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Abstract 

This study presents numerical simulations of the shallow water equations (SWEs) for the Bay of Bengal (BoB) using the 
Lagrange–Galerkin method (LGM) on a triangular mesh, with the transmission boundary conditions (TBCs). To examine 
the positional sensitivity of the transmission boundaries, the simulations are conducted with TBCs imposed at two 
distinct locations within the Bay of Bengal domain. The computed total mass and 𝐿2-norm of the surface elevation 𝜂 
demonstrate that the transmission boundary condition performs efficiently and exhibits minimal dependence on its 
placement. These results indicate that the TBC is well-suited for modeling open-sea boundaries, ensuring smooth wave 
propagation without artificial reflection. The study serves as a foundational step toward developing an accurate and 
stable storm surge prediction framework for the Bay of Bengal using the Lagrange–Galerkin approach. 

Keywords: Shallow Water Equations; Transmission Boundary Conditions; Bay of Bengal; Lagrange–Galerkin Method; 
Numerical Simulation 

1. Introduction

The Shallow Water Equations (SWEs) form a coupled system consisting of a pure convection equation for the total wave 
height, denoted by 𝜙, and a simplified Navier–Stokes equation for the horizontal velocity 𝑢 = (𝑢1, 𝑢2)

𝑇 , obtained by
depth-averaging the flow in the vertical (𝑥3) direction. These equations are widely used to model large-scale geophysical 
flows, such as tsunamis and storm surges, particularly in coastal and bay regions where accurate wave propagation is 
crucial. 

In numerical simulations of such phenomena, suitable boundary conditions at the open-sea boundaries are essential to 
prevent non-physical reflections when waves reach these boundaries (see Figure 1). To achieve this, Transmission 
Boundary Conditions (TBCs), as introduced in [4], are imposed on the open-sea boundaries Γ𝑇. These conditions allow 
outgoing waves to exit the computational domain smoothly by minimizing artificial reflections. The TBC is expressed 
as: 

𝑢(𝑥, 𝑡) = 𝑐(𝑥)
𝜂(𝑥, 𝑡)

𝜙(𝑥, 𝑡)
𝑛(𝑥),  ….  (1) 

where 𝑐(𝑥) is a positive coefficient, 𝜂(𝑥, 𝑡) = 𝜙(𝑥, 𝑡) − 𝜁(𝑥) represents the free surface elevation from a reference level 
determined by the depth function 𝜁(𝑥), and 𝑛(𝑥) denotes the unit outward normal vector to the boundary. 

A number of studies [1–3, 9–15] have investigated storm surge and tidal simulations in the Bay of Bengal (BoB), which 
borders the coasts of Bangladesh and eastern India. Most of these models employ radiation-type boundary conditions 
to treat open-sea boundaries, which are mathematically similar to TBCs as described in [4]. However, as noted in [7], 
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TBCs generally produce more stable and physically accurate results for SWEs compared to traditional radiation 
conditions. In [5], both theoretical and numerical stability analyses for SWEs with TBCs were performed using finite 
difference methods (FDM). While FDM is suitable for regular domains, such as rectangular grids, it becomes inefficient 
for realistic oceanic geometries that feature complex coastlines. In these cases, the finite element method (FEM), 
particularly with triangular meshing, offers greater flexibility and precision (see Figure 1). 

 

Figure 1 The Bay of Bengal and the coastal region of Bangladesh 

The Lagrange–Galerkin Method (LGM) combines the strengths of FEM with a time-discretization technique based on the 
material derivative, 

𝜙𝑘+1(𝑥) − 𝜙𝑘(𝑥 − 𝑢𝑘(𝑥)Δ𝑡)

Δ𝑡
, 

Where the upwind point 𝑥 − 𝑢𝑘(𝑥)Δ𝑡  is used for numerical evaluation. If this point lies outside the computational 
domain, the nearest boundary value of 𝜙𝑘  is adopted. Unlike FDM, which can fail when 𝑢𝑘+1 ⋅ 𝑛 < 0 due to missing 
boundary data, LGM remains stable and effective under such conditions.  

In this study, numerical experiments are conducted to test how the performance of the transmission boundary condition 
depends on its spatial placement. The TBC is applied at two distinct positions within the Bay of Bengal to examine its 
robustness. The results confirm that the transmission boundary condition works efficiently and shows minimal 
sensitivity to its position. 

