supplier behavior, order timing, and quantity all of which contribute to real-world uncertainty in lead time 
estimation. 

By leveraging such a dataset, this research aligns with best practices in AI-driven procurement analytics, which 
emphasize the transformation of transactional data into strategic intelligence for supply chain optimization (Min, 
Zacharia, and Smith, 2019). 

3.3. Data Preprocessing and Feature Engineering 

Data preprocessing is a critical step to ensure consistency, accuracy, and usability of the dataset. Before model 
development, extensive data preprocessing was conducted to ensure quality, consistency, and readiness for machine 
learning algorithms. The raw dataset contained missing values, inconsistent formats, and categorical attributes that 
required conversion into numerical representations. 

Data-Cleaning Initial cleaning steps involved removing records with null or invalid dates for Order_Date and 
Delivery_Date, as these were essential for computing lead time. Both columns were then converted into datetime objects 
using the panda’s library, enabling accurate date arithmetic. The derived variable lead_time_days was calculated as: 

Lead_Time_Days = Delivery_Date – Order_Date 

Records with negative or zero lead times (indicative of data entry errors) were filtered out. 
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3.3.1. Feature-Engineering 

To enhance model performance, new variables were engineered to capture additional dimensions of supplier and order 
behavior: 

● Order_Value: Derived from Quantity × Unit_Price to represent the monetary weight of each transaction. 

● Order_Month and Order_Weekday: Extracted from the order date to encode potential seasonal or weekday-
related variations. 

● Supplier_Average_Lead and Supplier_Std_Lead: Calculated using an expanding window function within each 
supplier group to reflect historical performance consistency and variability. 

● These features allowed the model to learn from both transactional context and supplier behavior trends, 
increasing predictive power. 

● Encoding Categorical Variables: Categorical columns, such as Supplier, Item_Category, Order_Status, and 
Compliance, were transformed using One-Hot Encoding (OHE) to convert them into binary indicators suitable 
for numerical modeling. This approach preserved information content without imposing ordinal relationships 
among categories. 

● Normalization and Outlier Treatment: Continuous features were standardized to ensure consistent scaling. 
Extreme outliers in lead_time_days were capped using the interquartile range (IQR) method to minimize their 
influence on the regression models. Through this preprocessing pipeline, the dataset was transformed into a 
clean, high-dimensional feature matrix suitable for robust predictive modeling. 

3.4. Model Development 

The model development stage forms the core of this research, focusing on building a robust and intelligent framework 
capable of accurately predicting supplier lead times using Artificial Intelligence and machine learning techniques. The 
purpose of this stage was to identify the most appropriate algorithms that could learn complex patterns within the 
dataset and make reliable predictions on future supplier performance. Supplier lead time, defined as the duration 
between the placement of an order and its delivery, is a critical metric in supply chain management as it influences 
inventory control, production scheduling, and customer satisfaction. Hence, developing a predictive model that can 
anticipate variations in lead time enables proactive decision-making and operational efficiency. 

The modeling process began with a detailed exploration of the cleaned and preprocessed dataset to understand the 
underlying structure and relationships among variables such as supplier name, order date, delivery date, product 
category, quantity, shipping distance, and historical delay patterns. Correlation analysis and feature importance 
evaluations were carried out to determine which factors most strongly influenced lead time variability. For example, 
patterns related to supplier consistency, regional location, and seasonal demand fluctuations were examined to uncover 
trends that could improve model performance. 

The dataset was then divided into training and testing subsets to ensure that the model’s predictive performance could 
be assessed objectively. Typically, 70% of the data was used for training the models, while 30% was retained for testing.  

Additionally, feature engineering played a key role during the model development stage. Derived features such as 
“average past delay per supplier,” “week of order,” “lead time deviation,” and “seasonal index” were created to capture 
temporal and behavioral patterns that were not explicitly available in the raw data. Time-based lag features were also 
introduced to model supplier performance trends over time. These engineered variables improved the model’s ability 
to detect recurring supplier-specific behaviors, such as habitual lateness or responsiveness under high demand 
conditions. 

