

Sustainability-Driven Operations and Their Economic Impact on U.S. Companies – Investigating how environmentally conscious business practices contribute to national economic interests

Abigail Asiedu-Appiah ^{1,*} and Adebimpe Mercy Adegoke ²

¹ Department of Accounting and Finance, Kwame Nkrumah University of Science and Technology, Ghana.

² Whitman School of Management, Syracuse University, USA.

World Journal of Advanced Research and Reviews, 2025, 28(01), 1986-1996

Publication history: Received on 07 September 2025; revised on 22 October 2025; accepted on 25 October 2025

Article DOI: <https://doi.org/10.30574/wjarr.2025.28.1.3605>

Abstract

The present study explores the effects of sustainability-oriented operations on the economic performance of U.S. companies and on the nationwide economic interests on a larger scale. Although there is an upsurge in the environmental practices adopted in corporate strategies, there is less knowledge on how these sustainable activities, like the adoption of renewable energy, energy efficiency, circular economy and green infrastructure, translate into the quantitative financial and macroeconomic benefits. This study helps to fill this gap by examining case studies of best practice in major companies such as Microsoft and comparing them to bad practice of others, such as ExxonMobil and demonstrating the consequences of shallow effects. The research uses the method of a systematic literature review to combine modern discoveries throughout the years, paying particular attention to the effects on profitability, risk reduction, market share, employment creation, technological supremacy, and energy self-sufficiency. The results indicate that aggressive sustainability policies provide great benefit as far as corporate resilience and competitiveness are concerned and become a source of boosting the national economy by increasing employment opportunities and innovation. On the other hand, shallow or procrastinating actions jeopardize sustained profitability and international dominance. The study concludes that the real integration of sustainability into core business models is key to the development of firm performance and the economic sustainability goals of the United States, and the policy models that encourage actual sustainability practices are important.

Keywords: Sustainability-Driven Operations; Corporate Social Responsibility; Economic Impact; U.S. Companies; Environmentally Conscious Business Practices

1. Introduction

Over the past few years, sustainability has evolved from a fringe corporate issue into a strategic core business operation in the United States. Sustainability is traditionally viewed as a voluntary or philanthropic practice with very little ramification to core performance [1]. However, the rising environmental concerns like climate change, loss of biodiversity, and resource scarcity have transformed sustainability, where companies have integrated it more into their governance and strategic processes [2]. This transformation represents a systemic change that environmental stewardship is no longer deemed essential to settle on and preserve [3].

Several factors have fueled this shift. The development of regulatory expectations, the pressure on companies to integrate ESG into their development models and increasing consumer preferences to buy sustainable products have played a significant role in convincing companies to introduce environmental goals into their organizational frameworks [4]. Thus, sustainability has also become one of the defining factors, guiding corporate innovation, risk

* Corresponding author: Abigail Asiedu Appiah

mitigation, and business efficiency [2]. To give an example, investing in clean energy sources and making energy-saving processes is not only a way to cut carbon emissions but also a path to profound cost savings and technological innovation [5].

Such a reshaping of the strategic orientation transforms the definition of corporate value as it combines such results as financial performance and environmental and social results [6]. Companies with active sustainability goals survive regulatory and environmental risk and put themselves in a ready position to seize opportunities in the market [7]. These opportunities include the production of green products that appeal to environmentally aware consumers and access to the ESG-oriented capital market, as well as an improvement in corporate reputation and a rise in stakeholder trust [1].

The congruence between sustainability and economics has hence emerged as a major research area when it comes to management and policy research. Relevant questions to answer would include, how do the sustainability practices affect performance measures on a firm level, like profitability, market share, and innovativeness capability? In addition, what do they add to the national economic interests of the creation of jobs, technological leadership, and energy security? [8]. Current literature indicates that sustainability-related operations have the capability of providing a two-fold benefit to economic development as well as responding to environmental needs and requirements.

It is against this backdrop that this study seeks to examine the influence of sustainability-driven operations on economic performance within the U.S. corporate setting. It strives to analyze how company environmental efforts impact the innovation process, add to competitive advantage, as well as contribute to economic resilience generally [7]. This study is an effort to fill knowledge gaps in contemporary literature and offers an examination of corporate case studies that recognize areas of critical knowledge gaps and will provide insights on which the business operations may be based and inform policies to align national economic development priorities with sustainability objectives [4].

2. Methodology

This study employed a systematic qualitative literature review to examine sustainability-driven operations and their implications for U.S. economic performance. The research synthesized peer-reviewed academic articles, authoritative industry reports, and relevant case studies published over the past decade. Selection criteria prioritized sources from established academic journals, reputable industry publications, and official government sustainability reports that addressed corporate performance and economic impacts within the American context.

3. Literature review

In the recent literature, the introduction of sustainability-based operations has been of great concern and potentiality to establish corporate competitiveness and economic strength [9]. Research reveals that environmentally friendly business operations do not only enhance the performance of firms, but they also benefit national economic goals like creation of employment and innovation [3]. Nevertheless, how these practices can be reflected in economic gains in different industries is still one of the areas that need to be explored [4].

