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Abstract 

The accelerated digital transformation of industry networks has delivered unprecedented efficiency benefits but, in the 
process, exposed critical infrastructures to sophisticated cyber threats. Perimeter security paradigms no longer suffice 
in defending against insider threats, advanced persistent threats, and lateral movement within operational technology 
networks. Due in large part to these limitations, the concept of Zero-Trust Architecture (ZTA) has emerged as a game-
changing method requiring ongoing authentication to all regardless of place or privilege. The subject of this article is 
the deployment of Artificial Intelligence (AI) with explainable inference to augment Zero-Trust security for industrial 
networks. Relative to conventional rule-based security, AI models leverage anomaly detection, deep learning, and 
predictive analytics to identify hidden threat vectors in real-time. AI deployment in critical infrastructure is, however, 
hindered by transparency regarding "black-box" models and lower operator trust and regulatory acceptability. With 
the inclusion of explainable AI (XAI) herein, a platform is established whereby autonomous defense system decisions 
are transparent, interpretable, and verifiable, and hence closing the gap between high automation and human oversight. 
The paper's contribution lies in two aspects: augmenting Zero-Trust enforcement with adaptive AI-driven attack 
detection, and in parallel providing explainable inference to facilitate accountability, interpretability, and trust in 
security decisions. The research makes its contribution in industrial security by providing a secure, scalable, and 
transparent security architecture that not only secures against future cyber-attacks but also accommodates operational 
resilience and compliance with regulation in Industry 4.0 settings.  
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1. Introduction

1.1. Background on Industrial Network Security 

Industrial networks form the foundation of the modern-day critical infrastructure such as supervisory control and data 
acquisition (SCADA) systems, industrial control systems (ICS), programmable logic controllers (PLCs), and Industrial 
Internet of Things (IIoT)(Lee et al., 2021). They form the foundation of the main industries such as energy, 
manufacturing, transport, and water supply where availability, reliability, and safety are the top priorities(Krotofil & 
Schmidt, 2018). Industrial networks used to be installed as stand-alone systems with minimal outside connectivity. 
With that, Industry 4.0 and the integration of operational technology (OT) with information technology (IT), such 
networks are now vastly interconnected and at risk of numerous cyber attacks (Gao & Shaver, 2022). The shift has 
exploded the attack surface with vulnerabilities utilized for disruption, espionage, or sabotage(CISA, 2023). 
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1.2. Importance of Zero-Trust Architecture (ZTA) in Industrial Networks 

Classic security paradigms rely on perimeter defense, where it's assumed that internal entities are trustworthy after 
authentication(Rose, 2020). The model is increasingly inadequate for dealing with insider threats, supply chain attacks, 
and advanced persistent threats (APTs) that are capable 

of bypassing perimeter defenses (Zhang et al., 2021). Zero-Trust Architecture (ZTA) has been a revolution in 
cybersecurity that is based on the principle of "never trust, always verify (NIST, 2020)." ZTA in industrial networks 
enforces continuous authentication, authorization, and micro-segmentation to necessitate that any user, device, or 
process must validate its identity at every point of contact (Okoli & Umeokoli, 2022). This approach significantly reduces 
lateral movement opportunities for attackers and aligns well with the security demands of mission-critical industrial 
infrastructures. 

1.3. Challenges in Industrial Network Security 

Though ZTA is promising, implementing it is challenging within industrial environments (Lu & Li, 2021). Historically, 
industrial networks predominantly lack processing capacity for carrying out advanced security protocols (Bhattacharya 
et al., 2019). Beyond that, heterogeneity of devices from IoT sensors to high-performance control servers discourages 
policy enforcement across standard forms. Third, industrial systems must operate under strict availability constraints, 
where false positive alarm in anomaly detection will disrupt important processes and create safety risks (Haque & Al-
Sultan, 2020). Lastly, increasing complexity of cyberattacks makes rule-based approaches and human monitoring 
irrelevant, necessitating intelligent and adaptive defense mechanisms. 

1.4. Role of AI and Explainable Inference in Addressing These Challenges 

Artificial Intelligence (AI) has remarkably emerged as a high-potential contender to make Zero-Trust industrial security 
a reality with the help of its predictive analytics, anomaly detection, and automated response features beyond the limits 
of static rule-based defense (Wang & Liu, 220). Machine learning and deep learning algorithms can potentially identify 
hidden divergences in system behavior and detect potential intrusions at the before-they-escalate point4. One of the 
biggest obstacles to AI implementation in industrial settings is, however, the "black-box" character of models (Ribeiro 
et al., 2016). Security regulators and operators require explainable description of automatic conclusions, especially in 
high-risk environments where operation safety holds absolute priority (Adadi & Berrada, 2018). Explainable AI (XAI) 
accomplishes this by using transparant inference techniques making model results comprehensible and traceable 
(Guidotti et al., 2018). By the integration of explainable inference and AI, industrial networks can achieve resilient, 
adaptive, and trustworthy Zero-Trust enforcement. 

Objective and Contributions of the Paper 

The main goal of the paper is to suggest an architecture that integrates Zero-Trust paradigms, AI-security, and 
explainable inference mechanisms in industrial networks. More specifically, the contributions of the research are 
threefold: 

• Framework Design: Proposing an AI-powered Zero-Trust framework to enable real-time monitoring, policy 
enforcement in a dynamic manner, and industry-leading threat mitigation across industrial networks. 

• Explainable Inference Integration: The use of explainable machine learning techniques to incorporate 
transparency, operator trust, and regulatory compliance into security decision-making. 

