

Transitioning from Coal to Renewable Energy in Maharashtra: Pathways to Sustainable Development

Rayan Soti *

Independent Researcher, Danville, California, USA.

World Journal of Advanced Research and Reviews, 2025, 28(01), 1798-1801

Publication history: Received on 15 September 2025; revised on 19 October 2025; accepted on 22 October 2025

Article DOI: <https://doi.org/10.30574/wjarr.2025.28.1.3606>

Abstract

Maharashtra, one of the most industrially advanced states in India, struggles with both increasing demand for energy and associated environmental challenges due to high dependence on coal and conventional thermal power plants. This paper explores the energy perspective in Maharashtra with a focus on coal-to-renewable transitions for sustainable development. Existing literature pinpoints the present energy mix, potential of solar, wind, and biomass deployment, socio-economic impacts of renewable energy adoption, and policy framework promoting this transition. The paper finds that while several barriers—high financial constraints, integration challenges of grids, and infrastructural gaps—still occur, strategic investments, community engagement, and solutions at a microgrid level could help a transition toward a more sustainable energy future. This paper highlights that renewable energy will play a critical role in achieving a balance among economic growth, environmental sustainability, and social development in Maharashtra.

Keywords: Maharashtra; Renewable Energy; Coal Transition; Energy Policy; Sustainable Development

1. Introduction

India's emerging economy has led to an enormous increase in electricity demand, and Maharashtra accounts for approximately 12% of national electricity consumption (Kale, 2012, p. 2). Traditionally, this has been fulfilled mainly by coal-based thermal generation, which constitutes more than half of the installed generation capacity within the state at present (Rathor et al., 2015, p. 5). While coal has proved to be a reliable source, the environmental consequences in terms of air pollution, greenhouse gas emissions, and public health hazards have shaped how policymakers and researchers are exploring renewable energy alternatives. The energy transition in Maharashtra can be regarded as a microcosm of India's broader transition toward sustainable energy. The state holds immense potential for renewable energy, primarily in solar, wind, and biomass resources (Naik, 2020, p. 3). However, obtaining this potential requires overcoming various barriers related to high capital costs, policy gaps, challenges in land acquisition, and grid integration issues, among others (Elavarasan et al., 2020, p. 5).

The following research question will be addressed in this paper: How can Maharashtra effectively transition from coal-based energy to renewable sources in order to achieve sustainable development while ensuring economic and social benefits? Maharashtra's transition from coal to renewable energy can create sustainable development if strategic investments, policy support, and community-based solutions are in place.

2. Current Energy Mix and Coal Dependence

The energy industry in Maharashtra has been characterized by constant shortages of electricity, over-reliance on thermal power, and balancing supply and demand. Kale believes that, "Since 2005, Maharashtra has faced peak

* Corresponding author: Rayan Soti.

shortages of about 5000 MW, with up to 25% load shedding in certain years" (Kale, 2012, p. 4). At the core of this imbalance has been overdependence on coal-fired thermal power stations, bearing in mind that coal contributes approximately 51% of the generation mix (Rathor et al., 2015, p. 5). Despite rising industrial demand and rising urbanization, electricity shortages are immensely deep-rooted. Malwade (2014) states that despite the state's consistently high electricity deficit, it was still possible to keep the urban-centric industrial and commercial sectors insulated from load shedding, and it is no saying that "economic growth drives energy consumption, not the other way round" (Malwade, 2014, p. 8). This is the trend that implies that although some supply continuity is provided by coal for major sectors, its social and environmental implications are huge. Apart from the environmental destruction, dependence on coal has also resulted in excessive carbon emissions. Kale et al. (2014) calculate that according to a business-as-usual scenario, greenhouse gases would increase by 245.2% by 2030 from the current levels as of 2012, which indicates the unsustainable nature of continued reliance on coal (p. 6). Thus, there is an urgent necessity to diversify Maharashtra's energy basket and shift towards cleaner, renewable sources.

3. Renewable Energy Potential in Maharashtra

It has been observed that Maharashtra is full of potential for the utilization of renewable energy. According to Naik, Western Maharashtra has solar capacity potential of 15,000 MW, wind potential of 8,000 MW, and biomass potential of 4,500 MW (Naik, 2020, p. 3). The research highlights that utilization of such renewable sources may cut carbon emissions by 30%, boost rural jobs by 50%, and increase access to household energy from 60% to 85% (Naik, 2020, p. 4). For example, Saravanan et al. (2022) mention that the harnessing of solar, wind, and biomass resources can create 25,000 new rural employment opportunities and bring socio-economic development, p. 2. Spatial maps of the renewable resources are an absolute requirement for any effective planning. Kulkarni and Banerjee (2011) utilized GIS mapping to identify high-potential locations and established that central Maharashtra is best suited for wind power whereas the south is best suited for solar power, p. 7. Such mapping thus enables proper siting of renewable schemes so that energy is optimized with the least expense and the least conflict over land use. Additionally, the deployment of renewable energy is not only an environmental issue but also a rural energy supply matter. Blenkinsopp et al. (2013) note that rural villagers in Maharashtra would embrace renewables voluntarily for "practical needs: cost, reliability and ease of use" and not out of environmental concern (p. 5). This same note indicates that renewable projects should be cost-efficient and reliable if they are to meet the approval of the community.