3.1. Sustainability concept in business

Business sustainability combines three broad-based objectives into a bundle comprising of economic, environmental, and social objectives called the triple bottom line [10]. Focusing on the ESG factors will help increase competitiveness, innovation, risk management and strengthen stakeholder's trust [1]. So, the sustainability-grounded corporate strategy is a strategic necessity of corporate resilience and long-term value creation, consistency and compatibility with societal expectations [11].

3.2. Roles and effects of Corporate Environmentally Sustainable Practices

3.2.1. Application of Renewable Energy Solution

Renewable energy solutions like solar, wind, hydroelectric, geothermal technologies have become a strategic focus, as some of the U.S. firms are looking to become environmentally sustainable to reinforce their operational capabilities further. The fact that firms adopting renewable energy in their activities cut down on their usage of fossil fuels, as mentioned by Zastempowski [12], leads to a direct reduction in exposure to volatile energy markets and to stabilizing operational expenditures. As brought out by Seel et al., (2024), corporate purchases of solar energy alone in the year 2021 amounted to more than 20 GW capacity, with affirmed inclination of the top companies like those of Apple, Amazon, and Google to inculcate renewables in their energy mix to net zero carbon goals [13; 14].

At the firm-level performance, the deployment of renewable energy solutions is highly relevant to profitability because it can help decrease long-term energy expense and protect the firms against regulatory risks of rising carbon tax or emission fine costs [15]. In addition, it increases the market share by appealing to the greener consumers and investors who base their consumption and investment activities on sustainability [16]. To illustrate, Tesla has built a reputation as a green innovator through the incorporation of renewable-powered manufacturing plants at an early stage that has augmented market valuation and customer loyalty [17].

Concerning risk management, the adoption of renewable energy reduces the operational and supply chain risks that occur due to geopolitical instabilities in oil and gas markets, optimizes energy security, and guarantees unimpaired business in operations [18; 19]. The government incentives, tax credits, and attractive financing used by firms that include renewable energy decrease initial capital requirements and enhance the project return on investment [20].

In a nationwide economic plan, the implementation of renewable energy solutions creates employment opportunities, in terms of installation, upkeep, production and research. As stated by the Bampaou and Panopoulos [21], the solar sector alone had more than a quarter-million employed workers in the year 2021, which is an indicator of renewable energy as a source to help construct quality employment prospects and bolster local economies. Furthermore, the investments in renewable energy are associated with technological leadership, whereby the U.S. can be seen as a global leader in finding clean energy solutions and can become highly competitive geopolitically [19].

To sum up, the adoption of renewable energy serves as a perfect example of how corporate and national sustainability issues can be intertwined since renewable energy can contribute to the decrease in greenhouse gas emissions, increase energy independence, accelerate the development of technologies, and foster sustainable economic growth [15].

3.2.2. Energy Efficient and Energy Conservation Measures

Energy efficiency and conservation have also been documented as very important sustainability aspects in business practices, as sustainability not only promotes environmental objectives but also enhances the competitiveness of firms. Firms adopting energy-efficient systems, including the use of LED lighting, high-performance HVAC systems, intelligent building systems, and energy-efficient manufacturing systems, reduce their energy use by significant margins [20]. Bera et al., [5], stated that energy efficiency advancements have the strategic potential to provide over 40 percent of the required global climate meeting cuts in greenhouse gas emissions by 2040.

On firm-level performance terms, the implementation of energy efficiency measures has a direct effect on the profitability in cost reduction through operational cost (since energy contributes to a significant amount of the manufacturing and facilities spending) [20]. As an example, Walmart energy efficiency efforts have helped the company save over 1 billion dollars in annual energy expenses, increasing its net profit margins on the one hand, and enhancing its sustainability brand perception on the other hand [22]. Besides, proactive energy management strategies have been reported to result in stock performance and market valuation above those of peers in companies because of increased operational efficiency and reduced exposure to regulatory risks and price changes in energy [23].

Energy efficiency is another reason to experience improved market share as it allows companies to provide customers with competitive prices of products and services because less energy is required and needed to produce them, as well as to attract environmentally conscious consumers and investors concerned with ESG [16]. Moreover, effective operations are also characterized by good risk management abilities, as it minimizes the exposure of firms to fluctuating energy costs as well as risks associated with regulatory compliance with energy standards and carbon emissions [19].

On the national economic scale, ample implementation of energy efficiency initiatives contributes to energy security by reducing a country's energy usage and reliance on foreign fossil fuels [21]. It also facilitates the creation of jobs, since the energy efficiency industry provides millions of jobs, including engineering and retrofitting jobs and building performance analyses. According to Truitt et al., [24], about 2.1 million workers were employed in the energy efficiency sector, and the number of workers increased more rapidly than the general economy because of retrofitting programs and energy efficiency improvements in residential, commercial and industrial domains.