To the best of our knowledge, no previous work has implemented the Lagrange–Galerkin method for storm surge 
simulation in the Bay of Bengal. Therefore, this research provides a significant step toward developing a reliable and 
accurate storm surge prediction model for this region using LGM with transmission boundary conditions. 

The paper is organized as follows: Section 2 introduces the mathematical formulation of the problem. Section 3 
describes the Lagrange–Galerkin numerical scheme. Section 4 presents the simulation results. Finally, Section 5 
discusses the findings and concludes the study. 

2. Statement of the problem 

 Following the formulation presented in [5], the mathematical model considered in this study is based on the two-
dimensional Shallow Water Equations (SWEs). Let Ω ⊂ ℝ2  be a bounded domain, and let 𝑇 > 0 be a fixed time. The 

objective is to find (ϕ, 𝑢) ∶ Ω × [0, 𝑇] → ℝ × ℝ2 such that 
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{
 
 

 
 
𝜕𝜙

𝜕𝑡
+ ∇ ⋅ (𝜙𝑢) = 0                                                            in Ω × (0, 𝑇),

𝜌𝜙 [
𝜕𝑢

𝜕𝑡
+ (𝑢 ⋅ ∇)𝑢] − 2𝜇∇ ⋅ (𝜙𝐷(𝑢)) + 𝜌𝑔𝜙∇𝜂 = 0 in  Ω × (0, 𝑇),

𝜙 = 𝜂 + 𝜁                                                                             in  Ω × (0, 𝑇),

                                   (2) 

subject to the boundary conditions  

𝑢  =  0                 on    Γ𝐷 × (0, 𝑇),                                                                                                        (3) 

𝑢  =  𝑐
𝜂

𝜙
𝑛         on    Γ𝑇 × (0, 𝑇),                                                                                                         (4) 

and initial conditions 

𝑢 = 𝑢0,  η = η0  in Ω,  at  𝑡 = 0,                                                                                               (5) 

where 𝜙  denotes the total water height, and 𝑢 = (𝑢1, 𝑢2)
𝑇  represents the horizontal velocity vector. The variable 

𝜂: Ω × [0, 𝑇] → ℝ  corresponds to the free surface elevation relative to the reference level, while 𝜁(𝑥) > 0 (𝑥 ∈ Ω) 

denotes the undisturbed water depth measured from that reference level (see Figure 2). 

The strain-rate tensor is defined as  

𝐷(𝑢) ≔ 
∇𝑢+(∇𝑢)𝑇

2
, 

 

and 𝑛 is the outward unit normal vector on the boundary 𝜕Ω. The boundary Γ ≔ 𝜕Ω consists of two disjoint parts: the 
Dirichlet boundary Γ𝐷 and the transmission boundary Γ𝑇  such that  

Γ = Γ𝐷 ∪ Γ𝑇,  Γ𝐷 ∩ Γ𝑇 =  ∅. 

The Dirichlet boundary condition is imposed along the coastline, while the transmission boundary condition (TBC) is 
applied to the open-sea boundary to allow outgoing waves to exit the domain smoothly without artificial reflections. 

The physical constants are defined as follows: ρ >  0 is the density of water, μ > 0 is the dynamic viscosity, and 𝑔 >  0 
is the acceleration due to gravity. The coefficient 𝑐(𝑥) appearing in the transmission condition is given by 

𝑐(𝑥) ≔ 𝑐0√𝑔ζ(𝑥), 

where 𝑐0 is a positive constant.  

Throughout this study, it is assumed that ζ ∈ 𝐶1(Ω).  

 

Figure 2 Model domain (see [5]) 
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3. LG scheme 

Following the formulation presented in [5], a Lagrange–Galerkin (LG) numerical scheme is considered to approximate 
the shallow water equations. 