4. Policy and Institutional Frameworks

Policy backing is critical in the transition of Maharashtra towards renewable energy. Elavarasan et al. (2020) argue that although policy incentive and industrial need are the impelling factors for adopting renewable energy, impediments in the form of absence of finance, land acquisition, and grid integration need to be overcome, p. 5. MEDA, therefore, has pursued various schemes like the Remote Village Electrification program which has centered on electrifying un-served rural areas using off-grid solar and small power plants, Deshpande & Mahajan, 2016, p. 2. Energy policy reforms have also prioritized efficiency and financial health of power utilities. Totare and Pandit, 2010, refer to unbundling of the Maharashtra State Electricity Board into distinct entities to attain better performance, reduced distribution losses, and consequently increased revenue generation, p. 6. These kinds of institutional reforms are highly needed in order to enable renewable energy integration specific for grid reliability and investment in decentralized systems. Scenarios of long-term planning also pose the question of adoption of renewables to ensure sustainability. Kale et al. (2014) used the Long Range Energy Alternatives Planning (LEAP) model to approximate that a renewable energy scenario will realize 46.2% emission reductions relative to the 2012 baseline while maintaining the growth of electricity demand, at 6%. The approximations indicate that policy measures and incentives for investments are central to propelling Maharashtra along a low-carbon energy trajectory.

5. Socio-economic Impacts and Community Engagement

Renewable energy adoption in Maharashtra also has deep socioeconomic implications. Ingole (2023) evaluated a project on a solar-powered spinning wheel for rural women. Participation in this study raised income by 21.3%, raised access to healthcare and education, and brought social empowerment, at 5. He thus concludes, "Although renewable energy-based initiatives are exceedingly effective, they need solid support through government subsidies and favorable policies to reach broader impact," Ingole (2023) at 5. Further economic and social benefits accrue from microgrid implementation. Bhoyar and Bharatkar (2012) present localized renewable microgrids as a reliable alternative to the dislocated centralized fossil-fuel infrastructure. A Wani case study illustrated the potential of microgrids to deliver power continuously and lower energy costs for both residential and industrial users, at 8. The financial scalability of such systems renders renewable adoption economically viable for rural and semi-urban communities. Therefore,

decentralized strategies are one of the avenues towards sustainable development. Participation of communities is also needed. Blenkinsopp et al. (2013) believe that it is pragmatics such as affordability, dependability, and usability—more than concerns about the environment—that ultimately drive local acceptance, to 5. To this degree, renewable energy projects that satisfy the needs of individuals in the community, and are complemented by public-private collaborations, will undoubtedly flourish and become long-term sustainable.

6. Challenges in Transitioning to Renewable Energy

Despite substantial potential, the transition from coal to renewables in Maharashtra is fraught with different challenges. Cost considerations remain the biggest constraint in the guise of high initial costs of solar, wind, and biomass plants limiting uptake, Elavarasan et al. (2020) at 5. Grid integration is another challenge in that variable renewable power can introduce volatility in case the existing transmission and distribution infrastructure is insufficient, Rathor et al. (2015) at 7. Land acquisition problems further complicate the issue of rolling out renewables.

Large-scale wind and solar renewable energy projects require significant land, often conflicting with agriculture, conservation, and local communities (Elavarasan et al., 2020, p. 5). Policy loopholes and tardiness in putting in place facilitating regulations exacerbate these problems, hampering the transition. Additionally, the established coal industry also poses socio-economic impediments. Laborers, utility companies, and coal-dependent industries can be resistant to the transition to renewables because they are afraid of losing jobs and business continuity (Rathor et al., 2015, p. 6). These issues must be addressed by well-planned transition strategies in the form of retraining schemes, incentive structures, and incremental renewable incorporation. Future Outlook and Pathways to Sustainable Development The energy future in Maharashtra will be designed by decentralized renewable systems, smart grid integration, and investment through policy. According to Deshpande and Mahajan (2016), Remote Village Electrification, using solar PV home lighting and micro power plants, is a model to expand rural energy access in a sustainable way (p. 2).

Bhoyar and Bharatkar (2012) find that the integration of microgrids with solar and biomass power can eliminate additional charges for energy, reduce load shedding, and provide round-the-clock supply (p. 8). Naik (2020) however approximates that widespread use of renewables could decrease dependence on fossil fuels, reduce emissions, and increase jobs in rural areas (p. 4). Policy coordination continues to be relevant. Saravanan et al. (2022) highlight the need for strategic frameworks to fill infrastructure gaps, provide financial incentives, and promote community involvement to derive maximum renewable energy potential (p. 2). Together with GIS-based planning and local solutions, strategies can facilitate the phasing out of coal in a smooth manner while addressing sustainable development goals. Ultimately, renewable energy can be an economic, social, and environmental catalyst in Maharashtra. By reducing reliance on coal, integrating decentralized systems, and promoting community engagement, the state can develop an energy system that is able to meet growing demand and promote sustainable development.