More so, an increase in investment in energy efficiency would lead to technological leadership, which would prompt technological innovation in modern materials, intelligent networking, and digital energy management systems [18]. Siemens and Johnson Controls are examples of companies that have used their experience in energy efficiency as a way of expanding to the international market, thereby increasing U. S. competitiveness in the clean technology industry [25].

Overall, energy efficiency and energy conservation activities give companies a competitive advantage by cutting costs, creating competitive differentiation, and reducing risks and adding national value by generating employment opportunities, increasing energy security, and enhancing technological advancement [18].

3.2.3. The Sustainable Supply Chain Management

Sustainable supply chain management (SSCM) has become a corporate imperative for U.S. firms with a view to harmonizing operational activities to environmental sustainability, stakeholder perception, and competitive advantage [26]. SSCM is the ability to incorporate sustainability practices in the process of sourcing, during the production journey, logistics involved, as well as in supplier relationships, to reduce the negative impact on the environment and increase business value [19]. Organizations that embrace the practices of SSCM considerably decrease carbon footprints with the help of eco-friendly transport, green packaging, supplier sustainability checks, and circular procurement patterns [26].

On a firm-level performance, SSCM increases profitability by reducing expenses linked to resource inefficiency, treatment (and disposal) of waste, and environmental fines [16]. To illustrate, the Sustainable Living Plan developed by Unilever has brought the company more than 1 billion euros in cost savings in programmes to sustainably and reduce waste [27]. Additionally, companies that have adopted the SSCM have grown market shares because they can position themselves as sustainable brands with their products, as consumers who value ethically prepared and environmentally sound goods gravitate towards these brands [26; 16]. The Project Gigaton of Walmart, which tried to avoid emitting one gigaton of greenhouse gas into its supply chain by 2030, has boosted its brand equity and supplier loyalty, making it more competitive on the market [22].

SSCM also enhances risk management strengths by eliminating operational risks that occur due to environmental calamities, supply shocks, and regulatory breaches. Companies having well-developed sustainable supply chain systems have more chances to overcome climate-related risks, shortages of raw materials, and geopolitical instability in the territories of suppliers [19]. As an example, the clean energy supplier program launched by Apple not only helps to minimize emissions but also guarantees the long-term resilience of suppliers and the preservation of their operation [28].

On the national economic level, SSCM helps to create jobs by expanding the sectors of green logistics, sustainable agriculture, and the circular production of goods. Baragiola and Mauri [27] stated that circular and sustainable supply chains can provide millions of jobs worldwide and are particularly promising in the U.S. manufacturing, recycling and logistical sectors. Also, SSCM could boost energy security because it would encourage local vendors and lessen import-related carbon cost [21].

Additionally, sustainable supply chain innovations contribute to technological leadership, with organizations willing to invest in new tracking systems, transparency tools enabled by blockchain and logistics optimization made through AI [29]. Companies such as Amazon are making investments in electric fleet delivery and AI-based route optimization and this is an example of how SSCM is beneficial to the environment and competitive technologies [21].

Conclusively, sustainable supply chain management would enhance profitability, competitiveness in the market, firm resilience against risks, and promote national interests by creating employment opportunities, energy security, and establishing the United States as a world power in sustainable trade and supply chain innovation [19].

3.2.4. Circular economy practices

The adoption of a circular economy involves a paradigm shift in terms of transformation of the established linear production chain; take-make-dispose to a regenerative one that includes designing products to move towards product lifecycle extension, material re-use, and removing waste [30]. Companies in the U.S. that pursue circular economy approaches not only minimize environmental degradation but also ensure the maximization of economic benefits through a range of approaches, including recycling measures, product refurbishment, remanufacturing, resource-efficient design and the closed-loop supply chains [31].

At the firm level of performance, the practice of a circular economy substantially enhances profitability due to the decreases in the costs of raw materials, waste disposal, and the cost of compliance with regulations governing the use of landfills and emissions [32; 33]. As an example, the remanufacturing division of Caterpillar recycles their worn-out parts to sell with a more significant profit margin and consumes 80 percent less materials and energy than would be used to make the parts new [30].

Circular models have been known to drive market share through green consumers and corporate purchasers who want to work with reliable suppliers in sustainable supply. Patagonia and IKEA, with their Worn Wear program and furniture take-back and resale program, respectively, have engaged in such practices with the aim of better assuring their customers, making them far more loyal and standing out from the crowded competing retail markets [34]. The activities that result in circular practices foster product creativity, including incorporating modularity to allow the product to be easily repaired and upgraded, which is attractive to new sustainability-oriented customer groups [31].

On risk management terms, the adoption of a circular economy lowers the supply chain risks, including the shortage of raw materials, their fluctuations, as well as the lower reliance on virgin resources and the creation of secure material flows. In addition, businesses that adopt the principles of a circular model stand a better chance of matching changing policies, including the extended producer responsibility legal framework and landfill reduction policies, which offset the legal and reputation risks [19].