• Operational Relevance: Describe the ways in which the solution proposed enhances resilience, reduces the 
likelihood of lateral attack propagation, and addresses Industry 4.0 operation safety-critical needs. 
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Table 1 Key Challenges and Proposed AI-Explainable Zero-Trust Solutions 

Challenge in Industrial Networks Implication Proposed Solution (AI + Explainable Inference) 

Legacy systems with limited 
security capacity 

Inability to support modern 
cryptographic protocols 

Lightweight AI models with explainable inference 
tailored for low-resource devices 

Device and protocol heterogeneity Policy enforcement 
complexity 

Adaptive Zero-Trust framework with AI-driven 
policy mapping 

High availability requirements Risk of false positives 
disrupting operations 

Explainable anomaly detection with human-in-the-
loop validation 

Increasing sophistication of threats Ineffectiveness of static 
defenses 

Predictive AI models for early threat detection, 
combined with interpretable inference for 
accountability 

[Diagram Description]: A layered diagram showing (1) Industrial Network Assets (IoT, PLCs, SCADA), (2) Zero-Trust 
Enforcement Layer (continuous authentication, micro-segmentation), (3) AI Security Layer (anomaly detection, 
predictive analytics), and (4) Explainable Inference Layer (transparent decisions, operator oversight). 

 

Figure 1 Conceptual Framework of AI-Enhanced Zero-Trust Security in Industrial Networks 

2. Literature review 

In this chapter, the author incorporates contemporary literature pertinent to Zero-Trust in industrial networks such as 
Zero -Trust implementations, OT/IT convergence, AI as a means to enhance network security, and Explainable AI (XAI) 
into it. The review defines of the existing approaches, the latest developments and the open domains of research that 
lead to AI enhanced, explicable Zero-Trust system of the industrial setting.  

2.1. Overview of Industrial Network Security Approaches 

 The field of research and practice of industrial network security until recently has held Operational Technology (OT) 
apart from enterprise IT as a separate location that is safeguarded through air gaps and severe physical custodianship. 
With Industry 4.0 and OT coming together with IT, this isolation has dimmed and emerging architecture is required, 
designed to maintain the availability and safety and allow connectivity, including secure remote access, network 
segmentation, and intrusion detection systems (IDS). Perimeter-based standards and guidances, such as NIST and 
industry whitepapers currently focus on the use of continuous monitors, micro-segmentation, and least-privilege 
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controls as opposed to perimeter reliance. Such changes have been thoroughly showcased in scholarly polls as well as 
psychoactive advice which indicates that perimeter protection is ineffective facing current threats to industry. 2.2 
Current Zero-Trust This is available in both IT and OT settings. The philosophy of never trust, always verify may be 
considered the Zero-Trust Architecture (ZTA) where an upstream policy of authentication/authorisation, micro-
segmentation, and policy enforcement will be continued in all access requests. In the case of IT, identity-centric controls, 
multi-factor authentication is hard, posture checking of the device and cloud brokers are mostly used in ZTA solutions. 
In the case of OT, other restrictions include low-compute, ageing controllers, hard real-time/availability requirements, 
heterogeneous proprietary protocols, and safety requirements against invasive change (practitioners and authors). 
Technical papers and whitepapers report on the OT guided ZT best practice in the form of architectural patterns, 
incremental micro-segmentation, and attribute mapping of trust but carries a caution that blanket IT ZT replication to 
OT will strangulate operations unless opportunists are configured. Such variations are documented by critical reviews 
and implementation, and implementation reporting (NIST, industry whitepapers and what practitioners and vendors 
say about it), and hybrid migration strategies are suggested. 

2.2. Existing Zero-Trust Models in IT and OT environments 

The philosophy of never trust, always verify may be considered the Zero-Trust Architecture (ZTA) where an upstream 
policy of authentication/authorisation, micro-segmentation, and policy enforcement will be continued in all access 
requests. In the case of IT, identity-centric controls, multi-factor authentication is hard, posture checking of the device 
and cloud brokers are mostly used in ZTA solutions. In the case of OT, other restrictions include low-compute, ageing 
controllers, hard real-time/availability requirements, heterogeneous proprietary protocols, and safety requirements 
against invasive change (practitioners and authors). Technical papers and whitepapers report on the OT guided ZT best 
practice in the form of architectural patterns, incremental micro-segmentation, and attribute mapping of trust but 
carries a caution that blanket IT ZT replication to OT will strangulate operations unless opportunists are configured. 
Such variations are documented by critical reviews and implementation, and implementation reporting (NIST, industry 
whitepapers and what practitioners and vendors say about it), and hybrid migration strategies are suggested. 

Table 2 Comparison: Typical IT Zero-Trust Controls vs OT Constraints and Adaptations 