Let  𝒯𝒽 = {𝐾} denote a triangulation of the domain Ω, and 𝑀ℎ be the standard P1 (piecewise linear) finite element space. 
We define  

Ψℎ  ≔ 𝑀ℎ 

or the water surface elevation η, and 

𝑉ℎ(ψℎ) ≔ {𝑣ℎ ∈ 𝑀ℎ
2 |
𝑣ℎ(𝑄) = 0,                                      ∀𝑄 being a node on 𝛤𝐷

𝑣ℎ(𝑃) = 𝑐(𝑃)
𝜓ℎ(𝑃)−𝜁(𝑃)

𝜓ℎ(𝑃)
𝑛(𝑃),    ∀𝑃 being a node on Γ𝑇

}, 

or the velocity field 𝑢. The goal of the LG scheme is to determine a sequence 

{(ϕℎ
𝑘 , 𝑢ℎ

𝑘)}
𝑘=1

𝑁𝑇
⊂ Ψℎ × 𝑉ℎ 

such that, for each time step 𝑘 = 1,… ,𝑁𝑇, the following system holds: 

{
 
 

 
 ∫

𝜙ℎ
𝑘 − 𝜙ℎ

𝑘−1̃ ∘ 𝑋1ℎ
𝑘−1𝛾ℎ

𝑘−1

Δ𝑡Ω

𝜓ℎ𝑑𝑥 = 0,                                                                                                           ∀𝜓ℎ ∈ Ψℎ,                             

𝜌∫ 𝜙ℎ
𝑘
𝑢ℎ
𝑘 − 𝑢ℎ

𝑘−1̃ ∘ 𝑋1ℎ
𝑘−1

Δ𝑡Ω

⋅ 𝑣ℎ𝑑𝑥 + 2𝜇∫𝜙ℎ
𝑘𝐷(𝑢ℎ

𝑘)
Ω

: 𝐷(𝑣ℎ)𝑑𝑥  + 𝜌𝑔∫𝜙ℎ
𝑘

Ω

∇𝜂ℎ
𝑘 ⋅ 𝑣ℎ𝑑𝑥 = 0, ∀𝑣ℎ ∈ 𝑉ℎ,                        (6)

𝜙ℎ
𝑘 = 𝜂ℎ

𝑘 +𝛱ℎ
FEM𝜁.                                                                                                                                                                                               

 

Here, the mapping 𝑋1ℎ
𝑘 : Ω → Ω is defined as  

𝑋1ℎ
𝑘 (𝑥) ≔ 𝑥 − 𝑢ℎ

𝑘(𝑥)Δ𝑡, 

and  γℎ
𝑘(𝑥) ≔ det (

∂𝑋1ℎ
𝑘 (𝑥)

∂𝑥
)  denotes the Jacobian determinant of the transformation. The composition symbol “ ∘ ” 

represents the functional composition, i.e. 

[𝑣ℎ ∘ 𝑋1ℎ
𝑘 ](𝑥) ≔ 𝑣ℎ (𝑋1ℎ

𝑘 (𝑥)). 

The operator  Πℎ
FEM: 𝐶(Ω) → 𝑀ℎ  is the standard Lagrange interpolation operator. The extension of a finite element 

function ψℎ to the entire plane ℝ2 is defined as 

  ψℎ̃(𝑥) = {
ψℎ(𝑥), 𝑥 ∈ Ω,

ψℎ(𝑃𝑥),          𝑥 ∈ ℝ2 ∖ Ω,
 

where 𝑃𝑥 ∈  Γ is the nearest nodal point to 𝑥. 

At each time step, the first equation in system (6) is used to determine ϕℎ
𝑘 ∈ Ψℎ. Then, using this computed ϕℎ

𝑘 , the 
second equation is solved to obtain the velocity 𝑢ℎ

𝑘 ∈ 𝑉ℎ. 

The first equation of (6) employs the concept of a mass-conservative Lagrange–Galerkin scheme as proposed in [16], 
ensuring numerical stability and conservation of mass throughout the simulation. 



World Journal of Advanced Research and Reviews, 2025, 28(01), 1802-1815 

1806 

 

Figure 3 A triangular mesh for the Bay of Bengal 

4. Numerical results 

This section presents the numerical experiments conducted to validate the proposed Lagrange–Galerkin (LG) scheme 
for the shallow water equations 

4.1. Simulation Results for the Bay of Bengal 

In this subsection, the simulation results for the Bay of Bengal region are discussed using the LG scheme introduced in 
Section 3. For computational simplicity, the actual geographical domain was slightly modified, and a triangular mesh 
was constructed as illustrated in Figure 3, following the approach in [6]. The complete setup of the numerical simulation 
is shown in Figure 4, and the computational domain is denoted by Ω. 