At the national economic level, the practice of circular economy kindles the growth of new employment opportunities in recycling, repairing and refurbishing as well as remanufacturing. Adoption of a circular economy would generate more than 700,000 net new jobs in the United States by 2030 in MMG, remanufacturing, and reverse logistics [31]. Besides, circular economy approaches make energy security more efficient by minimizing the energy-intensive process of extracting raw materials and producing a product, thereby decreasing the level of energy required by a country [21].

Moreover, the circular economy promotes technology-led innovations in material science, recycling technologies, product design, and IT-digitized platforms that support sharing, reuse and counter logistics [35]. Businesses that make research and development investments into circular economies, including the advanced recycling projects underway at Dow Chemical, set the U.S. up as a world leader in the research and development of sustainable materials [36].

In summary, circular economic activities lead to profitability, competitiveness of firms on the market, risk-resilience, and contribute to the national economic interests due to increased employment, saved energy, and technological leadership within the sustainable production systems [19].

3.2.5. Sustainable infrastructure and Green Building

Green building and sustainable infrastructure practices cover the designing, building, and operating of buildings and the public infrastructure in ways that minimize energy use, conserve resources, enhance the health of the occupants, and generate a low impact on the environment [37]. This involves utilizing renewable material, applying state-of-the-art insulation, ensuring maximum natural lighting, adding renewable energy systems, and embracing smart technologies in energy control [38].

On a firm level performance, the green building practices are expected to boost the profitability of firms since the operational costs incurred in areas such as energy and water consumption are greatly mitigated. According to Clay, et al. [39], LEED-certified buildings use 25 percent less energy and 11 percent less water than conventional buildings and which saves a significant cost during the life cycle of an asset. An example of that is the redesign of the Microsoft Silicon Valley campus, which introduced solar panels and state-of-the-art heating, ventilation and air conditioning systems, thereby saving millions of dollars per year, and fulfilling the requirements of sustainability [40].

In addition to this, market share has also increased because of the adoption of green buildings, since this can impress customers and tenants who respect the environment and thus a company will be able to emerge with this kind of future. Companies that are using sustainable design experience improved occupancy rates, market rent premium, and improvements to property value through the demands by tenants to occupy healthier and more efficient offices [19]. Besides this, the developers who invest in the green infrastructure show a good example of risk management leadership as they reduce risks related to regulatory bodies due to changes in environmental regulations, zoning, and building codes that aim at emissions abatement and disaster resilience [21].

On the national economy level, green building activities facilitate the creation of employment in architecture, engineering, construction, retrofitting, and the manufacture of green materials. Clay, et al., [39] estimates that as of 2018, green construction created more than 2.3 million jobs, which brought around 134.3 billion in labor earnings; this proves the importance of green building as a source of labor force and economic growth. In addition, sustainable infrastructure builds energy security by decreasing national energy demand with efficient building blocks, reducing peak load stress and dependence on fossil fuel [39].

Green infrastructure investments also support technology leadership, where businesses are coming up with smart building management systems, renewable integrations technologies, energy-saving materials, and modular construction processes that make the U.S. a leader in eco-friendly city development [19]. As an illustration, Johnson Controls and Honeywell firms have already developed smart building systems that allow them to make the best energy management, indoor air conditions and comfort more economically and reduce costs and emissions [39].

Moreover, green building practices support the health of the general population, ensuring better indoor air quality, less exposure to toxic materials, and improving the welfare of building occupants, which lowers the cost of healthcare due to pollution and poor building design [16].

Summing up, green building and sustainable infrastructure approaches increase profitably, market positioning, enterprise risk management, and benefit national economic interests by creating jobs; enhancing energy security, promoting the health and healthiness of citizens, and leading technology in green buildings [41; 19].

3.2.6. Green Product Development and Eco-Innovations

Eco-innovations and green product development imply designing and providing goods and services that have insignificant environmental effects but satisfy the requirements of maintaining sustainability, efficiency, and performance within the marketplace [17]. Some of these consist of designing electric automobiles, compostable packaging, markedly pollutant-free appliances, sustainable fabrics, environment-saving industrial products, etc., to minimize the carbon footprints within the value chain [42].

In terms of firm-level performance, eco-innovations lead to profitability and serve as such by creating high-value-added products that achieve price premiums, cost reduction in production under resource efficiencies, and opening new revenue sources in the emerging green markets [43]. To elaborate, Tesla technologies related to electric vehicles and batteries have made the company a market leader, which enables its market capitalization to reach over 800 billion dollars in 2023 [44]. On the same note, invention of concentrated detergents to minimize packaging and transportation costs as well as to proliferate the market share of its products to environmentally friendly people [45].

Eco-innovation boosts market share through the orientation of the products according to emerging consumer interest in green products. An estimation of more than 73 percent of consumers globally are prepared to alter their consumption patterns to lower environmental burden, which means that there is high market encouragement going toward green product development [46]. Companies that include eco-innovations in the product range also stand out among the competitors, brand loyalty, and appeal to ESG investors [16].