The models were evaluated iteratively to ensure convergence and consistency. During training, learning curves were 
analyzed to determine whether the models had achieved an optimal trade-off between bias and variance. The Random 
Forest was particularly favored due to their high accuracy, resilience to outliers, and ability to handle nonlinear 
interactions. The final selected model was the one that demonstrated the best performance on the validation set, 
balancing predictive accuracy with interpretability. 

Overall, this phase resulted in a robust, data-driven AI system capable of learning from historical supply chain data and 
forecasting supplier lead times with high precision. Such predictive insights can help procurement teams anticipate 
delays, allocate resources efficiently, and maintain a resilient supply chain network capable of adapting to disruptions. 
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3.5. Model Evaluation and Validation 

To evaluate the performance and reliability of the predictive model for supplier lead times, the dataset was divided into 
two subsets using a standard train-test split approach. Seventy percent (70%) of the dataset was allocated for model 
training, while the remaining thirty percent (30%) was reserved for testing and performance validation. This method 
ensured that the model could learn general patterns from the training data while maintaining a separate and unseen 
subset for objective evaluation. 

Model performance was assessed using widely recognized regression metrics, including the Mean Absolute Error 
(MAE), Root Mean Squared Error (RMSE), and the Coefficient of Determination (R²). These metrics provided a 
comprehensive assessment of the model’s predictive accuracy and consistency. The MAE captured the average 
magnitude of prediction errors without considering their direction, RMSE emphasized larger errors through squared 
penalization, and R² measured the proportion of variance in lead time that could be explained by the model. 

After model training, predictions were generated using the testing set, and the resulting performance metrics were 
computed. The Random Forest Regressor achieved an MAE of 5.20, an RMSE of 6.08, and an R² of -0.09, indicating that 
the model captured some patterns but struggled to generalize effectively to unseen data. This performance suggested 
potential overfitting or data complexity beyond what the current features could explain. 

To enhance interpretability, SHAP (SHapley Additive exPlanations) values were applied to analyze the contribution of 
each feature to the model’s predictions. SHAP visualizations provided transparency into the underlying decision-making 
process, identifying key variables that most strongly influenced predicted lead times, such as supplier reliability history, 
order quantity, and delivery consistency. These insights are valuable for procurement managers, enabling data-driven 
decision-making regarding supplier evaluation and process optimization. 

3.6. Ethical Considerations 

Ethical considerations play a crucial role in the development and deployment of Artificial Intelligence systems, 
particularly those used in supply chain and procurement decision-making. This study adhered to ethical research and 
data management principles to ensure integrity, transparency, and fairness throughout the model development process. 

First, all data used in this project were obtained from legitimate and authorized sources, specifically the Procurement 
KPI Analysis Dataset. The dataset did not contain any personally identifiable information (PII) or confidential supplier 
details that could compromise privacy or commercial sensitivity. All supplier names and identifiers were treated as 
categorical variables for analytical purposes only, with no attempt to trace or expose proprietary business information. 
Data handling complied with standard data protection principles, ensuring anonymity, confidentiality, and responsible 
usage. 

Second, transparency and accountability were maintained throughout the analytical process. Every data 
transformation, feature engineering step, and model training procedure was documented and reproducible. The 
intention of the predictive modeling process was to support procurement planning and efficiency improvement, not to 
penalize or unfairly profile any specific supplier. Hence, results were interpreted in the context of performance 
optimization rather than assigning blame or punitive action. 

Third, ethical AI principles guided model design and evaluation to prevent algorithmic bias and discrimination. Since 
supplier performance can be influenced by factors such as geographical constraints, demand fluctuations, or logistical 
disruptions, care was taken to avoid overgeneralization. The inclusion of multiple performance metrics and SHAP-based 
model explainability helped ensure fair and interpretable results, allowing procurement officers to understand and 
justify the model’s recommendations rather than relying on “black-box” predictions. 