The horizontal extent of the domain ranges from 0 km to 1051.4 km, while the vertical extent covers 0 km to 889.59 km. 
Two types of boundary conditions were applied: 

• Zero Dirichlet boundary condition on Γ𝐷, representing the coastal boundary; and 
• Transmission boundary condition on Γ𝑇, representing the open-sea region. 

As illustrated in Figure 4, the transmission boundary Γ𝑇 is composed of three distinct segments: 

𝐴𝐵 = Γ𝑇1 , 𝐵𝐶 = Γ𝑇2 , 𝐶𝐷 = Γ𝑇3 . 

The initial water surface elevation is prescribed as 

𝜂⁰ =  0.05𝑒−0.1|𝑥 − 𝑝|², 

where 𝑝 denotes the nodal point nearest to the coordinates (525, 440). 

The simulation was performed using the following parameter values: 

𝜁 =  2.0, 𝜇 =  1, 𝑔 =  9.8 ×  10⁻³, 𝜌 =  10¹²,  𝑐0 = 0.9, ℎ = 1.408044,  𝑇 = 5000s. 

The results obtained at different time levels 𝑡 = 0s, 2800s, 3120s, 3240s, 3740s, 3940s, and 4660s are shown in the left 
panels of Figures 6 and 7. From these figures, it is observed that a circular wave is generated near the center of the 
domain and propagates outward over time. When the wavefront reaches the coastal boundary Γ𝐷 , partial reflection 
occurs, while at the transmission boundary Γ𝑇, almost no reflection is detected. This demonstrates that the wave energy 
is smoothly transmitted through Γ𝑇, confirming the effectiveness of the transmission boundary condition for open-sea 
flow simulation. 
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Figure 4 A figure of Bay of Bengal domain showing the setting of the transmission and the Dirichlet boundaries 

 

 

Figure 5 A figure of extended domain showing the setting of the transmission and the Dirichlet boundaries 

We also investigated the effect of slightly modifying the position of the transmission boundary. To do so, an extended 
domain Ω̃  was constructed by enlarging Ω  by 100 km in the negative vertical direction, as shown in Figure 5. 
Consequently, Ω̃ extends from 0 km to 1051.4 km horizontally and from −100 km to 889.59 km vertically, with Ω ⊂ Ω̃. 
The Dirichlet boundary Γ𝐷 remains the same for both domains, while Γ𝑇 denotes the transmission boundary of Ω. 
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A numerical simulation was then performed in the extended domain Ω̃ using the same parameter settings as before. The 
results at 𝑡 = 0s, 2800s, 3120s, 3240s, 3740s, 3940s, and 4660s are presented in the right panels of Figures 6 and 7.  

The behavior of the wave propagation in Ω̃ closely resembles that observed in Ω, confirming that the transmission 
boundary condition remains stable and effective even when its position is slightly modified. From both sets of results 
(left and right panels of Figures 6 and 7), it is evident that the proposed LG scheme accurately reproduces the physical 
behavior of wave transmission in the open-sea region of the Bay of Bengal. 

4.2. Computation of Mass and L² Norm for the Bay of Bengal 

This section presents the computation of the total mass and the L² norm of the surface elevation for the Bay of Bengal 

 

Figure 6 Simulation of SWEs in the Bay of Bengal at time 𝒕 =  𝟎𝒔, 𝟐𝟖𝟎𝟎𝒔, and 𝟑𝟏𝟐𝟎𝒔 
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Figure 7 Simulation of SWEs in the Bay of Bengal at time 𝒕 = 𝟑𝟐𝟒𝟎𝒔, 𝟑𝟕𝟒𝟎𝒔, 𝟑𝟗𝟒𝟎𝒔 and 𝟒𝟔𝟔𝟎𝒔 
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4.2.1. Computation of Mass  

The total mass M(t) at time tis defined as 

𝑴(𝒕) ∶= ∫ 𝜼(𝒙, 𝒕) 𝒅𝒙
⬚

𝜴
≈ ∫ (𝜫𝜼 𝒉

𝒌) 𝒅𝒙
⬚

𝜴
 = : 𝑴 𝒉

𝒌, 

where 𝒕 =  𝒕ᵏ (𝒌 ≥  𝟎, 𝒌 ∈ ℤ), and the integration is performed over the common part of the domains 𝛀 and 𝛀̃. It 
should be noted that in the domain 𝛀, the boundaries AB, BC, and CD serve as transmission boundaries, whereas in the 
extended domain 𝛀̃, the segment BC lies within the domain (see Figures 4 and 5). The computed mass variation with 
time is displayed in Figure 8. 