In terms of risk management, green product development eliminates reputational risks and regulatory risks as it addresses green compliance and the requirements set on enterprises, including emission limits, regulatory restrictions on packaging, as well as extended producer responsibility policies [19]. As an example, the auto companies that invest in electric vehicles and low-emission technology are in a better starting position to meet intensive fuel economy standards and low-emission policies in the American and worldwide markets [47].

Eco-innovation at the national economic level encourages job creation through the increased number of jobs in the areas of research and development, sustainable manufacturing, and clean technology implementation [21]. According to Huang et al. [48], one of the rapidly developing job sectors worldwide is clean energy technology because it is powered by eco-innovation. Moreover, green products have been developed to ensure energy security by lowering the use of fossil energy with the invention of electric cars and appliances, renewable energy-powered industrial machinery, and power generation [19].

In short, eco-innovations and green product development enhance the profitability of firms, market share, and risk management of corporations and benefit the national economic interest through employment, energy security, and technological leadership in the green economy worldwide [19].

3.2.7. Governance Practice and ESG Reporting

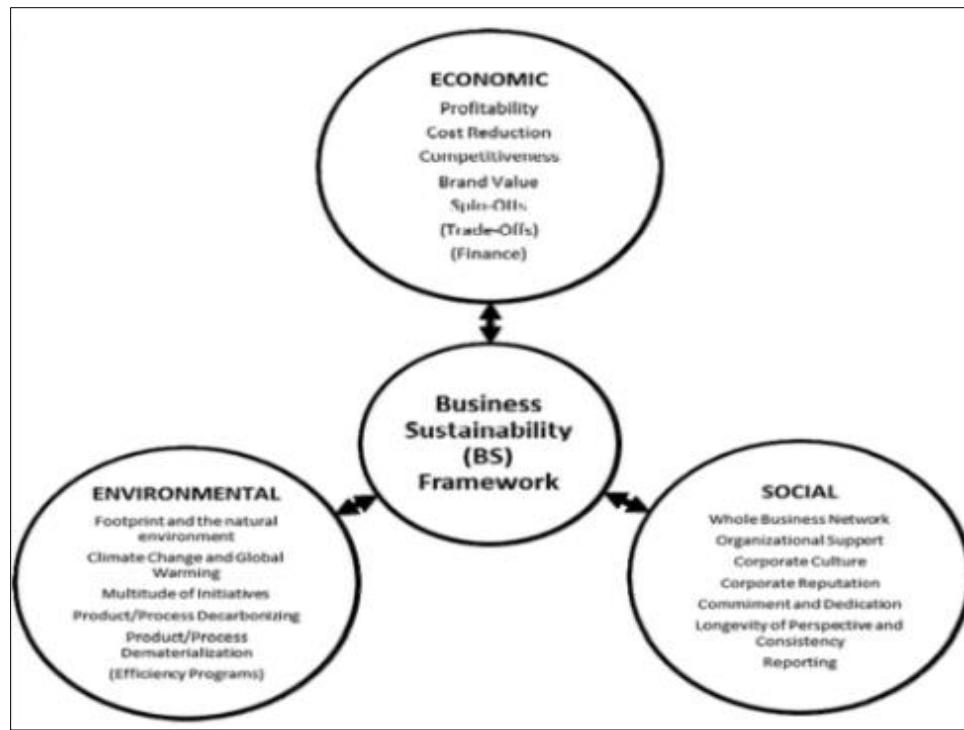
The process of reporting and governance practices known as Environmental, Social, and Governance (ESG) reporting and governance entails the integration and divulgence of the risks and opportunities that pertain to sustainability to corporate operations, strategy, and stakeholder engagement [49]. Frameworks of ESG, including the Global Reporting Initiative (GRI), Sustainability Accounting Standards Board (SASB), and Task Force on Climate-Related Financial Disclosures (TCFD), help companies report entries about their environmental responsibility, social responsibility, and governance aspects in a transparent way to investors, regulators, and other people [50].

At the firm-level performance, ESG reporting increases profitability because it allows improving operational efficiencies, lowering compliance expenses, and determining revenue chances with sustainability at its core [19]. As an example, firms that incorporate ESG indicators into their decision-making experience increased returns on invested capital because they have more optimized risk-adjusted strategies and resource utilization [49]. According to Mandas et al. [51], strong ESG-performing companies deliver greater financial returns than those companies that have poor sustainability records.

The increased market share through ESG reporting is also enhanced by the fact that it opens companies to ESG-oriented investors and consumers who would like to have responsible companies in their loans and stock markets, as well as own their products [16]. Early in 2021, the United Nations remarked that total sustainable investment worldwide was more than 35 trillion dollars, comprising over a third of the sum of assets managed, which demonstrates the strategic significance of ESG disclosures with respect to gaining access to a capital market [49].

In risk management terms, ESG governance systems address regulatory, reputational, and business risks due to the ability of the systems to coordinate the corporate strategies related to changes in environmental standards and investor expectations as well as societal norms [49]. Companies that have a strong ESG governance stand in a better place to manage risk connected to climate change, abuse of human rights, and malpractices that can have major repercussions on the share price and image of the brand [19]. As an example, the disclosure of climate-related financial risks by a company following the recommendations of the Task Force on Climate-related Disclosures increases investor confidence and lowers the costs of capital [16].