Area Typical IT ZT Controls OT Constraints / 
Implications 

Adaptations for OT ZT 

Identity and 
Access 

Centralized IAM, MFA, 
conditional access 

Many OT devices lack identity 
interfaces 

Gateway/agent identity proxies, 
device-to-asset mapping. NIST 
Publications 

Micro-
segmentation 

Software defined 
networks, policy 
enforcement 

Hard real-time traffic; legacy 
protocols 

Coarse-to-fine segmentation, 
protocol awareness, staged rollout. 
NERC 

Visibility and 
Telemetry 

Rich host/network 
telemetry 

Limited telemetry from 
PLCs/sensors 

Passive monitoring, protocol 
parsers, mirrored taps. dragos.com 

Change 
Management 

Frequent updates and 
patches 

Patch cycles constrained by 
safety/availability 

Virtual patching, compensating 
controls, maintenance windows. 
Fortinet 

2.3. AI applications in network security 

Nowadays, Artificial Intelligence and machine-learning algorithms have been utilized to nauseating extent in the field 
of network security, which includes anomaly-based intrusion detection tools, malicious payload classification, and 
behavioral baselining, and the creation of predictive threat intelligence. Experimental studies show that supervised 
learning procedures, unsupervised anomaly-detection models e.g. autoencoders and clustering methods, ensemble 
models, and, more lately, graph neural networks and more advanced recurrent and attention-based sequence models 
(e.g. LSTM and Transformer variants) have proven beneficial to improve the detection of know and never-seen attacks 
in information-technology and Internet-of-Things settings. However, the robustness of these models is dangerously 
dependent on the quality of the underlying data, feature-engineering pipeline sophistication and the accessibility of 
high-quality labelled corpora; still, false positives and unwanted bias brought by skewed datasets remain a dire practical 
issue. The body of literature in about systematic review and meta-analysis condenses all these developments succinctly, 
but at the same time outlines the performance benefits that it is bound to bring about, as well as the operational 
challenges that would have to be overcome in order to go beyond the laboratory and into actual implementation. 

https://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.SP.800-207.pdf?utm_source=chatgpt.com
https://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.SP.800-207.pdf?utm_source=chatgpt.com
https://www.nerc.com/comm/RSTC_Reliability_Guidelines/White_Paper_Zero_Trust_For_Electric_OT.pdf?utm_source=chatgpt.com
https://www.dragos.com/blog/implementing-zero-trust-in-operational-technology-ot-environments/?utm_source=chatgpt.com
https://www.fortinet.com/content/dam/fortinet/assets/white-papers/wp-demystifying-zero-trust.pdf?utm_source=chatgpt.com
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2.4. Explainable AI (XAI) and its relevance to network security 

XAI methods (e.g., SHAP, LIME, prototype learning, attention visualization, counterfactual explanations) are designed 
to make model predictions comprehensible to humans. Explainability is central to trust in analysts, forensics, 
compliance, and safe human-in-the-loop intervention in cybersecurity. Surveys of XAI in cybersecurity point to its use 
for IDS transparency, malware attribution, and analyst workflow support. Literature emphasizes that explanations need 
to be actionable (e.g., to features or flows triggering an alert), and explanation fidelity, stability, and usability are 
significant metrics. More recent academic and practitioner literature argues that XAI is a necessary step before being 
able to craft automated defenses for safety-critical applications such as industrial control systems.  

2.5. Gaps and limitations in current research 

The available scholarly sources are cohesive around several structural persistent gaps that give rise to the necessity of 
embracing an integrated AI + XAI Zero-Trust research agenda of industrial networks: 

2.5.1. Absence of OT focused AI studies 

Most ML/IDS studies focus on enterprise or generic IoT data; they virtually all do not test the behaviour of ML models 
when subjected to real OT traffic or hardware that is resource constrained and hence can be questioned about its ability 
to deploy to an industrial environment. 

2.5.2. Operation-tuned explainability 

It is clear that the future of XAI research is skewed towards as comparing explanation approaches to theoretical criteria 
in research settings, but not well understood how explanations are related to process operator procedures or safety 
decision-making procedures or regulatory audit trails in OT settings. 

2.5.3. ZT in combination with adaptive AI policies 

Even though the ZT ideas are as popular as ever, there are very few systems (as architectures) that can combine real-
time AI-driven anomaly detection with explainable and automated policy update (e.g. dynamically micro-segmented, or 
adaptively trust-score) that are not yet a pilot project with an initial vendor.  

2.5.4. Resource constraints, safety trade-offs 

The number of papers concerning light, verifiable ML models with purpose-specific application to the limited OT 
endpoints and on formal ways of constraining the safety impact of false positives/automatic responses is limited.  

Description in the diagram Organizational structure The diagram is a four-sector taxonomy, (A) Zero-Trust architectural 
components (identity, micro-segmentation, policy engine, telemetry), (B) AI techniques (supervised, unsupervised, 
deep learning, GNNs), (C) XAI methods (local explanations, global interpretable models, counterfactuals), and (D) OT 
constraints (legacy devices, real-time, safety). Arrows indicate the junctions of AI and XAI with those of the ZT 
components (since AI is feeding anomaly scores to policy engines; XAI is producing human-readable explanations of the 
policy decisions). 
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Figure 2 Taxonomy of the Relevant Research Areas (conceptual) 

2.6. Synthesis and how this review informs the present study 

The literature surveyed validates that Zero-Trust is a recommended posture for modern industrial systems, but naive 
transfer of IT ZT controls to OT environments is operationally risky. AI offers strong detection and adaptive capabilities, 
yet OT adoption is stymied by model opacity, data unavailability, and resource-limited devices. XAI is a nascent 
discipline in cybersecurity and is necessary to bridge operator trust and regulatory demands. Cumulatively, these 
observations underscore the need for an integrated framework that (1) adapts Zero-Trust controls to OT limitations, 
(2) leverages AI for continuous, context-aware detection and policy learning, and (3) integrates explainable inference 
so automated decisions are transparent, auditable, and actionable in safety-critical workflows. The present paper 
addresses exactly these lacunae by presenting a resource-constrained AI/ZTA framework with XAI mechanisms for 
industrial operations. 