The time derivative of the mass is given by 

𝑀′(𝑡) = ∫
𝜕𝜂

𝜕𝑡

⬚

𝛺
(𝑥, 𝑡) 𝑑𝑥  

 = ∫
𝜕𝜙

𝜕𝑡

⬚

𝛺
(𝑥, 𝑡) 𝑑𝑥 (from the third equation of (2) and 𝜁 = constant) 

 = −∫ 𝛻 · (𝜙𝑢)𝑑𝑥
⬚

𝛺
 (from the first equation of (2)) 

 = −∫ (𝑢 · 𝑛)𝜙𝑑𝑠
⬚

𝜕𝛺
= −∫ (𝑢 · 𝑛)𝜙𝑑𝑠

⬚

𝛤𝐷∪𝛤𝑇
= −∫ (𝑢 · 𝑛)𝜙𝑑𝑠

⬚

𝛤𝑇
    

 = −∫ 𝑐𝜂𝑑𝑠
⬚

𝛤𝑇
 (from the equation (4), here 𝑐 is a constant) 

 

Figure 8 Graphs of 𝑴 𝒉
𝒌 versus 𝒕 = 𝒕𝒌 (≥  𝟎, 𝒌 ∈  ℤ) for the common part of the domains 𝛀 and 𝛀̃ 

From this relation, it follows that the variation of the total mass depends on the sign of 𝜂  along the transmission 
boundary 𝛤𝑇: 

• If 𝜂 > 0 on 𝛤𝑇, the total mass decreases; 
• If 𝜂 < 0 on 𝛤𝑇, the total mass increases. 

To better understand this behavior, the distributions of 𝜂 along the boundary segments AB, BC, and CD are plotted for 
both domains Ω and Ω̃ in Figures 9 and 10, complementing the mass evolution shown in Figure 8. 

The results presented in Figures 6–10 correspond to times𝑡 = 0s, 2800s, 3120s, 3240s, 3740s, 3940s and 4660s. The 
following observations can be made: 
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• Up to approximately 𝑡 = 3100𝑠, the total mass remains nearly constant, indicating that the wave has not yet 
interacted with the transmission boundary. 

• Around 𝑡 = 3120𝑠, a significant drop in mass is observed as the wave reaches the boundary Γ𝑇2  (see Figure 6). 

At this moment, 𝜂 is positive on 𝛤𝑇 (Figure 9). 
• Between 3200𝑠  and 3700𝑠 , the mass remains nearly stable due to the partial cancellation of positive and 

negative 𝜂 values along 𝛤𝑇 (Figure 10, 𝑡 = 3240𝑠). 

 

Figure 9 Graph of 𝜼 on AB, BC and CD for both 𝛀 and 𝛀̃ at time 𝒕 = 𝟎𝒔, 𝟐𝟖𝟎𝟎𝒔, 𝟑𝟏𝟐𝟎𝒔, and 𝟑𝟐𝟒𝟎𝒔 
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Figure 10 Graph of 𝜼 on AB, BC and CD for both 𝛀 and 𝛀̃ at time 𝒕 =  𝟑𝟕𝟒𝟎𝒔, 𝟑𝟗𝟒𝟎𝒔 and 𝟒𝟔𝟔𝟎𝒔 

• A second major decay occurs near 𝑡 = 3740𝑠 , corresponding to the wavess interaction with Γ𝑇1  (Figure 7). 

Again, 𝜂 is positive on 𝛤𝑇 at this instant (Figure 10). 
• Between 3800𝑠 and 4650𝑠, a gradual mass decrease is observed as η remains positive along 𝛤𝑇 (Figure 10, 𝑡 =

3940𝑠). 
• Finally, a third sharp decline in mass occurs around 𝑡 = 4660𝑠 , when the wave reaches the boundary Γ𝑇3  

(Figure 7), where 𝜂 is again positive (Figure 10). 
• It should be noted that a small degree of artificial reflection still occurs at the transmission boundary, which 

accounts for the minor differences between the mass curves obtained for the two domains (𝛀 and Ω̃) in Figure 
8. 

