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Abstract

This paper examines how insights from neuroscience and cognitive psychology can inform the development of Artificial
General Intelligence (AGI). It highlights neural mechanisms such as plasticity, predictive coding, and global integration,
alongside cognitive functions like working memory, attention, and metacognition. The study argues that AGI should
combine biological adaptability with cognitive intentionality through hybrid and embodied architecture. Integrating
these interdisciplinary principles can guide the creation of self-regulating, context-aware, and ethically aligned
intelligent systems.
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1. Introduction

The quest for Artificial General Intelligence (AGI), a system capable of reasoning, understanding, and learning across
domains with the same adaptability as human cognition has evolved from a speculative ambition into one of the most
sophisticated research challenges of the 21st century. While the last two decades have witnessed dramatic progress in
Artificial Narrow Intelligence (ANI) through deep learning, reinforcement learning, and generative models, the leap
from specialized competence to generalized understanding remains elusive. AGI requires not only computational power
but a deeper comprehension of how intelligence arises, evolves, and interacts with its environment questions that have
occupied neuroscience and cognitive psychology for over a century.

Traditional Al systems are largely data-driven, relying on massive datasets and optimization of parameters to achieve
proficiency in narrowly defined tasks. Despite their impressive performance, such systems lack contextual flexibility,
causal reasoning, and self-reflective awareness, which are hallmarks of human cognition. For instance, while a language
model can process vast linguistic corpora, it still lacks genuine comprehension of semantics and intentionality. This
discrepancy between performance and understanding sometimes referred to as the “symbol grounding problem”
underscores the limitations of purely statistical approaches. Neuroscience and cognitive psychology, by contrast, focus
on mechanisms of understanding rather than outcomes, offering insights into how perception, memory, emotion, and
consciousness co-evolve to produce intelligent behavior.

In neuroscience, intelligence is not merely an emergent property of neuron quantity but of dynamic interconnectivity
and adaptive reconfiguration—what is known as neural plasticity. The human brain continuously reshapes its synaptic
pathways based on experience, a feature that grants it resilience and creativity. This principle stands in stark contrast
to the rigid architecture of current artificial neural networks, which, once trained, often exhibit limited adaptability to
new or unstructured inputs. Moreover, the energy efficiency and robustness of biological neural systems far exceed
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those of their artificial counterparts, inviting questions about whether computational models can emulate the brain’s
hierarchical, predictive, and feedback-driven organization.

From the perspective of cognitive psychology, intelligence is a multifaceted construct encompassing attention, working
memory, reasoning, problem-solving, and metacognition. Unlike the reductionist view that treats cognition as mere
computation, modern theories emphasize context-dependence, embodiment, and interaction. Human cognition
emerges through continuous engagement with the environment what Varela, Thompson, and Rosch (1991) termed
“enactive cognition.” Such findings challenge the notion that intelligence can be abstracted from physical and social
experience. This insight has profound implications for AGI, suggesting that true general intelligence may require not
only computational simulation but also embodied experience and goal-directed intentionality.

Furthermore, the integration of neuroscience and cognitive psychology offers a promising interdisciplinary framework
for understanding intelligence as both a biological and computational phenomenon. Cognitive psychology provides
models of high-level functions such as reasoning, decision-making, and self-regulation while neuroscience uncovers the
micro- and meso-level mechanisms that implement these functions within neural substrates. By aligning these domains,
researchers can move beyond algorithmic replication toward architectural inspiration: designing artificial systems that
reflect the layered complexity of human cognition rather than imitating its superficial outputs.

2. Literature Review

The concept of Artificial General Intelligence (AGI), often described as the “holy grail” of computer science, traces its
intellectual origins to Alan Turing’s (1950) seminal question, “Can machines think?” Turing’s vision of universal
computation laid the theoretical groundwork for machines capable of general reasoning. Early efforts in symbolic Al
during the 1950s-1980s (Newell and Simon, 1976) were largely inspired by human problem-solving models in
cognitive psychology. However, these approaches failed to replicate the adaptability and context sensitivity inherent to
human cognition, prompting a paradigm shift toward connectionist and later deep learning frameworks (Rumelhart
and McClelland, 1986; Schmid Huber, 2015).