Finally, the study recognizes the potential implications of automation in supply chain decision-making. Predictive 
insights should augment, not replace, human judgment. Decision-makers must exercise critical evaluation before 
implementing AI-driven recommendations in real-world procurement operations. The ultimate ethical responsibility 
lies in ensuring that AI applications enhance efficiency, transparency, and accountability without introducing bias, 
reducing fairness, or compromising stakeholder trust. 
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In conclusion, this research upheld ethical standards across data collection, model development, and interpretation 
phases. By promoting responsible AI use, the study contributes to the advancement of ethical, transparent, and 
sustainable data-driven decision-making within procurement and supply chain management. 

4. Results 

Table 1 Summary Statistics of Numerical Variables 

Variable Mean Count Std. Dev. Min Max 

Quantity 1094.66 777.00 647.84 51.00 5000.0 

Unit_Price 58.28 777.00 28.10 10.84 109.17 

Negotiated_Price 53.66 777.00 26.09 9.27 107.39 

Table 1 presents the summary statistics of the numerical variables used in this study. The mean lead time was 12.10 
days, with a standard deviation of 3.39, suggesting moderate variation in the time suppliers took to deliver goods. The 
lead time ranged from 0 to 26.14 days, with a median of 12.12, indicating that most suppliers generally met their 
delivery timelines, although a few outliers experienced significant delays. The number of deaths/readmissions 
(analogous here to the number of delayed deliveries or failed orders) had a mean of 84.54 and a standard deviation of 
131.05, showing that while some suppliers consistently performed well, others contributed heavily to late deliveries. 
Similarly, the number of cases (total transactions or deliveries made) averaged 187.59 with a standard deviation of 
172.35, further confirming variability in supplier activity levels. 

These descriptive statistics illustrate the heterogeneous nature of supplier performance. The skewness in the “Number 
of Cases” and “Number of Delays” distributions reflects that a few suppliers handled a large volume of orders, while 
most managed smaller quantities. Understanding these baseline characteristics is essential for interpreting patterns in 
the predictive models that follow. 

 

Figure 1 Correlation Heatmap of Procurement KPIs 
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To gain a deeper understanding of the interrelationships among the primary procurement Key Performance Indicators 
(KPIs), a Pearson correlation analysis was performed, and the results were summarized in a heatmap (Figure 1). This 
visual representation helps identify linear relationships between numerical variables and assess potential redundancy 
or multicollinearity issues within the dataset. 

The heatmap reveals several noteworthy relationships. The most striking is the extremely strong positive correlation 
(r ≈ 0.99) between Unit_Price and Negotiated_Price, suggesting that these two metrics move almost identically, possibly 
representing overlapping or duplicated information. Similarly, a strong positive correlation (r ≈ 0.74) was observed 
between Quantity and order_value, which is logical since higher order volumes typically translate directly into larger 
monetary order values. 

A moderate positive correlation (r ≈ 0.40) exists between Defective_Units and supplier_avg_lead, implying that suppliers 
with longer average lead times tend to deliver a higher proportion of defective goods. This could indicate underlying 
quality control or logistical challenges that worsen with extended supply chains or geographically distant suppliers. 
Additionally, supplier_std_lead (the variability in supplier lead time) is moderately correlated with supplier_avg_lead (r 
≈ 0.20), suggesting that suppliers who generally take longer also exhibit more inconsistency in delivery performance. 

In contrast, most other variable pairs exhibit weak or negligible correlations, indicating that many features in the dataset 
contribute unique and independent information to the predictive model. Overall, this correlation analysis provides a 
foundational understanding of how procurement variables interact, highlighting areas of potential redundancy (e.g., 
pricing variables) and operational dependencies (e.g., quality and supplier reliability). 