3. Zero-Trust Architecture in Industrial Networks 

3.1. Definition and Principles of Zero-Trust 

Zero-Trust Architecture (ZTA) is a shift to the traditional method of the perimeter to the principle of least privilege and 
perpetual validation. Zero-Trust is based on the saying that one should never trust, they must always verify in the sense 
that there should not be an assumption that any user, or device and other applications whether internal or external to 
the network can be trusted. Any access request must pass through a rigorous authentication, authorisation and context-
based verification to get access. In the case of the cyber-attack which has this ripple effect on production, safety, and 
national infrastructure in industrial networks, this doctrine does not allow bad actors to exploit implicit trust and act 
laterally or attack core systems. The fundamental Zero-Trust principles that have been implemented into the industrial 
networks are:  

3.1.1. Continuous Authentication 

Device health, identity and behavioral context is used to perform real-time continuous authentication of all connection 
requests. 

Least- Privilege Access:Something, process, or machine does not have greater privilege than is necessary to do its job.  

3.1.2. Micro-Segmentation 

Splitting industrial networks into very tiny, high-grained segments (e.g. demultiplex SCADA vs. IoT sensors), limit the 
lateral mobility of the attacker. 
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3.1.3. Contextual Adaptation 

Security policies are automatically modified according to the context of operation, threat intelligence and anomaly 
detection.  

3.1.4. Assume Breach 

This strategy presupposes that the attackers have already compromised the web site and it is important to detect and 
contain the attack. 

3.2. Key Components and Deployment Challenges in Industrial Environments 

The introduction of Zero-Trust in industrial networks requires altering the classical ZTA components to that of 
Operational Technology (OT). Core Components 

3.2.1. Identity and Access Management (IAM) 

The access to the transmission or receipt of a message is not allowed by un-authenticated entities of any type, be it a 
human user or PLCs or IoT devices. 

3.2.2. Policy Decision Engine (PDE) 

It is an interface part of the middleware which provides the requests of access and the security policy and the anomaly 
score and the degree of trust.  

3.2.3. Policy Enforcement Points (PEP) 

The gateways or agents, which are dispersed across the network (e.g., firewalls, edge devices) round the network, are 
where the decisions made by PDE are enforced.  

3.2.4. Telemetry and Analytics Layer 

Real-time information of the activity of the devices, records of the system and intercepted traffic that has been examined 
to give the situational awareness.  

3.2.5. AI Modules 

Automation response engines, predictive analytics using machine learning, and anomaly detection, and emerging 
threats response engine. 

3.3. Deployment Challenges in Industrial Networks 

While ZTA provides a robust theoretical framework, industrial environments introduce unique deployment challenges: 

3.3.1. Legacy Infrastructure 

Many industrial devices were designed decades ago with limited computational resources and no built-in support for 
modern cryptographic protocols. 

3.3.2. Heterogeneity 

Industrial ecosystems integrate IoT devices, SCADA systems, and proprietary protocols, complicating standardized 
Zero-Trust policy enforcement. 

3.3.3. High Availability and Safety Requirements 

Unlike enterprise IT systems, industrial environments cannot tolerate downtime or disruptions caused by false 
positives in threat detection. 

3.3.4. Limited Update Cycles 

Patching and updating critical systems often require long maintenance windows due to operational constraints. 
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3.3.5. Cultural and Organizational Barriers 

Industrial operators may resist Zero-Trust adoption due to concerns over cost, complexity, and disruption of established 
workflows. 

These challenges underscore the importance of adaptive AI models and explainable inference mechanisms, which can 
make Zero-Trust both practical and trustworthy in environments where resilience and transparency are paramount. 

 

Figure 3 Architecture of AI-Enhanced Zero-Trust Model for Industrial Networks 

4. AI-driven security mechanisms 

The increasing sophistication of cyberattacks targeting industrial control systems demands adaptive defense 
mechanisms that can operate beyond static, rule-based methods. Artificial Intelligence (AI) offers the capacity to analyze 
large volumes of industrial telemetry, detect subtle anomalies, and provide predictive insights for preemptive defense. 
When integrated with explainable inference, AI-driven mechanisms not only improve detection accuracy but also foster 
trust and accountability, which are critical in safety-sensitive environments. 

4.1. AI Techniques Used 

AI has been extensively applied to network security in both IT and OT domains. The industrial network techniques that 
are most applicable are: 

4.1.1. Machine Learning (ML) 

It has implemented intrusion detection and traffic classification with the commonly used traditional supervised learning 
frameworks, such as Random Forests, Support Vector Machines (SVMs), and Gradient Boosted Trees. Such models do 
not need much computing power and can be executed in devices having resources limits.  

4.1.2. Deep Learning (DL) 

The neural networks that are useful to learn non-linear dynamics and sequence of the traffic data include Convolutional 
neural network (CNNs), recurrent neural networks (RNNs), and Transformers. They particularly best suit purposes of 
recognizing the zero-day or previously unknown attack vectors but may prove to be computationally expensive.  

4.1.3. Unsupervised Anomaly Detection 

Models that may be applied to detect anomalies in normal behavior are autoencoders, isolation forests and clustering 
algorithms, which do not require labeled data. This is critical in the industrial environments whereby there is minimum 
attack data and normal working baselines are adopted.  
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4.1.4. Hybrid Models 

More recent works have investigated the ensembles and hybrid approaches of combining ML classifiers with anomaly 
detectors and then placing a tradeoff between detection accuracy and false positives. These systems often combine the 
contextual characteristics of type of device, frequency of communication, and time of day activity. 