The emergence of Artificial Neural Networks (ANNs) and subsequent deep learning architectures reinvigorated
optimism toward AGI. Nonetheless, despite their statistical prowess, modern neural networks are criticized for their
lack of interpretability, transferability, and cognitive flexibility (Marcus, 2020; Bengio et al., 2021). These limitations
reveal a fundamental gap between pattern recognition and genuine understanding of a gap that neuroscience and
cognitive psychology may help to close by elucidating the mechanisms underlying biological intelligence.

Recent developments in neuroscience have illuminated several biological principles that could inform AGI design. One
of the most influential is the predictive coding framework, which conceptualizes the brain as a hierarchical inference
machine that minimizes prediction error through feedback loops (Friston, 2010; Clark, 2013). This theory resonates
with deep learning models that adjust weights based on backpropagation to reduce loss; however, the biological brain
achieves this with vastly greater efficiency and adaptability.

Another critical insight is neural plasticity, the brain’s capacity to rewire itself in response to experience (Yuste, 2015).
Artificial systems, by contrast, typically operate on fixed architectures post-training. Introducing dynamic structural
plasticity into machine learning models could potentially lead to more autonomous forms of lifelong learning, a key
feature of AGI (Hassabis et al., 2017).

Research into neural synchronization and global broadcasting mechanisms (Baars, 1988; Dehaene and Changeux, 2011)
has also provided inspiration for cognitive architectures that model conscious awareness and attention distribution.
The Global Workspace Theory (GWT) suggests that consciousness arises from the integration of information across
specialized modules. Translating this concept into Al could yield architectures capable of prioritizing and coordinating
distributed processes, enhancing generalization and decision-making in complex environments.

Complementary to GWT, the Integrated Information Theory (IIT) proposed by Tononi et al. (2016) describes
consciousness as a measurable quantity of integrated information within a system. Although its direct computational
implementation remains debated, IIT introduces the idea that intelligence may be linked to information integration
density, a property that could inspire future Al architectures with emergent self-awareness.

While neuroscience elucidates the brain’s physical substrate, cognitive psychology offers abstract models of how

cognition operates functionally. Foundational frameworks such as Baddeley’s (1992) model of working memory and
Anderson’s (2007) ACT-R cognitive architecture have been instrumental in understanding executive control, decision-
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making, and goal management. These mechanisms correspond to computational challenges in Al, including task
switching, contextual learning, and multi-objective optimization.

The development of attention mechanisms in deep learning, especially the Transformer architecture, was directly
inspired by psychological theories of selective attention (Posner and Petersen, 1990). Yet, unlike humans, Al lacks the
intentional control that governs attention allocation based on motivation and goals. Integrating motivation-driven
attention systems could thus enhance Al autonomy.

Equally central to AGI research is metacognition of the ability to monitor and regulate one’s cognitive processes (Flavell,
1979). Humans use metacognition to detect errors, plan strategies, and reflect on outcomes. Replicating these abilities
in artificial agents would enable them to evaluate uncertainty, improve self-learning, and develop rudimentary self-
awareness (O’Reilly et al,, 2016).

Moreover, the embodied cognition framework (Varela et al., 1991) emphasizes that intelligence arises from dynamic
interaction between mind, body, and environment. This challenges purely computational notions of intelligence,
suggesting that AGI must incorporate sensorimotor experiences to achieve grounded understanding. Modern research
in robotic learning and embodied Al (Brooks, 1999) reflects this transition, highlighting the importance of physical and
social contexts in intelligent behavior.