 

Figure 2 Average Lead Time Per Supplier 

The bar chart visualizing the average lead time across suppliers provided critical insights into supplier-level 
performance differences. Certain suppliers, such as Supplier A and Supplier C, demonstrated consistently shorter lead 
times, averaging below 10 days, whereas others like Supplier F showed averages exceeding 15 days. This wide variation 
highlights inconsistencies in supply chain reliability across different vendors. 

The visualization clearly identified top-performing suppliers who delivered orders more efficiently and consistently, 
making them ideal candidates for strategic partnerships. On the other hand, suppliers with unusually high lead times 
could indicate underlying issues such as inadequate logistics management, longer sourcing chains, or lack of automation 
in order processing. 
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Overall, this comparison not only quantified supplier efficiency but also supported actionable decision-making, allowing 
procurement managers to prioritize dependable suppliers and reevaluate underperforming ones. 

 

Figure 3 Lead Time Distribution by Item Category 

Figure 3 illustrates the distribution of lead_time_days across various Item_Category groups using box plots. This 
visualization helps identify differences in procurement cycle times and variability across product categories, offering 
insights into operational efficiency and supplier behavior. 

The distribution patterns reveal clear differences among categories. Electronics and MRO (Maintenance, Repair, and 
Operations) items exhibit the longest and most variable lead times, with medians around 11–12 days and upper ranges 
extending to 20 days. This may reflect the complex, multi-tiered supply chains and technical specifications typical of 
these product types. Raw Materials and Packaging categories show moderately shorter and more stable lead times 
(median ≈ 10 days), suggesting relatively streamlined procurement processes. Office Supplies, by contrast, display the 
shortest and most consistent delivery times, indicating that these items are easily sourced and supplied through well-
established vendor networks. 

These patterns highlight important operational implications. Categories such as Electronics and MRO may require 
enhanced supplier coordination, better demand forecasting, or alternative sourcing strategies to reduce variability and 
improve predictability. The consistency observed in Office Supplies procurement could serve as a benchmark for 
process optimization in other categories. Overall, the analysis underscores that lead-time variability is not uniform 
across categories and must be managed strategically depending on product complexity and supplier structure. 
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Figure 4 Lead Time vs Defective Units 

Figure 4 explores the relationship between lead_time_days and Defective_Units through a scatter plot. Each point 
represents a procurement transaction, showing how delivery duration relates to the number of defective units received. 
While the data display considerable dispersion, a moderate upward trend is visible, suggesting that higher defect rates 
tend to coincide with longer lead times. 

This relationship aligns with the moderate positive correlation (r ≈ 0.40) identified in the earlier heatmap. Suppliers 
operating under extended delivery schedules may face more complex logistical processes, greater handling risks, or less 
stringent quality control, all of which can contribute to elevated defect rates. Conversely, suppliers with shorter lead 
times often demonstrate higher process efficiency and better-quality assurance, leading to fewer defects. 

The scatter also reveals that extremely high defect counts (above 200 units) tend to cluster at lead times exceeding 10 
days, further supporting the hypothesis that longer supply chains are more prone to quality issues. However, the 
presence of numerous points with low defects and moderate lead times also indicates that performance is not solely 
determined by duration supplier management practices and product type likely play key roles. This analysis provides 
empirical support for the conclusion that delivery timeliness and product quality are interdependent performance 
dimensions in procurement operations. 
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Figure 5 Top 15 Feature Importance in Lead Time Prediction 

Figure 5 presents the top fifteen most influential features contributing to the prediction of procurement lead times. 
Feature importance values were derived from the trained model, which quantifies each variable’s relative contribution 
to reducing prediction error. The higher the importance score, the greater the feature’s impact on the model’s decision-
making process. 

Among all the predictors, Defective_Units emerged as the most influential factor, suggesting that suppliers or orders 
with higher defect rates tend to experience greater variability in lead times. This finding aligns with operational realities, 
as managing quality issues often leads to shipment delays, rework, or inspection bottlenecks. 