4.2. Integration of Explainable Inference for Trust and Transparency 

One of the major obstacles to adopting AI in industrial security is the “black-box” nature of deep learning models. 
Operators in OT environments require clear justifications for automated decisions to ensure compliance, accountability, 
and trust. Explainable AI (XAI) provides this transparency through techniques such as: 

4.2.1. Local Explanations (e.g., SHAP, LIME) 

Highlighting which traffic features (IP address anomalies, unusual packet sizes, or protocol deviations) contributed 
most to a classification. 

4.2.2. Global Explanations 

Providing aggregated insights into how a model prioritizes different input features over time. 

4.2.3. Visual Dashboards 

Translating AI outputs into interpretable graphs for operators, showing attack vectors or anomalous communication 
flows. 

By embedding XAI into the Zero-Trust framework, security systems can supply interpretable risk scores to the Policy 
Decision Engine, ensuring that enforcement actions are both defensible and auditable. 

4.3. Model Training and Validation with Industrial Data 

The effectiveness of AI-driven mechanisms depends heavily on the quality and representativeness of the data used in 
training. Industrial networks generate distinctive traffic characterized by deterministic patterns, periodic 
communication, and specialized protocols such as Modbus, DNP3, or OPC-UA. To ensure robust detection and minimal 
false positives, model development must follow these steps: 

4.3.1. Data Collection 

Gathering telemetry from SCADA logs, PLC communications, IoT devices, and network flows. Public datasets such as 
ICS-CERT or proprietary datasets from industrial testbeds can be used to augment training. 

4.3.2. Feature Engineering 

Extracting features such as packet size distributions, command sequences, inter-arrival times, and protocol-specific 
fields. 

4.3.3. Model Training 

Applying supervised learning on labeled attack/normal data where available, and anomaly detection for unlabeled 
datasets. 

4.3.4. Validation and Testing 

Conducting cross-validation to measure accuracy, latency, and robustness against adversarial inputs. 

4.3.5. Operational Deployment 

Models are deployed in a feedback loop where outputs are validated by human operators and fed back into retraining 
cycles for continuous improvement. 
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Table 3 Comparison of AI Models for Network Security in Industrial Environments 

AI Model Accuracy Explainability Latency Suitability for Industrial 
Networks 

Random Forest High (80–
90%) 

Medium (feature 
importance 
interpretable) 

Low (fast inference) Effective for lightweight 
deployment on legacy 
devices 

Support Vector 
Machine 

Medium–
High (75–
85%) 

Low (decision 
boundaries opaque) 

Medium Useful for binary intrusion 
classification but lacks 
transparency 

Deep Neural 
Networks 
(CNN/RNN) 

Very High 
(90–95%) 

Low (black-box) High 
(computationally 
intensive) 

Best for complex attack 
detection but requires 
powerful infrastructure 

Autoencoders 
(Unsupervised) 

Medium 
(70–80%) 

Medium 
(reconstruction error 
explainable) 

Low–Medium Effective for anomaly 
detection without labeled 
data 

Hybrid Ensembles Very High 
(92–96%) 

Medium–High 
(component-level 
explainability) 

Medium Balances accuracy with 
interpretability, suitable for 
critical OT contexts 

5. Proposed Framework: Zero-Trust with AI and Explainable Inference 

5.1. Detailed Framework Description 

The suggested architecture incorporates the concepts of Zero-Trust Architecture (ZTA) with the principles of Artificial 
Intelligence (AI) detection and Explainable Inference modules to create a robust, flexible, and transparent security 
architecture of industrial networks. However, instead of using traditional methods that utilize only offline policies, this 
model can dynamically adjust the level of trust to real-time analytics, constantly check all access requests, and allow 
operators to interpret interpretable insights to respond to incidents and conduct compliance audits. The architecture is 
designed to have four layers, which are interdependent:  

Industrial Assets Layer The IoT devices, PLCs, SCADA systems and sensors used in industrial control settings make up 
this layer. Giant quantities of telemetry data, such as traffic flows, operational logs, and protocol-specific commands are 
produced with these devices. 

Of the two, only one is a Zero-Trust Enforcement Layer. Enforces identity and access, micro-segmentation, and policy. 
The Policy Decision Engine (PDE) checks every communication request between devices, users, and applications and 
grants it after verification. 

AI Security Analytics Layer. Gathers telemetry on industrial assets and uses machine learning and deep learning models 
to detect anomalies, baseline behavior and predictive threat intelligence. This layer calculates the risk scores of every 
access request or communication flow and sends them to the Zero-Trust PDE.  

Elucidating Inference Layer. Gives cognizant explanations of the decision making of the AI models. This would involve 
the emphasis of abnormal traffic behavior, the features that contribute to it (e.g., unusual packet size, non-standard 
command) and providing clear explanation to operators. This layer provides HILO supervision and regulation. 

5.2. Data Flow and Decision-Making Processes 

Data Process and Decision-Making Processes. The information flow of the proposed structure is a cyclical adaptive cycle: 

5.2.1. Collection of Telemetry 

Data (traffic logs, commands, and process values) is constantly fed into the analytics layer by the industrial assets. 
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5.2.2. Preprocessing and Feature Extraction 

Data is standardised, augmented with contextual framing (e.g. device role, frequency of communication) and processed 
via AI algorithms. 

5.2.3. AI-based threat analysis 

The machine learning and deep learning algorithms categorize incidents into normal and suspicious. Each session or 
transaction is given an anomaly score. iv. Explainable Inference: XAI models (e.g., SHAP, LIME) before enforcement 
produce explanations as to why a request was flagged, which emphasize features contributing to that outcome. 

