

The Development of Constructive Methods for Monitoring and Managing Complex Oil and Gas Production Systems under Uncertainty: The Case of Azerbaijan

Khalil Huseynov *

Department of Petroleum Engineering at Azerbaijan State Oil and Industry University.

World Journal of Advanced Research and Reviews, 2025, 28(01), 2163-2167

Publication history: Received on 13 September 2025; revised on 24 October 2025; accepted on 28 October 2025

Article DOI: <https://doi.org/10.30574/wjarr.2025.28.1.3598>

Abstract

Azerbaijan's oil and gas sector is rapidly adopting digital technologies (digital twins, remote control, predictive maintenance), yet constructive methods for monitoring and managing complex production systems under uncertainty lag behind practical needs. This gap reduces the effectiveness of digital investments and exposes operations to operational, economic, and environmental risks. This paper reviews the state of technology and methodology in Azerbaijan, identifies methodological shortfalls (uncertainty modeling, real-time decision algorithms, robust adaptive control), and proposes a research agenda emphasizing probabilistic models, hybrid fuzzy-Bayesian frameworks, and reinforcement learning approaches tailored to Azerbaijani field conditions. Examples from BP's ACE platform and SOCAR's digital projects illustrate both progress and remaining methodological challenges. Practical recommendations for industry-academia collaboration, pilot deployments, and capacity building conclude the paper.

Keywords: Azerbaijan; Oil And Gas; Monitoring; Uncertainty; Digital Transformation; Fuzzy Logic; Bayesian Inference; Reinforcement Learning

1. Introduction

Azerbaijan has long been a major oil and gas producer in the Caspian region and is actively modernizing its upstream and midstream operations through digitalization; (SOCAR reports). While equipment, sensors, and remote infrastructure investments have grown rapidly, methodological advances that translate data into robust, uncertainty-aware operational decisions have not kept pace. This misalignment reduces the practical value of digital investments and limits improvements in efficiency, safety, and environmental performance.

1.1. Complexity and Uncertainty in Modern Oil and Gas Systems

The modern oil and gas industry operates under increasingly complex and uncertain conditions. As deposits become more difficult to access and production processes more technologically sophisticated, the need for reliable monitoring and control mechanisms grows correspondingly. However, the development of constructive methods for monitoring and managing complex oil and gas production systems under uncertainty still lags far behind the practical demands of the industry. This discrepancy limits the effective use of available technologies, reduces operational efficiency, and raises questions about the long-term reliability and sustainability of production systems.

Contemporary oil and gas production systems are characterized by high degrees of interconnectivity and dynamic behavior. They involve a combination of geological, technological, and human factors, each contributing layers of uncertainty. Geological uncertainty stems from incomplete or imperfect knowledge of reservoir structures, fluid composition, and pressure dynamics. Technological uncertainty arises from limitations in sensors, data transmission

* Corresponding author: Khalil Huseynov

delays, and the complexity of automated control systems. Additionally, environmental variability and market fluctuations introduce further unpredictability into production planning and system management.

Despite substantial advances in digitalization, such as the introduction of smart fields, digital twins, and predictive maintenance systems, the theoretical and methodological foundations required to model, analyze, and control such complex systems remain insufficiently developed. Many existing models rely on oversimplified assumptions that do not adequately reflect real operational conditions, leading to suboptimal or even unstable control decisions

2. The Need for Constructive Methods

Constructive methods those that yield specific, implementable algorithms and decision procedures are crucial for the effective management of complex oil and gas systems. Unlike purely analytical or descriptive approaches, constructive methods provide actionable frameworks for real-time monitoring and adaptive control. They integrate mathematical modeling, optimization, and artificial intelligence to generate feasible solutions in the presence of uncertainty.

However, the development of such methods is often constrained by the lack of unified theories capable of handling both deterministic and stochastic components of production processes. Traditional control strategies, based on linear or quasi-linear models, fail to capture nonlinear interactions between geological formations, equipment behavior, and environmental factors. As a result, decision-making remains largely heuristic, depending heavily on expert intuition rather than systematic computation.

2.1. Problem statement and scope

Constructive methods here refer to implementable mathematical, algorithmic, and software frameworks that (a) model uncertainty (geological, sensor, process), (b) perform real-time monitoring and anomaly detection, and (c) generate adaptive control or decision recommendations under partial observability. In Azerbaijan, two trends make this especially urgent: (1) the growth of offshore, digitally controlled platforms (e.g., ACE) with real-time onshore control capabilities, and (2) national initiatives for smart infrastructure and predictive asset management.