On the national economic level, ESG reporting and governance activities lead to the creation of new jobs through the growth of sustainability consulting, ESG analytics, green finance, and voluntary compliance services [52]. Moreover, the integration of ESG optimizes energy security through the investment into clean energy, energy efficiency and sustainable infrastructure initiatives that are in line with the national decarbonization plans [53].


Moreover, effective ESG activities stimulate technological leadership by urging companies to develop renewable energy, a circular economy, low-carbon technologies, and digital sustainability in terms of achieving disclosed targets and expectations of the stakeholders [49]. As an illustration, the ESG-consistent pledges of Microsoft to reach carbon negativity by 2030 have caused the use of innovation in carbon capture and sourcing renewable energy to be quickened [54].

In general, the practice of reporting and governance related to ESG makes firms more profitable, stable on the market, and resistant to risk, in addition to national economic goals of creating jobs, energy security, and technological superiority in the field of sustainable development [19].

4. Discussion and Findings

According to the reviews, the proactive sustainability strategies used by companies like the carbon-negative approach by Microsoft, demonstrate considerable benefits to the business, such as cost savings, reputation, and regulatory risks [28]. The benefit of these firms to the national economic goals includes promoting innovation, developing green jobs of good quality, and enhancing tech leadership, which will eventually facilitate the realization of U.S. energy security and competitiveness [19]. On the other hand, companies with superficial allegiances, including ExxonMobil, experience stagnant profitability, vulnerability to regulation, loss of reputation and reputations, as they put at risk the likelihood of losing market share and long-term growth [55]. Evidence also indicates that deep sustainability integration is associated with optimized financial performance and market position and reduced vulnerability to risks, whereas taking the superficial green approach without good thought can lead to missed opportunities and creating greater risks (See figure 1).

Figure 1 A Triple Bottom Line: Business Sustainability Framework [56]

The results emphasize the importance of strategic, transparent, and all-encompassing sustainability efforts to ensure successful corporate performance with the advantages of macroeconomics, such as employment, technological advancements, and energy self-sufficiency.

5. Conclusion

The study makes a point that the sustainability-related operations are of utmost importance to the long-term stability and competitiveness of U.S. companies and the well-being of the U.S. economy. The efforts, like renewable energy integration, energy efficiency, the practice of a circular economy, and green infrastructure, are proactive, and they influence profitability, risk management, and positioning on markets positively, as well as contribute to the macroeconomic goals, including employment creation and technological leadership. The use of case studies has shown that the efficacy of sincere commitments, as demonstrated in the case of Microsoft, are highly rewarding but on the other hand, the shallow implementation in the manner that ExxonMobil did destroys the economic and environmental objectives in the long run. The paper promotes the implementation of policy measures which reward the actual sustainability work of corporations, enhance innovation, and make the activities of corporations add value to the national economic sustainability. Finally, direct sustainability in business strategies plays a crucial role in meeting the goals of individual firms and meeting the objectives of society or policy development in the rapidly changing world marketplace.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

- [1] Eccles, R. G., and Klimenko, S. (2019). The investor revolution. *Harvard Business Review*, 97(3), 106–116.
- [2] Kolk, A. (2016). The social responsibility of international business: From ethics and the environment to CSR and sustainable development. *Journal of World Business*, 51(1), 23–34.