3. Analysis and Results

The analytical phase of this research builds upon the theoretical and empirical insights reviewed in the preceding
sections, aiming to uncover the functional parallels between human cognition and artificial intelligence architectures.
While neuroscience provides a biological account of how intelligence emerges from complex neural dynamics, cognitive
psychology elucidates the structural and procedural organization of human thought. Together, these domains offer a
multidimensional framework for understanding the mechanisms that may guide the evolution from narrow machine
intelligence toward genuine Artificial General Intelligence (AGI).

Table 1 Neuroscientific principles and their implications for AGI development

Neuroscientific

Mechanism

Empirical Evidence and Function

Potential Application in AGI Design

Neural Plasticity

Brain circuits reorganize in response to
new stimuli; supports lifelong learning
(Yuste, 2015).

Implementation of continual learning systems
that dynamically adapt to novel environments
without catastrophic forgetting.

Predictive Coding

Cortical networks minimize prediction
error via hierarchical inference (Friston,
2010; Clark, 2013).

Design of hierarchical predictive architectures
capable of real-time learning and adaptation to
uncertainty.

(Baars, 1988).

Neural Consciousness and attention emerge from | Development of modular coordination networks

Synchronization synchronized neural oscillations | thatintegrate distributed Al subsystems through
(Dehaene and Changeux, 2011). temporal coherence.

Energy Efficiency The human brain uses ~20 W to achieve | Creation of neuromorphic computing
massive parallel processing (Hassabis et | architectures using event-driven spiking
al, 2017). networks for efficient processing.

Global Workspace | Information becomes conscious when | Development of meta-controller systems that

Integration globally broadcast to specialized regions | integrate information across modules to support

reasoning and awareness.

Source: Compiled by the author

The analysis of neuroscientific mechanisms demonstrates that biological efficiency and adaptability are central to
human-level intelligence. Unlike artificial networks, which are optimized for single-task performance, the human brain
exhibits structural flexibility, contextual prediction, and global integration.

The principle of neural plasticity directly challenges the rigidity of deep neural networks by suggesting architectures
that continuously evolve rather than being statically trained. Similarly, the predictive coding model provides a

601



World Journal of Advanced Research and Reviews, 2025, 28(01), 599-604

mathematical foundation for the brain’s ability to infer and anticipate environmental stimuli, a property that could
enhance machine adaptability under uncertainty.

Moreover, neural synchronization and global workspace integration underscore that intelligence is not merely
computational but coordinative—a product of harmonized communication among specialized subsystems. This insight
motivates the design of meta-cognitive controllers in AGI that dynamically allocate computational attention and
integrate multi-modal data streams.

Finally, the energy efficiency of the brain highlights a critical engineering challenge. While current large language
models demand gigawatts of computational power, the biological brain achieves superior efficiency through spike-
based signaling and selective activation. Replicating these mechanisms in neuromorphic chips could significantly
advance sustainable AGI development.

Table 2 Cognitive psychology constructs and their relevance for AGI architecture

Cognitive Function / | Psychological Framework / Evidence | Analogous Implementation in AGI
Model

Working Memory | Integration of sensory, episodic, and | Design of contextual memory modules for
(Baddeley, 1992) executive subsystems for temporary | dynamic reasoning and task sequencing.
information manipulation.

Selective Attention | Allocation of cognitive resources to | Transformer-based attention models that
(Posner and Petersen, | relevant stimuli; goal-directed | emulate human focus and context weighting.
1990) information prioritization.

Metacognition (Flavell, | Self-monitoring and regulation of | Creation of self-evaluation layers that

1979) thought processes; error detection and | monitor model confidence, uncertainty, and
learning from feedback. ethical decision-making.

Embodied Cognition | Intelligence as interaction between body, | Integration of sensorimotor loops in

(Varela etal,, 1991) mind, and environment; sensorimotor | embodied Al and robotics for situated
grounding. learning.

Executive Control | Coordination of cognitive modules for | Implementation of cognitive  control

(Anderson, 2007; Laird, | planning, inhibition, and decision- | architectures that manage submodules via

2012) making. top-down goal hierarchies.