3. Literature review

3.1. Uncertainty in petroleum systems

Reservoir and operational uncertainty have been widely recognized in petroleum engineering literature; methods ranging from multiple geostatistical realizations to decision trees and probabilistic production optimization have been proposed to manage reservoir uncertainty. However, many classical approaches rely on offline analysis and do not scale to high-frequency sensor streams or partially observable operational contexts.

3.2. Lag Between Technological Capability and Methodological Development

One of the paradoxes of modern oil and gas production is that technological capability, particularly in data collection and processing has advanced faster than the theoretical means to utilize it effectively. Modern wells are equipped with hundreds of sensors that generate massive streams of data in real time. Yet, the analytical and control frameworks required to transform this data into reliable operational decisions are underdeveloped.

The absence of robust uncertainty management leads to inefficiencies such as suboptimal extraction rates, premature equipment wear, and delayed responses to anomalies. Moreover, in high-risk environments, this gap between data availability and analytical capacity can have severe safety and environmental consequences.

4. Toward Intelligent and Adaptive Control Systems

Bridging this gap requires a transition from traditional rule-based management to intelligent and adaptive control systems. Such systems must be capable of learning from data, identifying patterns of uncertainty, and adjusting operational strategies dynamically. The integration of fuzzy logic, Bayesian inference, and reinforcement learning provides promising avenues for constructing flexible decision-making frameworks that can operate effectively in uncertain environments.

For example, fuzzy logic control can model linguistic uncertainty terms like "high pressure" or "moderate temperature" with quantitative precision, allowing systems to interpret and act on incomplete or imprecise data. Similarly, Bayesian

approaches enable the continuous updating of model parameters as new data arrives, thereby reducing uncertainty over time. Reinforcement learning, in turn, allows systems to optimize control strategies through experience, even when precise system models are unavailable.

4.1. Digitalization efforts in Azerbaijan

Recent Azerbaijani industry documents and conference proceedings describe the adoption of digital tools (data integration, ETL and analytics layers, digital twins, remote control of platforms) while noting implementation challenges in analytics and decision support. SOCAR and partners have announced large smart-grid and digital projects, indicating strong demand for operational analytics, but detailed public accounts show limited maturity of adaptive decision frameworks.

4.2. Advanced methodological building blocks

Several advanced methods are promising for constructive solutions under uncertainty: Bayesian updating for continuously revising beliefs about reservoir parameters; fuzzy logic for handling linguistic and imprecise sensor information; and reinforcement learning (including Bayesian variants) for learning control policies under partial observability. Hybrid combinations (e.g., fuzzy + Bayesian + RL) have been proposed in the literature and tested in related industrial contexts.

5. Methodological gaps observed in Azerbaijani practice

From publicly available industry and academic materials, we identify the following gaps

- **Real-time uncertainty quantification (UQ):** many deployments focus on data collection and dashboards but lack operational UQ layers that propagate sensor noise, model mismatch, and geological uncertainty into decision-level metrics.
- **Partially observable decision algorithms:** offshore platforms with remote onshore control require algorithms that operate under partial observability and communication constraints, areas where decentralized POMDP approximations and Bayesian RL could help but are rarely used in practice.
- **Interdisciplinary, deployable frameworks:** academic proposals exist for components (UQ, fuzzy controllers, RL), yet fully integrated, validated systems tailored to Azerbaijan's fields are scarce. Conference proceedings from Azerbaijani institutions indicate interest but not large-scale validated deployments.

5.1. Proposed constructive framework for Azerbaijan

We propose a three-layer constructive framework that can be piloted on Azerbaijani assets (onshore control center + offshore field)

5.1.1. Layer A — Probabilistic digital twin (PDT)

- Maintain an ensemble of reservoir and equipment models (geostatistical realizations) that reflect geological and parametric uncertainty. Use Bayesian updating to reweight ensemble members as new production and sensor data arrive. This supports probabilistic forecasts (production, pressure) rather than single deterministic traces. (Methodological basis: geostatistical ensembles + Bayesian updating).

5.1.2. Layer B — Hybrid perception and anomaly detection

- Combine statistical change-point detection with fuzzy logic rules to interpret noisy sensor signals using linguistic terms familiar to operators (e.g., "slight decline", "rapid increase"). This hybrid approach preserves human-readable reasoning while providing rigorous probabilistic alarms.

5.1.3. Layer C — Decision and adaptive control agent

- Implement a Bayesian reinforcement learning (BRL) agent that optimizes operational policies (e.g., well throttling, compressor schedules) across the PDT ensemble, maximizing expected value while penalizing high downside risk. BRL naturally balances exploration (learning about uncertain dynamics) and exploitation (safe operation). Recent applications in chemical and process systems confirm viability for complex industrial units and can be adapted to oilfield control.