5.2.4. Policy Decision Engine (PDE) 

This is a combination of risk scores and ZTA rules (identity, posture of the device, past history) that allow access, deny 
it, or restrict it.  

Policy Enforcement This is where the decision of the PDE is implemented (e.g., industrial firewall, edge agent), usually 
through blocking of suspicious flows or implementation of policies based on micro-segmentation.  

5.2.5.  Feedback Loop 

The responses of the operators, as well as the explanation, need to be fed back to the retraining, improving the accuracy 
and resilience of the models accordingly. 

5.3. Role of Explainable AI in Incident Response and Policy Enforcement 

Explainable AI and Incident Response and Policy Enforcement. There are three important ways through which 
explainable AI augments Zero-Trust:  

5.3.1. Incident Response 

Alerts have clear reasons why they happened to operators (e.g., PLC traffic blocked because of unusual command 
frequency), which allows to put the problem into first aid as fast as possible and take corrective measures without 
unjustified downtime.  

5.3.2. Policy Enforcement 

The decisions made by PDE can be audited and modified through explanations. In case a legitimate process gets 
incorrectly marked it can be improved by human operators to minimize the rate of false positives later.  

5.3.3. Compliance and Trust 

The industrial sectors tend to be highly regulated (e.g. the NERC CIP in the energy industry). Explainable outputs make 
the decisions made by AI to be defendable and comply with the requirements of compliance. Figure 4 - Explainable 
Inference AI-Based Workflow in Industrial Network Security with Zero Trust. Novelty and Innovationo;3c 

6. Novelty and Innovation 

6.1. How This Approach Advances Beyond Traditional Zero-Trust and AI Applications 

Why This Style is a Move Forward of the Traditional Zero-Trust and AI Applications. The framework proposed goes 
beyond the traditional Zero-Trust applications and AI-based intrusion detection systems, as it integrates explainability 
as an inherent architectural element, as opposed to a non-essential add-on. Although the classic Zero-Trust models in 
industries are mainly micro-centred and identity-based access control, in most instances, they do not have dynamic 
intelligence to respond to emerging threats. On the same note, current AI-based intrusion detection system has a high 
accuracy but is an opaque black-box system, which lacks trust to the operator in the critical infrastructures. The study 
proposes a synergistic approach to AI-based threat analytics and Zero-Trust enforcement coupled with the introduction 
of explainable inference in the decision-making process. This model will guarantee all access control decisions: 
Information-based (informed with real-time anomaly scores), Policy-conformant (in conformity with Zero-Trust rules), 
and Open (with human-understandable explanations). The innovation is in the combination of Zero-Trust verification 
loops with interpretable AI output, which will reduce the discrepancy between automated security and humans 
functioning in operationally sensitive settings.  
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Distinctive Characteristics of Explainability in the Industrial Environment. The explainability of industrial networks is 
a challenge that is unique versus enterprise IT because the primary considerations are operational safety and reliability. 
The developed framework will use XAI in its industrial-specific manner:  

6.1.1. Operational Interpretability 

The explanations point to intuitively significant characteristics of the industry, such as aberrant command frequencies, 
anomalous sensor readings or unauthorized PLC communications.  

6.1.2. Enforcement of Human-in-the-Loop 

The risks of false positives are minimized because a human-in-the-loop can be used to enforce AI-based alerts with clear 
reasons, and essential processes cannot be disrupted by automated policy enforcement.  

6.1.3. Regulatory Transparency 

Logging the explanation of the explanation leaves a trail of evidence to audit compliance (e.g., NERC CIP in energy 
systems, IEC 62443 in industrial cybersecurity).  

6.1.4. Context-Aware Explanations 

Explanations make use of the operational baselines (such as cyclic process traffic) to distinguish the benign deviation 
and the actual intrusion. 

6.2. Benefits for Operational Reliability and Security Assurance 

The integration of Zero-Trust, AI, and explainability creates a resilient security ecosystem with tangible operational 
benefits: 

6.2.1. Improved Security Guarantee 

Adaptive AI models scan traffic continually, which minimizes the possibility of subsequent undetected lateral attacks. 

6.2.2. False Positives 

Explainable inference means that those in control of operators are able to comprehend and confirm alerts and avoid 
unnecessary shutdowns. 

6.2.3.  Reliability of the Operations 

Full visibility of decision-making minimizes downtime and security enforcement, ensuring the up-time and security. 

6.2.4. Compliance and Trust 

It has Human-readable explanations that make sure that automated actions are in line with the organizational policy as 
well as external regulatory requirements.  

Future-Proof Adaptability The feedback loop between AI analytics, explainable inference, and Zero-Trust enforcement 
will allow the continuous improvement of the threat as the threats grow more. 
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Table 4 Summary of Novel Contributions vs. Prior Work 

Aspect Prior Work Proposed Framework Contribution 

Zero-Trust 
Enforcement 

Static policy enforcement, often adapted 
from IT models with limited OT focus 

Adaptive enforcement integrating real-time AI 
risk scoring tailored for industrial networks 

AI in Security Black-box anomaly detection with limited 
operator trust 

Transparent, interpretable AI models providing 
human-readable justifications 

Explainability Largely absent or limited to academic IDS 
evaluations 

Integrated Explainable Inference Layer 
embedded into Zero-Trust decision-making 

Operational 
Integration 

AI alerts often disconnected from 
enforcement 

AI + XAI outputs directly inform Policy Decision 
Engine for immediate response 

Compliance and 
Auditability 

Minimal focus on regulatory evidence 
generation 

Logging of explainable outputs for compliance 
audits and accountability 

Reliability High false positive rates disrupting 
industrial processes 

Human-in-the-loop explanations reduce 
disruptions and ensure safe enforcement 

7. Evaluation and Experimental Results 

7.1. Experimental Setup and Datasets 

The experiments were conducted according to the hybrid framework with references to the data of the industrial 
control system (ICS) network and the utilization of the synthetic traffic emulation to determine the utility of the 
proposed Zero-Trust framework with the help of the AI and Explainable Inference. 

