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Abstract 

This paper examines how insights from neuroscience and cognitive psychology can inform the development of Artificial 
General Intelligence (AGI). It highlights neural mechanisms such as plasticity, predictive coding, and global integration, 
alongside cognitive functions like working memory, attention, and metacognition. The study argues that AGI should 
combine biological adaptability with cognitive intentionality through hybrid and embodied architecture. Integrating 
these interdisciplinary principles can guide the creation of self-regulating, context-aware, and ethically aligned 
intelligent systems.  

Keywords:  AGI; Neuroscience; Cognitive Psychology; Neural Plasticity; Metacognition; Embodied Cognition 

1. Introduction

The quest for Artificial General Intelligence (AGI), a system capable of reasoning, understanding, and learning across 
domains with the same adaptability as human cognition has evolved from a speculative ambition into one of the most 
sophisticated research challenges of the 21st century. While the last two decades have witnessed dramatic progress in 
Artificial Narrow Intelligence (ANI) through deep learning, reinforcement learning, and generative models, the leap 
from specialized competence to generalized understanding remains elusive. AGI requires not only computational power 
but a deeper comprehension of how intelligence arises, evolves, and interacts with its environment questions that have 
occupied neuroscience and cognitive psychology for over a century. 

Traditional AI systems are largely data-driven, relying on massive datasets and optimization of parameters to achieve 
proficiency in narrowly defined tasks. Despite their impressive performance, such systems lack contextual flexibility, 
causal reasoning, and self-reflective awareness, which are hallmarks of human cognition. For instance, while a language 
model can process vast linguistic corpora, it still lacks genuine comprehension of semantics and intentionality. This 
discrepancy between performance and understanding sometimes referred to as the “symbol grounding problem” 
underscores the limitations of purely statistical approaches. Neuroscience and cognitive psychology, by contrast, focus 
on mechanisms of understanding rather than outcomes, offering insights into how perception, memory, emotion, and 
consciousness co-evolve to produce intelligent behavior. 

In neuroscience, intelligence is not merely an emergent property of neuron quantity but of dynamic interconnectivity 
and adaptive reconfiguration—what is known as neural plasticity. The human brain continuously reshapes its synaptic 
pathways based on experience, a feature that grants it resilience and creativity. This principle stands in stark contrast 
to the rigid architecture of current artificial neural networks, which, once trained, often exhibit limited adaptability to 
new or unstructured inputs. Moreover, the energy efficiency and robustness of biological neural systems far exceed 
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those of their artificial counterparts, inviting questions about whether computational models can emulate the brain’s 
hierarchical, predictive, and feedback-driven organization. 

From the perspective of cognitive psychology, intelligence is a multifaceted construct encompassing attention, working 
memory, reasoning, problem-solving, and metacognition. Unlike the reductionist view that treats cognition as mere 
computation, modern theories emphasize context-dependence, embodiment, and interaction. Human cognition 
emerges through continuous engagement with the environment what Varela, Thompson, and Rosch (1991) termed 
“enactive cognition.” Such findings challenge the notion that intelligence can be abstracted from physical and social 
experience. This insight has profound implications for AGI, suggesting that true general intelligence may require not 
only computational simulation but also embodied experience and goal-directed intentionality. 

Furthermore, the integration of neuroscience and cognitive psychology offers a promising interdisciplinary framework 
for understanding intelligence as both a biological and computational phenomenon. Cognitive psychology provides 
models of high-level functions such as reasoning, decision-making, and self-regulation while neuroscience uncovers the 
micro- and meso-level mechanisms that implement these functions within neural substrates. By aligning these domains, 
researchers can move beyond algorithmic replication toward architectural inspiration: designing artificial systems that 
reflect the layered complexity of human cognition rather than imitating its superficial outputs. 

2. Literature Review 

The concept of Artificial General Intelligence (AGI), often described as the “holy grail” of computer science, traces its 
intellectual origins to Alan Turing’s (1950) seminal question, “Can machines think?” Turing’s vision of universal 
computation laid the theoretical groundwork for machines capable of general reasoning. Early efforts in symbolic AI 
during the 1950s–1980s (Newell and Simon, 1976) were largely inspired by human problem-solving models in 
cognitive psychology. However, these approaches failed to replicate the adaptability and context sensitivity inherent to 
human cognition, prompting a paradigm shift toward connectionist and later deep learning frameworks (Rumelhart 
and McClelland, 1986; Schmid Huber, 2015). 