- [3] Fernando, Y., Jabbour, C. J. C., and Wah, W. X. (2019). Pursuing green growth in technology firms through the connections between environmental innovation and sustainable business performance: does service capability matter? *Resources, conservation and recycling*, 141, 8-20.
- [4] Krueger, P., Sautner, Z., and Starks, L. T. (2020). The importance of climate risks for institutional investors. *Review of Financial Studies*, 33(3), 1067-1111.
- [5] Bera, M., Das, S., Garai, S., Dutta, S., Choudhury, M. R., Tripathi, S., and Chatterjee, G. (2025). Advancing energy efficiency: innovative technologies and strategic measures for achieving net zero emissions. *Carbon Footprints*, 4(1), N-A.
- [6] [6] Sullivan, R., and Mackenzie, C. (2017). Responsible investment: Guide to environmental, social and governance data providers and relevant trends. Routledge.
- [7] Amui, L. B. L., Jabbour, C. J. C., de Sousa Jabbour, A. B. L., and Kannan, D. (2017). Sustainability as a dynamic organizational capability: a systematic review and a future agenda toward a sustainable transition. *Journal of cleaner production*, 142, 308-322.
- [8] Popp, D., Vona, F., Marin, G., and Chen, Z. (2020). The employment impact of green fiscal push: Evidence from the American Recovery Act. *Brookings Papers on Economic Activity*, 2020(1), 1-67.
- [9] Onwuzulike, O. C., Buinwi, U., Umar, M. O., Buinwi, J. A., and Ochigbo, A. D. (2024). Corporate sustainability and innovation: Integrating strategic management approach. *World Journal of Advanced Research and Reviews*, 23(3), 4.
- [10] Elkington, J. (1997). *Cannibals with forks: The triple bottom line of 21st century business*. Capstone Publishing.
- [11] Bansal, P., and Song, H. C. (2017). Similar but not the same: Differentiating corporate sustainability from corporate responsibility. *Academy of Management Annals*, 11(1), 105-149.
- [12] Zastempowski, M. (2023). Analysis and modeling of innovation factors to replace fossil fuels with renewable energy sources-Evidence from European Union enterprises. *Renewable and Sustainable Energy Reviews*, 178, 113262.
- [13] Rema, V. (2024). A Comprehensive Analysis of Leveraging Technology in the Manufacturing Sector to Achieve Net Zero Future. *Transition Towards a Sustainable Future: Net Zero Policies and Environmental Sustainability*, 185-204.
- [14] Rynska, E. (2022). Review of pv solar energy development 2011–2021 in central European countries. *Energies*, 15(21), 8307.
- [15] Prokopenko, O., Kurbatova, T., Khalilova, M., Zerkal, A., Prause, G., Binda, J., ... and Komarnitskyi, I. (2023). Impact of investments and RandD costs in renewable energy technologies on companies' profitability indicators: Assessment and forecast. *Energies*, 16(3), 1021.
- [16] Bennett, M., James, P., and Klinkers, L. (Eds.). (2017). *Sustainable measures: Evaluation and reporting of environmental and social performance*. Routledge.
- [17] Erixon, F., and Weigel, B. (2016). *The innovation illusion: How so little is created by so many working so hard*. Yale University Press.
- [18] Onukwulu, E. C., Agho, M. O., and Eyo-Udo, N. L. (2023). Developing a framework for supply chain resilience in renewable energy operations. *Global Journal of Research in Science and Technology*, 1(2), 1-18.
- [19] Khan, K. (2025). How do supply chain and geopolitical risks threaten energy security? A time and frequency analysis. *Energy*, 316, 134501.
- [20] Taghizadeh-Hesary, F., and Yoshino, N. (2020). Sustainable solutions for green financing and investment in renewable energy projects. *Energies*, 13(4), 788.
- [21] Bampaou, M., and Panopoulos, K. D. (2025). An overview of hydrogen valleys: Current status, challenges and their role in increased renewable energy penetration. *Renewable and Sustainable Energy Reviews*, 207, 114923.
- [22] Schirnhofer, N. M. (2022). Sustainability efforts in the retail industry: the case study of walmart (Master's thesis, Webster University).
- [23] Leisen, R., Steffen, B., and Weber, C. (2019). Regulatory risk and the resilience of new sustainable business models in the energy sector. *Journal of cleaner production*, 219, 865-878.

[24] Truitt, S., Elsworth, J., Williams, J., Keyser, D., Moe, A., Sullivan, J., and Wu, K. (2022). State-level employment projections for four clean energy technologies in 2025 and 2030 (No. NREL/TP-5500-81486). National Renewable Energy Lab. (NREL), Golden, CO (United States).

[25] Kim, S. Y. (2021). National competitive advantage and energy transitions in Korea and Taiwan. *New Political Economy*, 26(3), 359-375.

[26] Mahmood, S., Misra, P., Sun, H., Luqman, A., and Papa, A. (2024). Sustainable infrastructure, energy projects, and economic growth: mediating role of sustainable supply chain management. *Annals of operations research*, 1-32.

[27] Baragiola, G., and Mauri, M. (2021). SDGs and the private sector: Unilever and PandG case studies.

[28] Webb, D. (2023). SUSTAINABILITY LEADERSHIP: MAPPING THE PATH TO NET ZERO AND BEYOND WITH APPLE, GOOGLE, AND MICROSOFT (Doctoral dissertation).

[29] Chauhan, S., Singh, R., Gehlot, A., Akram, S. V., Twala, B., and Priyadarshi, N. (2022). Digitalization of supply chain management with industry 4.0 enabling technologies: a sustainable perspective. *Processes*, 11(1), 96.

[30] Bressanelli, G., Adrodegari, F., Pigozzo, D. C., and Parida, V. (2022). Towards the smart circular economy paradigm: A definition, conceptualization, and research agenda. *Sustainability*, 14(9), 4960.

[31] Geissdoerfer, M., Savaget, P., Bocken, N. M. P., and Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm? *Journal of Cleaner Production*, 143, 757-768.

[32] Antonioli, D., Ghisetti, C., Mazzanti, M., and Nicolli, F. (2022). Sustainable production: The economic returns of circular economy practices. *Business Strategy and the Environment*, 31(5), 2603-2617.

[33] Kwarteng, A., Simpson, S. N. Y., and Agyenim-Boateng, C. (2022). The effects of circular economy initiative implementation on business performance: the moderating role of organizational culture. *Social Responsibility Journal*, 18(7), 1311-1341.