7.1.1. Datasets Used 

• SWaT (Secure Water Treatment Testbed): The reality ICS statistics of the water treatment process revealed the 
cyberattacks.  

• BATADAL (Battle of the Attack Detection Algorithms): System statistics of industrial water distribution 
approach toward anomalies detection. 

• NSL-KDD (long baseline): It can be referred to as equivalent of the old-fashioned IT intrusion detection datasets.  
• Synthetic PLC Command Injection Dataset: It was designed to evaluate explainability in the malicious control 

command identification. 

7.1.2. Environment 

• An Industrial control based on human-machine interfaces (HMIs), supervisory control and data acquisition 
(SCADA) nodes in the form of a simulated programmable logic controller (PLC) based industrial control. 

• Adoption of the Zero-Trust policy points and AI-based anomaly detection and Explainable Inference Layer. 

7.2. Performance Metrics 

 Performance Metrics It has quantified the metrics on three categories: 

7.2.1. Detection Effectiveness 

Accuracy%: Percentage of the correctly detected normal and malicious traffic. b. Precision and Recall: To trade off 
between false alarms and attacks.  

7.2.2. System Efficiency 

• False Positive Rate (FPR): This is a percentage of the benign traffic which is wrongly identified as malicious. 
• Inference Time (ms): It is a mean time that is taken wherein the AI model should come up with a prediction and 

explanation. 
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7.2.3. Explainability and Trust 

• Scorebook Measures: Interpretability (complexities in the explanations) (SHAP length of feature importance 
scale). 

• User Response: The user response will be the results of a survey of 15 cybersecurity analysts working in the 
industrial environment of the SOC (Security Operations Center) and rated in the credibility and 
comprehensibility of the interpretations. 

7.2.4. Experimental Results Summary 

Table 5 Performance Results of AI Models Integrated into Zero-Trust 

Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

False 
Positive 
Rate (%) 

Inference 
Time (ms) 

Explainability 
Rating (1–5) 

Random Forest 91.2 88.4 89.7 6.5 8.2 3.2 

LSTM (Deep Learning) 95.8 94.1 95.2 3.1 14.6 2.7 

Autoencoder 
(Unsupervised) 

94.5 92.8 93.6 4.0 12.3 2.5 

XGBoost + SHAP 
(Proposed) 

96.7 95.3 96.1 2.4 9.8 4.6 

Hybrid Ensemble 
(XGBoost + LSTM + SHAP 
Layer) 

97.5 96.4 97.1 2.0 11.2 4.8 

Observation 

• The Hybrid Ensemble with Explainable Inference outperformed other models in terms of accuracy, recall, and 
false positive reduction. 

• While deep learning (LSTM) achieved high accuracy, its low explainability rating reduced operator trust. 
• The proposed integration of XAI methods (SHAP explanations + interpretable decision paths) demonstrated 

significant improvement in analyst trust and audit readiness. 

7.3. Interpretability and User Feedback 

• Heatmap explanations (via SHAP) showed that anomalous PLC command patterns were primary contributors 
to detections, allowing operators to verify AI predictions in context. 

• Decision path trees provided simplified justifications, e.g., “Access denied because device identity mismatch 
and anomalous traffic volume.” 

• User Study Feedback: Analysts rated the system 4.5/5 for transparency and 4.7/5 for operational usefulness, 
citing improved ability to distinguish true threats from noise. 
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7.3.1. Visualization of Explainability Outputs 

 

Figure 4  Example of Model Explainability Visualization 

[Diagram Placeholder: Heatmap + Decision Path] 

1. Heatmap: Highlights top features contributing to anomaly detection  

   (e.g., abnormal PLC register changes, unauthorized Modbus commands). 

   2. Decision Tree Snapshot: Shows the reasoning path  

   (e.g., If [User Identity ≠ Policy] AND [Traffic Spike > Threshold] → Access Blocked). 

This visualization provides both feature-level insights (for technical analysts) and policy-level justifications (for 
compliance and audit teams). 

8. Future directions 

ZTA combined with AI-based and explainable inference engines is a major advance in securing industrial networks. 
Nevertheless, the fast-changing digital transformation environment requires constant research and innovation. There 
are a few growth and development opportunities that can be used to improve the proposed framework to provide it 
with adaptability and resistance and make it relevant over the years. Emerging technologies are integrating into the 
insurance industry, and the company has been seeking to leverage opportunities better placed to enhance its operations 
and boost its market share and profitability. <|human|> 

8.1. Integration with Emerging Technologies 

Internalizing with the new technologies. The industrial networks are becoming more integrated with IoT ecosystems, 
5G networks, and edge computing paradigms, and each comes with its opportunities and security issues. 
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8.1.1. IoT Integration 

As billions of connected devices are being used to transmit industrial telemetry, Zero-Trust principles are going to be 
needed in heterogeneous and resource-constrained IoT nodes. Federated learning and lightweight models of AI can 
allow detecting anomalies without overwhelming a limited set of hardware. 