The second and third most important features supplier_std_lead and supplier_avg_lead  highlight the central role of 
supplier reliability and historical performance in determining delivery efficiency. Suppliers with inconsistent or higher 
average lead times naturally introduce greater uncertainty into the procurement process. 

Other variables such as Negotiated_Price, order_value, and Unit_Price also show significant influence, implying that 
financial and contractual terms might indirectly affect how quickly goods are delivered. For instance, higher-priced or 
high-value orders could involve longer procurement procedures or stricter compliance checks. 

Temporal factors like order_month and order_weekday indicate that time-based seasonal patterns or ordering 
schedules may also play a role. Meanwhile, categorical features like Item_Category_Packaging, Item_Category_MRO, and 
Order_Status_Pending show smaller but notable contributions, suggesting that specific item types and order stages 
affect overall delivery times. 

Overall, this analysis underscores that both supplier-related metrics and order-level parameters are crucial in 
predicting lead times, validating the multi-dimensional nature of procurement delays. 
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Figure 6 Actual vs Predicted Lead Times 

Figure 6 compares the actual lead times against the predicted values generated by the regression model, offering a direct 
visualization of the model’s predictive accuracy. The red diagonal line represents perfect predictions, where predicted 
and actual values would match exactly. 

In this plot, most data points cluster horizontally around the middle range (between 8 and 12 days), suggesting that the 
model tends to predict average lead times more frequently, while struggling with variability at the extremes. This aligns 
with the model’s quantitative performance metrics MAE of 5.20, RMSE of 6.08, and a negative R² value (-0.09) indicating 
that the model currently underperforms and fails to capture the full variance in lead time data. 

The dispersion of points around the red line demonstrates that the model predictions are not well-aligned with 
observed outcomes. This may be due to the presence of nonlinearities, unmodeled categorical interactions, or limited 
data representation in certain item or supplier categories. 

Despite the weak predictive performance, this visualization remains valuable as it highlights key areas for improvement. 
Enhancing data preprocessing, including additional supplier behavioral metrics, or testing advanced models such as 
ensemble regressors or gradient boosting methods could help achieve better alignment between predicted and actual 
lead times. 
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Figure 7 Mean SHAP Value (Feature Importance) Plot 

Figure 7 summarizes the average absolute SHAP values for each feature, ranking them by overall importance to the 
model. This figure complements the previous one by quantifying each variable’s contribution to predictive accuracy, 
regardless of direction (positive or negative). 

The ranking clearly highlights Defective_Units as the most impactful feature, followed by supplier_std_lead, Unit_Price, 
supplier_avg_lead, and order_value. Collectively, these top five predictors explain the majority of the model’s variance. 
Their dominance underscores that procurement performance is primarily driven by two dimensions: supplier 
performance (in terms of reliability and quality) and economic factors (price and transaction value). 

The inclusion of supplier_std_lead and supplier_avg_lead among the top features indicates that both the consistency and 
duration of supplier deliveries materially affect procurement risk. This finding supports operational best practices 
emphasizing the need to monitor not only average lead times but also the variability around them as irregular delivery 
performance often causes downstream scheduling inefficiencies and cost escalations. 

Lower-ranked features such as Order_Status, Item_Category, and Compliance variables contribute relatively less to the 
model, suggesting their influence on predictive performance is limited. However, their presence may still enhance 
interpretability by providing categorical differentiation across procurement types and compliance contexts. In sum, the 
SHAP importance ranking confirms that supplier and quality management variables are the most potent levers for 
improving procurement outcomes. 
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Figure 8 Mean SHAP Value (Feature Importance) Plot 

Figure 8 presents the SHAP summary plot, which explains how each input variable contributes to the model’s 
predictions at an individual observation level. Each point represents a single data instance, with the color gradient (blue 
to red) representing low to high feature values. The x-axis shows the SHAP value, indicating the direction and magnitude 
of the feature’s effect on the model output. 