[34] Kant Hvass, K., and Pedersen, E. R. G. (2019). Toward circular economy of fashion: Experiences from a brand's product take-back initiative. *Journal of Fashion Marketing and Management: An International Journal*, 23(3), 345-365.

[35] Puntillo, P. (2023). Circular economy business models: Towards achieving sustainable development goals in the waste management sector—Empirical evidence and theoretical implications. *Corporate Social Responsibility and Environmental Management*, 30(2), 941-954.

[36] Cannon, A., Edwards, S., Jacobs, M., Moir, J. W., Roy, M. A., and Tickner, J. A. (2023). An actionable definition and criteria for “sustainable chemistry” based on literature review and a global multisectoral stakeholder working group. *RSC Sustainability*, 1(8), 2092-2106.

[37] Kibert, C. J. (2016). Sustainable construction: green building design and delivery. John Wiley and Sons.

[38] Derrible, S. (2018). An approach to designing sustainable urban infrastructure. *MRS Energy and Sustainability*, 5, E15.

[39] Clay, K., Severnini, E., and Sun, X. (2023). Does LEED certification save energy? Evidence from retrofitted federal buildings. *Journal of Environmental Economics and Management*, 121, 102866.

[40] Freer, R., and Powell, A. V. (2020). Realising the potential of thermoelectric technology: a Roadmap. *Journal of Materials Chemistry C*, 8(2), 441-463.

[41] Liu, Z. J., Pypłacz, P., Ermakova, M., and Konev, P. (2020). Sustainable construction as a competitive advantage. *Sustainability*, 12(15), 5946.

[42] Zhang, Z., Li, J., and Guan, D. (2023). Value chain carbon footprints of Chinese listed companies. *Nature communications*, 14(1), 2794.

[43] Weiss, J. F. (2015). Essays on externalities, regulation, institutions, and firm performance (Doctoral dissertation, Jönköping University, Jönköping International Business School).

[44] Hopkins, M., and Lazonick, W. (2024). Tesla as a Global Competitor: Strategic Control in the EV Transition. Institute for New Economic Thinking Working Paper Series, (225).

[45] Liu, B., Li, T., Wang, W., Sagis, L. M., Yuan, Q., Lei, X., ... and Li, Y. (2020). Corncob cellulose nanosphere as an eco-friendly detergent. *Nature Sustainability*, 3(6), 448-458.

- [46] Kosyak, A., and Popov, S. (2020). Analyzing Consumer Preferences for Green Products and Environmental Impact. *Journal of Energy and Environmental Policy Options*, 3(4), 134-140.
- [47] Khaleel, M., Nassar, Y., El-Khozondar, H. J., Elmnifi, M., Rajab, Z., Yaghoubi, E., and Yaghoubi, E. (2024). Electric vehicles in China, Europe, and the United States: Current trend and market comparison. *Int. J. Electr. Eng. and Sustain.*, 1-20.
- [48] Huang, Y., Ahmad, M., Ali, S., and Kirikkaleli, D. (2022). Does eco-innovation promote cleaner energy? Analyzing the role of energy price and human capital. *Energy*, 239, 122268.
- [49] Agbakwuru, V., Onyenahazi, O. B., Antwi, B. O., and Oyewale, K. (2024). The impact of environmental, social, and governance (ESG) reporting on corporate financial performance. *International Journal of Research Publication and Reviews*, 5(9), 3629-3644.
- [50] Caputo, F., Pizzi, S., Ligorio, L., and Leopizzi, R. (2021). Enhancing environmental information transparency through corporate social responsibility reporting regulation. *Business Strategy and the Environment*, 30(8), 3470-3484.
- [51] Mandas, M., Lahmar, O., Piras, L., and De Lisa, R. (2023). ESG in the financial industry: What matters for rating analysts?. *Research in International Business and Finance*, 66, 102045.
- [52] Johnson, C. (2020). The measurement of environmental, social and governance (ESG) and sustainable investment: Developing a sustainable new world for financial services. *Journal of securities operations and custody*, 12(4), 336-356.
- [53] Kandpal, V., Jaswal, A., Santibanez Gonzalez, E. D., and Agarwal, N. (2024). Sustainable energy transition, circular economy, and ESG practices. In *Sustainable Energy Transition: Circular Economy and Sustainable Financing for Environmental, Social and Governance (ESG) Practices* (pp. 1-51). Cham: Springer Nature Switzerland.
- [54] Devesh, D. (2024). Tech Companies and Global Risk Mitigation: Strategies and Innovations for 2030. Available at SSRN 5004187.
- [55] Marcus, A. A. (2019). *Strategies for managing uncertainty: Booms and busts in the energy industry*. Cambridge University Press.
- [56] Svensson, G., Høgevold, N., Ferro, C., Varela, J. C. S., Padin, C., and Wagner, B. (2016). A triple bottom line dominant logic for business sustainability: Framework and empirical findings. *Journal of Business-to-Business Marketing*, 23(2), 153-188.