8.1.2. 5G Connectivity 

The 5G networks will speed up the process of automation in industries, as well as increase the attack surface due to 
ultra-low latency and massive device density. It will be important to embed Zero-Trust policies into 5G network slicing 
and explainability across dynamically created slices. 

8.1.3. Edge Computing 

Moving the calculation to the data sources lessens latency, but increases the requirement of any distributed, 
understandable controls over security. 

8.2. Enhancements in Explainability and AI Robustness 

As adversarial machine learning continues to advance, explainability alone is insufficient without robustness. Future 
research must focus on: 

8.2.1. Adversarial Resilience 

Training AI models to resist attacks of poisoning, evasion, and mimicry on the basis of robust training methods.  

8.2.2. Multi-Level Explainability 

Minimizing the difference between the explanations provided to different stakeholders including technical operators, 
compliance auditors, and executives with the help of layer outputs of interpretability. 

8.2.3. Contextual Awareness 

Moving beyond the explanations that focus on fixed cases, to those that focus on process-based justifications, meaning 
AI choices are sensitive to both cyber and physical conditions of industrial processes. 

8.3. Scalability Challenges and Potential Solutions 

Scaling Zero-Trust with AI in large, heterogeneous industrial environments remains a key challenge. Potential solutions 
include: 

8.3.1. Federated Security Models 

Leveraging federated learning to train models collaboratively across distributed sites without centralizing sensitive 
industrial data. 

8.3.2. Hierarchical Zero-Trust Policies 

Structuring enforcement at device, subnet, and enterprise levels to reduce complexity while maintaining consistency. 

8.3.3. Cloud-Native Security Orchestration 

Using containerized microservices and orchestration tools (e.g., Kubernetes) to dynamically deploy AI and inference 
modules across industrial networks. 

8.4. Policy and Regulatory Considerations 

The adoption of AI-augmented Zero-Trust in industrial contexts requires alignment with evolving policies and 
regulations: 

8.4.1. Compliance Standards 

Future frameworks should map explainability outputs on compliance frameworks as IEC 62443, NIST SP 800-207 and 
GDPR (data privacy). 
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8.4.2. Cross-Border Rules 

The industrial enterprises are typically run on a worldwide scale, and this requires the implementation of the Zero-
Trust enforcement to be interoperable across different regulatory frameworks.  

8.4.3. AI Governance 

The policies should be made to make sure that explainable AI is not just a facade of transparency but that it actually 
enables and supports accountability and ethical control. The vision of automating and healing networks on its own is 
possible, although perhaps not imminent. 

8.5. Potential for Automation and Self-Healing Networks 

The ultimate trajectory of this research points toward autonomous and self-healing industrial networks, where Zero-
Trust, AI, and explainability converge to create proactive defenses. 

8.5.1. Autonomous Policy Enforcement 

AI models that can update Zero-Trust rules automatically to respond to the changing threat without human oversight.  

8.5.2. Self-Healing Mechanism 

Predictive analytics and automated response to incident to isolate compromised nodes, restore safe states, and restore 
services with minimal disruption. iii. Closed-Loop Security Ecosystems: Feedback between threat discovery, 
explainability, operator controls, and automated mitigation will guarantee resilience to adaptive adversaries. 

 

Figure 5 Future Research Roadmap 

9. Conclusion 

The security of industrial networks is becoming increasingly critical as industries transition toward Industry 4.0 and 
cyber–physical systems integrate with IoT, cloud, and 5G infrastructures. This paper has presented a comprehensive 
framework for enhancing industrial cybersecurity by uniting Zero-Trust Architecture (ZTA) principles with AI-driven 
analytics and explainable inference mechanisms. 

The research highlighted several key findings 

Zero-Trust as a baseline 
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ZTA, unlike perimeter models, is associated with the continuous authentication of devices, users and processes, which 
is why it is highly relevant to apply it to the environments of operational technology (OT) where horizontal mobility 
and insider risk are paramount concerns.  

Ai flexibility 

The machine learning and deep learning frameworks were highly promising in identifying hidden and dynamic vectors 
of threats within industrial networks. They can be imposed dynamically with risk-informed policies due to their 
implementation into Zero-Trust loops. 

Develop explainable inference to foster trust and compliance 

The explainable AI is not only relevant to enhance the trust of operators in automated decision-making as it makes it 
responsible, auditable, and compliant to the regulations, which are essential in the case of critical infrastructure 
operators.  

Operation reliability 

The proposed framework will maintain the balance between automation implementation and safety of the operations 
by reducing the number of false positives by presenting interpretable explanations and guaranteeing the human-in-the-
loop scheme and consequently reducing the possibility of implementing disruptions in the process unnecessarily. Zero-
Trust + AI + explainable inference is therefore a paradigm shift in industrial cybersecurity, which has moved the 
obsession of defenses towards fixed, rule-based defenses towards adaptive, transparent, and resilient defenses. 

This integration is addressing the organizational problems and technical threats by balancing automation and 
accountability. Lastly, within a broader world perspective, the proposed solution presupposes the creation of strong 
and resilient industrial networks that will be resistant to advanced cyberattacks and yet remain in compliance and 
stable functioning. This is not just because future industrial ecosystems will possess more defenses, but also because it 
will also possess the trust and interpretability that is required to realize widespread adoption of AI-driven cybersecurity 
solutions. This convergence gives industrial organizations the capability of staying innovative in a stable manner, 
protect vital infrastructure and sustain integrity of vital services in an increasingly interdependent world. 
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