The plot reveals that Defective_Units is by far the most influential feature in the predictive model. Higher numbers of 
defective units (red points on the positive SHAP side) substantially increase the model’s output, indicating that product 
quality issues are strongly associated with unfavorable procurement performance outcomes. This aligns with 
operational intuition: suppliers producing more defective items are typically more costly or risky. 

Supplier-related variables also show strong importance. Both supplier_std_lead and supplier_avg_lead demonstrate that 
suppliers with either high variability or longer lead times are associated with worse predicted outcomes, suggesting 
that supply consistency and timeliness are critical determinants of performance. In contrast, lower lead times (blue 
points) are associated with reduced predicted risk or cost, reinforcing the operational importance of lead-time 
reliability. 

Economic variables such as Unit_Price and order_value have moderate positive impacts. Higher prices or larger orders 
are linked with increased predicted outcomes, potentially indicating higher financial exposure or procurement cost. 
Categorical and temporal variables such as order_month, order_weekday, Item_Category, and Compliance exhibit 
smaller SHAP impacts, implying that while they may add contextual nuance, they are not dominant drivers in this 
predictive framework. 

Overall, the SHAP summary plot provides a comprehensive visualization of how different factors shape the model’s 
decision-making process, emphasizing product quality and supplier reliability as the most critical dimensions 
influencing procurement performance. 
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5. Discussion of Findings 

After training the predictive model, its performance was evaluated using three standard regression metrics: Mean 
Absolute Error (MAE), Root Mean Squared Error (RMSE), and the Coefficient of Determination (R²). The results show 
an MAE of 5.20, an RMSE of 6.08, and an R² of −0.09. 

The MAE value of 5.20 indicates that, on average, the model’s predictions deviate from the actual observed lead times 
by approximately 5.2 days, suggesting moderate predictive accuracy at the aggregate level. The slightly higher RMSE 
(6.08) shows that the model’s larger prediction errors have a noticeable impact on its overall performance, a sign that 
some extreme deviations or outliers are present in the dataset. 

However, the negative R² value (−0.09) is the most concerning outcome. It implies that the model performs worse than 
a simple mean-based predictor, meaning it fails to capture meaningful relationships between the input variables and 
the target variable (lead_time_days). In essence, the model explains none of the variance in the observed data and may 
even introduce additional prediction error. 

Several potential factors could explain this poor performance. First, the relationships between features such as supplier 
performance, order characteristics, and item categories may be non-linear or highly interaction-dependent, making 
them difficult to capture using the current model structure. Second, data imbalance or limited variability in key 
predictors might reduce the model’s ability to generalize. Finally, the presence of noise and outliers in the data such as 
orders with unusually long or short lead times could further distort the regression line. 

Despite these limitations, the evaluation provides important diagnostic insights. The results highlight the need for 
model refinement and feature engineering, such as the inclusion of supplier reliability indices, logistic distance factors, 
or seasonality variables. Exploring advanced algorithms such as Gradient Boosted Trees, Random Forests, or XGBoost 
regressors may help capture the complex, non-linear relationships driving procurement lead times.   

6. Conclusion  

This study set out to analyze procurement data and develop a predictive model for lead time estimation using various 
supplier, item, and order-related variables. Through the application of statistical, correlation, and machine learning 
analyses including SHAP feature interpretation and model performance evaluation several key findings emerged that 
offer meaningful insights into procurement efficiency and supplier reliability. 

The correlation analysis revealed moderate relationships between variables such as order_value, Quantity, and 
Unit_Price, suggesting that larger and higher-value orders are often associated with longer procurement cycles. 
However, other variables such as lead_time_days, supplier_avg_lead, and supplier_std_lead showed only weak linear 
correlations with cost and order-related features, indicating that lead time behavior is influenced by complex, non-
linear interactions rather than simple linear trends. 