7. Conclusion

The state of Maharashtra is at a junction in its energy journey. Over-reliance on thermal power from coal has been the driver of stable energy for industrial growth hitherto, but it has come at the cost of ecological destruction, high green gas emissions, and social injustices. The tremendous potentiality of the state for renewable energy is, therefore, especially solar, wind, and biomass, one sustainable path to addressing these challenges and in guaranteeing sustainable development.

As the literature review has shown, the use of renewable energy will guarantee increased electricity demand, reduced carbon emissions, rural access to energy, and socioeconomic development transfer. Such schemes as the Remote Village Electrification scheme, renewable microgrid schemes, and community projects give some instances of decentralized action with policy reforms and investment incentives. Financial barriers—such as land acquisition and grid connectivity—along with institutional challenges, remain persistent. Strategic policy frameworks, public-private partnership plans, people's participation, and technological innovation need to be integrated in order to join hands so that Maharashtra could make a transition from coal to renewable energy effectively. It can also serve as a model of sustainable development for India and globally in the process. As the study indicates, renewable energy is neither an environmental necessity but a multi-faceted driver of economic, social, and ecological resilience (Naik, 2020, p. 4; Saravanan et al., 2022, p. 2).

References

- [1] Blenkinsopp, S., Bhattacharyya, S., & Kumar, S. (2013). Renewable energy for rural communities in Maharashtra, India. *Energy Policy*, 57, 109–119. <https://www.sciencedirect.com/science/article/pii/S0301421513003315>
- [2] Bhoyar, R. R., & Bharatkumar, S. S. (2012). Economic scaling of renewable energy with deployment of microgrid in Maharashtra State, India. *IEEE Conference Proceedings*. <https://ieeexplore.ieee.org/abstract/document/6254308/authors#authors>
- [3] Deshpande, S. K., & Mahajan, S. R. (2016). An empirical proposal on the analysis of energy usage patterns and factors in rural area of Maharashtra. *International Journal of Economics, Commerce and Business Studies*, 5(1), 1–12. <https://www.ijecbs.com/January2016/5.pdf>
- [4] Elavarasan, R. M., Shafiullah, G. M., Rajendran, R., Mohamed, A., & Raghavan, S. (2020). A holistic review of the present and future drivers of the renewable energy mix in Maharashtra, State of India. *Sustainability*, 12(16), 6596. <https://www.mdpi.com/2071-1050/12/16/6596>
- [5] Ingole, S. (2023). Economic impact of productive use of renewable energy: A case of a women-collective from rural Maharashtra (India). *European Journal of Sustainable Development*, 12(1), 1–12. <https://www.ojs.ecsdev.org/index.php/ejsd/article/view/1482>
- [6] Kale, S. D. (2012). Electricity demand supply analysis: Current status and future prospects for Maharashtra, India. *Energy Policy*, 46, 1–10. <https://www.sciencedirect.com/science/article/abs/pii/S0301421512002454>
- [7] Kale, S. D., Raghunandan, B., & Phadke, A. (2014). Electricity demand and supply scenarios for Maharashtra (India) for 2030: An application of long range energy alternatives planning. *Energy Policy*, 67, 560–572. <https://www.sciencedirect.com/science/article/abs/pii/S0301421514002882>
- [8] Kulkarni, R. V., & Banerjee, R. (2011). Renewable energy mapping in Maharashtra, India using GIS. *Renewable Energy*, 36(2), 640–647. https://www.researchgate.net/publication/269131182_Renewable_Energy_Mapping_in_Maharashtra_India_Using_GIS
- [9] Malwade, V. (2014). Power shortage and growth rate of Maharashtra. *Academia.edu*. https://d1wqxts1xzle7.cloudfront.net/63405998/Power_Shortage__Growth_Rate
- [10] Naik, S. (2020). Sustainable development and renewable energy potential in Western Maharashtra. *International Journal of Advanced Academic Research*, 7(4), 1–8. <https://ijaar.co.in/wp-content/uploads/2021/02/070416.pdf>
- [11] Rathor, R., Kumar, A., & Sharma, P. (2015). Energy resource structure in Maharashtra and India: A review. *Energy Reports*, 1, 1–12. https://www.researchgate.net/publication/342451997_Energy_Resource_Structure_in_Maharashtra_and_India_A_Review
- [12] Saravanan, R., Singh, A., & Reddy, P. (2022). Policy trends of renewable energy and non-renewable energy. *Renewable Energy Policy Review*, 5(1), 1–10. <https://www.researchgate.net/profile/Samrat-Ra>
- [13] Totare, N., & Pandit, V. (2010). Power sector reform in Maharashtra, India. *Energy Policy*, 38(12), 7677–7685. <https://www.sciencedirect.com/science/article/abs/pii/S0301421510005574>