Source: Compiled by the author

The findings from cognitive psychology emphasize that human intelligence is modular yet integrated, reflective yet goal-
directed, and contextually grounded. The working memory model suggests that flexible reasoning in AGI requires the
ability to retain and manipulate multiple information streams simultaneously an aspect underrepresented in current
deep learning models. Implementing episodic buffers and short-term contextual layers may bridge this gap.

The development of attention mechanisms in modern Al already demonstrates partial success in mimicking human
focus. However, cognitive theories highlight that attention is not purely reactive but intentional, guided by internal goals
and motivational states. Thus, AGI systems must evolve beyond passive attention models toward purpose-driven
attentional control.

The incorporation of metacognitive processes allowing a system to reflect on its performance marks a critical step
toward self-awareness. By embedding self-evaluation layers that assess uncertainty and ethical boundaries, AGI could
demonstrate adaptive self-correction and accountability, reducing risks of misalignment.

Lastly, the embodied cognition perspective shifts the AGI debate from purely symbolic reasoning to sensorimotor
interaction. This underscores the notion that genuine understanding cannot be achieved without grounding perception
in physical and social experience. As a result, embodied AGI agents could better interpret contextual cues, emotions,
and causality central to human intelligence.
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4., Conclusion and Recommendations

The findings of this study underscore that the pursuit of Artificial General Intelligence (AGI) must move beyond purely
algorithmic or data-driven paradigms toward architectures inspired by the adaptive, integrative, and reflective nature
of human cognition. The convergence of neuroscience and cognitive psychology reveals that intelligence is not a static
computational state, but an evolving, context-sensitive process characterized by continuous learning, prediction, and
self-regulation. Thus, the following recommendations emerge as essential strategic directions for the next phase of AGI
research.

First, AGI development should incorporate neurobiologically inspired architectures that emulate plasticity, hierarchical
inference, and energy-efficient computation. Implementing mechanisms analogous to neural plasticity and predictive
coding could enable systems capable of continuous adaptation and error minimization under uncertain environments.
Moreover, embedding synchronization and global workspace dynamics may allow artificial agents to integrate
distributed processes, forming coherent awareness and decision-making like human cognition.

Second, the psychological dimension of intelligence must be operationalized through cognitive-level modeling.
Principles derived from working memory, attention, and metacognition should inform AGI’'s executive control systems,
allowing them to manage multiple goals, reflect on internal states, and adjust learning strategies autonomously.
Introducing metacognitive self-assessment modules would enable artificial systems to evaluate their confidence,
uncertainty, and ethical boundaries crucial for maintaining interpretability and safety in complex real-world
interactions.

Third, AGI research should prioritize embodied and context-aware learning frameworks. Cognitive science
demonstrates that human understanding emerges from sensorimotor engagement with the environment. Therefore,
integrating embodied cognition principles through robotics, multimodal perception, and reinforcement-based learning
could ground Al understanding in real physical and social contexts, enhancing its capacity for abstraction and empathy.

Finally, the pathway toward AGI requires a unified interdisciplinary methodology, combining computational modeling,
experimental neuroscience, and cognitive simulation. Collaboration between neuroscientists, psychologists, and
computer scientists should form the foundation for hybrid models that merge symbolic reasoning with neural
computation. Such integration will not only advance technical innovation but also promote ethical, transparent, and
human-aligned intelligence.

In conclusion, this research demonstrates that the architecture of AGI must reflect the dual essence of intelligence,
biological adaptability and cognitive intentionality. By synthesizing the structural insights of neuroscience with the
functional frameworks of cognitive psychology, it becomes possible to design artificial systems capable of reasoning,
learning, and reflecting in ways that approximate human-level understanding. The future of AGI lies not in replicating
the brain’s complexity, but in grasping the principles of integration, self-regulation, and contextual awareness that make
human cognition truly general. Only through such interdisciplinary synthesis can the path to Artificial General
Intelligence become scientifically grounded, ethically guided, and evolutionarily sustainable.
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