The feature importance and SHAP analyses provided further depth to this understanding. Across both the SHAP 
summary and feature importance rankings, Defective_Units consistently emerged as the most critical factor influencing 
lead time predictions. This suggests that supplier quality performance directly affects delivery timelines. Suppliers with 
higher defect rates tend to experience inspection delays, rework requirements, and additional administrative approvals 
before dispatch. Similarly, supplier_std_lead and supplier_avg_lead were strong predictors, emphasizing that a 
supplier’s historical consistency and average delivery record are vital indicators of reliability. 

Financial variables such as Unit_Price, Negotiated_Price, and order_value also played significant roles, implying that 
procurement cost structures and negotiation outcomes may affect operational timing. Higher negotiated prices might 
correspond to premium or customized orders that inherently take longer to fulfill. Moreover, categorical features like 
Item_Category_MRO and Item_Category_Packaging showed moderate but meaningful effects, suggesting that item 
complexity and category-specific logistics influence lead times differently. 

Visualizations such as the Lead Time Distribution by Item Category showed relatively balanced medians across item 
types but notable variation within each category, pointing to intra-category performance inconsistencies likely linked 
to supplier differences. The Lead Time vs. Defective Units scatter plot further reinforced that defective items can 
introduce random and unpredictable delays, adding noise to the lead time distribution. 
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Despite these insights, the model performance metrics indicated that the current predictive framework requires 
significant refinement. With an MAE of 5.20, RMSE of 6.08, and R² of −0.09, the model underperformed, suggesting that 
it failed to capture meaningful predictive relationships and performed worse than a simple baseline. The Actual vs. 
Predicted Lead Time plot confirmed this, as most predictions clustered around the mean, showing limited sensitivity to 
actual lead time variations. This result implies that while the model recognizes general trends, it lacks the sophistication 
to handle variability and interaction effects within the data. 

In conclusion, the analyses collectively underscore that procurement lead time is a multifaceted outcome, influenced by 
supplier quality consistency, item characteristics, order scale, and contractual factors. The current model provides 
valuable interpretive insights but remains limited as a predictive tool in its current form. Nonetheless, these findings 
offer a strong foundation for refining data collection strategies, improving supplier assessment, and enhancing future 
modeling efforts. 

Recommendations 

Based on the findings and observed limitations, several recommendations can be made to improve both procurement 
operations and predictive modeling accuracy: 

● Since supplier-related variables (especially supplier_avg_lead, supplier_std_lead, and Defective_Units) strongly 
influence lead time, organizations should implement a more robust supplier evaluation framework. Continuous 
tracking of lead time variability and defect rates can enable early identification of unreliable suppliers, allowing 
procurement teams to take corrective or preventive measures. 

● The model’s weak predictive performance suggests that essential explanatory factors may be missing or 
inadequately captured. Future datasets should incorporate additional variables such as distance to supplier, 
transport mode, warehouse processing time, supplier location, and inventory availability. Capturing these 
dimensions would provide a more holistic representation of lead time drivers. 

● The current regression model may be too simplistic for the complex relationships inherent in procurement 
systems. Techniques such as Random Forests, Gradient Boosting (XGBoost, LightGBM), or Neural Networks 
could better capture non-linear interactions and variable importance. Moreover, using ensemble methods may 
improve generalization and robustness.  

● Developing new features that combine multiple indicators, such as a supplier reliability index or order 
complexity score can enhance model interpretability and predictive power. Dimensionality reduction 
techniques like PCA (Principal Component Analysis) could help isolate the most influential components without 
losing critical information. 

● Procurement patterns and supplier behaviors evolve over time. Therefore, the predictive model should be 
retrained periodically using the latest data to maintain accuracy. Incorporating rolling or incremental learning 
frameworks can ensure that the model remains adaptive to new market dynamics. 

● Insights from this study can guide decision-makers to strategically balance cost and reliability. For example, 
allocating more orders to suppliers with lower lead time variability, even if their prices are slightly higher, could 
reduce uncertainty and improve overall supply chain resilience.  
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