The emergence of Artificial Neural Networks (ANNs) and subsequent deep learning architectures reinvigorated 
optimism toward AGI. Nonetheless, despite their statistical prowess, modern neural networks are criticized for their 
lack of interpretability, transferability, and cognitive flexibility (Marcus, 2020; Bengio et al., 2021). These limitations 
reveal a fundamental gap between pattern recognition and genuine understanding of a gap that neuroscience and 
cognitive psychology may help to close by elucidating the mechanisms underlying biological intelligence. 

Recent developments in neuroscience have illuminated several biological principles that could inform AGI design. One 
of the most influential is the predictive coding framework, which conceptualizes the brain as a hierarchical inference 
machine that minimizes prediction error through feedback loops (Friston, 2010; Clark, 2013). This theory resonates 
with deep learning models that adjust weights based on backpropagation to reduce loss; however, the biological brain 
achieves this with vastly greater efficiency and adaptability. 

Another critical insight is neural plasticity, the brain’s capacity to rewire itself in response to experience (Yuste, 2015). 
Artificial systems, by contrast, typically operate on fixed architectures post-training. Introducing dynamic structural 
plasticity into machine learning models could potentially lead to more autonomous forms of lifelong learning, a key 
feature of AGI (Hassabis et al., 2017). 

Research into neural synchronization and global broadcasting mechanisms (Baars, 1988; Dehaene and Changeux, 2011) 
has also provided inspiration for cognitive architectures that model conscious awareness and attention distribution. 
The Global Workspace Theory (GWT) suggests that consciousness arises from the integration of information across 
specialized modules. Translating this concept into AI could yield architectures capable of prioritizing and coordinating 
distributed processes, enhancing generalization and decision-making in complex environments. 

Complementary to GWT, the Integrated Information Theory (IIT) proposed by Tononi et al. (2016) describes 
consciousness as a measurable quantity of integrated information within a system. Although its direct computational 
implementation remains debated, IIT introduces the idea that intelligence may be linked to information integration 
density, a property that could inspire future AI architectures with emergent self-awareness. 

While neuroscience elucidates the brain’s physical substrate, cognitive psychology offers abstract models of how 
cognition operates functionally. Foundational frameworks such as Baddeley’s (1992) model of working memory and 
Anderson’s (2007) ACT-R cognitive architecture have been instrumental in understanding executive control, decision-
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making, and goal management. These mechanisms correspond to computational challenges in AI, including task 
switching, contextual learning, and multi-objective optimization. 

The development of attention mechanisms in deep learning, especially the Transformer architecture, was directly 
inspired by psychological theories of selective attention (Posner and Petersen, 1990). Yet, unlike humans, AI lacks the 
intentional control that governs attention allocation based on motivation and goals. Integrating motivation-driven 
attention systems could thus enhance AI autonomy. 

Equally central to AGI research is metacognition of the ability to monitor and regulate one’s cognitive processes (Flavell, 
1979). Humans use metacognition to detect errors, plan strategies, and reflect on outcomes. Replicating these abilities 
in artificial agents would enable them to evaluate uncertainty, improve self-learning, and develop rudimentary self-
awareness (O’Reilly et al., 2016). 

Moreover, the embodied cognition framework (Varela et al., 1991) emphasizes that intelligence arises from dynamic 
interaction between mind, body, and environment. This challenges purely computational notions of intelligence, 
suggesting that AGI must incorporate sensorimotor experiences to achieve grounded understanding. Modern research 
in robotic learning and embodied AI (Brooks, 1999) reflects this transition, highlighting the importance of physical and 
social contexts in intelligent behavior. 

3. Analysis and Results  

The analytical phase of this research builds upon the theoretical and empirical insights reviewed in the preceding 
sections, aiming to uncover the functional parallels between human cognition and artificial intelligence architectures. 
While neuroscience provides a biological account of how intelligence emerges from complex neural dynamics, cognitive 
psychology elucidates the structural and procedural organization of human thought. Together, these domains offer a 
multidimensional framework for understanding the mechanisms that may guide the evolution from narrow machine 
intelligence toward genuine Artificial General Intelligence (AGI). 