6. Implementation roadmap for Azerbaijan

- **Pilot selection:** choose a field or platform with sufficient instrumentation and an engaged operator (e.g., one of the ACG/ACE assets or a mature onshore field targeted for digitalization). BP's ACE platform demonstrates that onshore control is operationally feasible and this makes it a suitable test case for advanced decision systems.
- **Data and model integration:** build ETL pipelines, create the ensemble PDT, and implement continuous Bayesian updating. SOCAR's data architecture discussions and recent conference papers show existing ETL/analytics efforts that can be extended.
- **Algorithm development and validation:** develop the hybrid perception layer and BRL agent offline using historical data, then run shadow mode (suggested actions but no enforcement) to validate.
- **Human-in-the-loop deployment:** integrate operator feedback via interpretable fuzzy rules and confidence metrics to build trust.
- **Regulatory and safety assessment:** ensure all automated suggestions comply with local safety regulations and operator protocols.

7. Challenges and risks

- **Data quality and observability:** noisy or missing sensors impede UQ—investment in sensor redundancy and data validation is required.
- **Computational cost:** ensemble PDTs and BRL training are computationally intensive; edge/cloud hybrid architectures mitigate latency issues.
- **Organizational adoption:** successful deployment requires collaboration between SOCAR, operators (e.g., BP), and Azerbaijani academic centers (ASOIU), plus operator training.

Recommendations

- Establish industry-university consortia to develop and validate the proposed framework, leveraging local research centers (e.g., Azerbaijan State Oil and Industry University).
- Fund pilot projects on digitally enabled platforms (e.g., ACE-class assets) to demonstrate value in safety, production optimization, and reduced downtime.
- Prioritize explainability (fuzzy summaries, probabilistic intervals) to foster operator trust and regulatory acceptance.
- Invest in workforce training on probabilistic UQ, Bayesian methods, and RL to sustain in-country capabilities.

8. Conclusion

Azerbaijan's oil and gas sector is well positioned to benefit from advanced constructive methods for monitoring and managing complex production systems under uncertainty. While the country has made notable strides in digitalization and infrastructure modernization, methodological development, particularly in real-time UQ, decision algorithms for partially observable systems, and integrated deployable frameworks - lags practice. A focused research-to-pilot agenda combining probabilistic digital twins, hybrid perception layers, and Bayesian reinforcement learning offers a feasible path to close the gap. Implementing this agenda will require coordinated investment, pilot deployments on digitally capable platforms, and capacity building within Azerbaijan's industry and academic institutions.

The lag in developing constructive methods for monitoring and managing complex oil and gas production systems under uncertainty remains one of the key bottlenecks limiting technological progress in the industry. While advanced sensors, automation, and computational tools provide unprecedented opportunities, their potential cannot be fully realized without the parallel development of mathematically rigorous and practically applicable management frameworks.

Closing this gap demands interdisciplinary collaboration among engineers, computer scientists, and systems theorists, as well as investment in research focused on uncertainty modeling, adaptive control, and intelligent decision-making. Only by establishing a robust methodological foundation can the oil and gas sector achieve the efficiency, safety, and reliability that modern production environments require.

References

- [1] BP. (2024, April 16). BP begins oil production from major new platform offshore Azerbaijan [Press release]. BP. bp global
- [2] Ismailov, S. Z. (2024). Application of machine learning and control criteria for borehole trajectory management (Proceedings). OGP Proceedings.
- [3] Karimi, G. (2015). Reservoir management by identifying subsurface uncertainties and impact on recovery factor and production rate. *Petroleum and Coal*, 57(4), 373–381.
- [4] Qin, J., et al. (2025). Bayesian deep reinforcement learning for operational optimization of process units. *Processes*, 13(5), Article 1352.
- [5] Santos, S. M. G. (2018). Managing reservoir uncertainty in petroleum field development. *Journal of Petroleum Science and Engineering*.
- [6] SOCAR. (2024). Digital technologies in the oil and gas industry (Conference paper). SOCAR Proceedings.
- [7] SOCAR and IntelliGrid partnership reporting. (2024, Nov 11). SOCAR and IntelliGrid sign agreement on smart gas grid management system [News reports]. Presight / AzerFocus.
- [8] Sharma, R., et al. (2012). Bayesian-game-based fuzzy reinforcement learning control for decentralized POMDPs. *ITCIA Proceedings*.
- [9] Azerbaijan State Oil and Industry University (ASOIU). (n.d.). Sustainable Development Research Center / research outputs. ASOIU website.