4.2.2. Computation of the 𝑳𝟐 Norm  

The 𝐿2 norm of the surface elevation 𝜂, has been computed to assess the overall energy distribution of the wave within 
the domain. It is defined as 

∥ 𝜂(𝑡) ∥𝐿2∶= √∫ ∣ 𝜂(𝑥, 𝑡) ∣
2  𝑑𝑥

Ω

≈ √∫∣ Π𝜂ℎ
𝑘 ∣2  𝑑𝑥

Ω

=: ∥ 𝜂ℎ
𝑘 ∥𝐿2 , 
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where 𝑡 = 𝑡𝑘  (≥ 0,  𝑘 ∈ ℤ) and the integration is performed over the common region of the domains 𝛀 and Ω̃. Figure 
11, presents the computed 𝐿2 norms for both domains. The results indicate that the two curves are almost identical, 
confirming that the transmission boundary condition does not introduce any significant numerical instability or 
artificial reflection in the wave energy. 

From the series of simulations illustrated in Figures 6-11, it can be observed that the transmission boundary condition 
effectively allows outgoing waves to pass through the open-sea boundary with minimal reflection. Additionally, when 
the location of the transmission boundary is slightly modified—by extending the domain downward by 100 km (as 
described earlier)—the computed 𝐿2 norms and mass values remain consistent in the common region of the domains 
𝛀 and Ω̃. 

These results demonstrates that the proposed Lagrange–Galerkin (LG) numerical scheme provides a reliable and 
accurate simulation of wave propagation in the Bay of Bengal. The variation between results obtained from the original 
and extended domains is within an acceptable error margin of approximately 5%, which confirms the robustness and 
precision of the method used in this study. 

 

Figure 11 ∥ 𝜂ℎ
𝑘 ∥𝐿2   versus 𝑡 = 𝑡𝑘  (≥ 0,  𝑘 ∈ ℤ) for the common part of the domains 𝛀 and Ω̃ 

5.  Result and discussion 

In this study, we have presented the results of numerical simulations of the Shallow Water Equations (SWEs) over the 
Bay of Bengal (BoB) domain using the Lagrange–Galerkin (LG) scheme described in Section 3. The simulations were 
performed for two different boundary configurations, as illustrated in Figures 6 and 7. 

The results show that a circular wave is generated near the center of the domain, which propagates outward as time 
progresses. When the wavefront encounters the Dirichlet boundary 𝛤𝐷 , partial reflection occurs. However, when it 
reaches the transmission boundary 𝛤𝑇, almost no reflection is observed. This indicates that the transmission boundary 
allows the wave to exit the computational domain smoothly, validating the effectiveness of the transmission boundary 
condition. 



World Journal of Advanced Research and Reviews, 2025, 28(01), 1802-1815 

1814 

We further computed the total mass of 𝜂 for both boundary configurations. The results, shown in Figure 8, reveal a 
gradual decay in mass over time, primarily due to the wavess interaction with the transmission boundary. This 
demonstrates that the transmission boundary condition works well from a numerical standpoint. 

Similarly, the 𝐿2  norms of 𝜂 , corresponding to the two boundary configurations described in Subsection 4.1, are 
presented in Figure 11. The curves are almost identical, confirming that the transmission boundary condition remains 
stable and largely unaffected by small changes in its position. 

From Figures 6-11, it can be concluded that the transmission boundary condition performs effectively in all cases 
considered. Even when the transmission boundary is slightly displaced, the overall wave behavior, including mass and 
energy evolution, remains nearly unchanged. This stability highlights the robustness of the LG scheme in simulating 
open-sea wave propagation in the Bay of Bengal region. 

6. Conclusion 

The numerical simulations presented in this study demonstrate that the transmission boundary condition (TBC), when 
applied to the Shallow Water Equations (SWEs) using the Lagrange–Galerkin (LG) method on a triangular mesh, 
effectively allows wave propagation in the Bay of Bengal without generating artificial reflections. The results confirm 
that the TBC performs efficiently and remains nearly independent of its spatial placement, ensuring numerical stability 
and physical consistency in open-sea modelling. The slight decay in total mass and stable 𝑳𝟐-norm of surface elevation 
further validate its robustness. Overall, this research establishes the Lagrange–Galerkin approach as a reliable 
framework for simulating shallow water dynamics with realistic boundary treatments. The outcomes of this study will 
contribute to the development of more accurate and efficient storm surge prediction models for the Bay of Bengal, 
ultimately aiding in coastal disaster preparedness and protection of vulnerable communities.  
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