Table 1 Neuroscientific principles and their implications for AGI development 

Neuroscientific 
Mechanism 

Empirical Evidence and Function Potential Application in AGI Design 

Neural Plasticity Brain circuits reorganize in response to 
new stimuli; supports lifelong learning 
(Yuste, 2015). 

Implementation of continual learning systems 
that dynamically adapt to novel environments 
without catastrophic forgetting. 

Predictive Coding Cortical networks minimize prediction 
error via hierarchical inference (Friston, 
2010; Clark, 2013). 

Design of hierarchical predictive architectures 
capable of real-time learning and adaptation to 
uncertainty. 

Neural 
Synchronization 

Consciousness and attention emerge from 
synchronized neural oscillations 
(Dehaene and Changeux, 2011). 

Development of modular coordination networks 
that integrate distributed AI subsystems through 
temporal coherence. 

Energy Efficiency The human brain uses ~20 W to achieve 
massive parallel processing (Hassabis et 
al., 2017). 

Creation of neuromorphic computing 
architectures using event-driven spiking 
networks for efficient processing. 

Global Workspace 
Integration 

Information becomes conscious when 
globally broadcast to specialized regions 
(Baars, 1988). 

Development of meta-controller systems that 
integrate information across modules to support 
reasoning and awareness. 

Source: Compiled by the author 

The analysis of neuroscientific mechanisms demonstrates that biological efficiency and adaptability are central to 
human-level intelligence. Unlike artificial networks, which are optimized for single-task performance, the human brain 
exhibits structural flexibility, contextual prediction, and global integration. 

The principle of neural plasticity directly challenges the rigidity of deep neural networks by suggesting architectures 
that continuously evolve rather than being statically trained. Similarly, the predictive coding model provides a 
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mathematical foundation for the brain’s ability to infer and anticipate environmental stimuli, a property that could 
enhance machine adaptability under uncertainty. 

Moreover, neural synchronization and global workspace integration underscore that intelligence is not merely 
computational but coordinative—a product of harmonized communication among specialized subsystems. This insight 
motivates the design of meta-cognitive controllers in AGI that dynamically allocate computational attention and 
integrate multi-modal data streams. 

Finally, the energy efficiency of the brain highlights a critical engineering challenge. While current large language 
models demand gigawatts of computational power, the biological brain achieves superior efficiency through spike-
based signaling and selective activation. Replicating these mechanisms in neuromorphic chips could significantly 
advance sustainable AGI development. 

Table 2 Cognitive psychology constructs and their relevance for AGI architecture 

Cognitive Function / 
Model 

Psychological Framework / Evidence Analogous Implementation in AGI 

Working Memory 
(Baddeley, 1992) 

Integration of sensory, episodic, and 
executive subsystems for temporary 
information manipulation. 

Design of contextual memory modules for 
dynamic reasoning and task sequencing. 

Selective Attention 
(Posner and Petersen, 
1990) 

Allocation of cognitive resources to 
relevant stimuli; goal-directed 
information prioritization. 

Transformer-based attention models that 
emulate human focus and context weighting. 

Metacognition (Flavell, 
1979) 

Self-monitoring and regulation of 
thought processes; error detection and 
learning from feedback. 

Creation of self-evaluation layers that 
monitor model confidence, uncertainty, and 
ethical decision-making. 

Embodied Cognition 
(Varela et al., 1991) 

Intelligence as interaction between body, 
mind, and environment; sensorimotor 
grounding. 

Integration of sensorimotor loops in 
embodied AI and robotics for situated 
learning. 

Executive Control 
(Anderson, 2007; Laird, 
2012) 

Coordination of cognitive modules for 
planning, inhibition, and decision-
making. 

Implementation of cognitive control 
architectures that manage submodules via 
top-down goal hierarchies. 

Source: Compiled by the author 

The findings from cognitive psychology emphasize that human intelligence is modular yet integrated, reflective yet goal-
directed, and contextually grounded. The working memory model suggests that flexible reasoning in AGI requires the 
ability to retain and manipulate multiple information streams simultaneously an aspect underrepresented in current 
deep learning models. Implementing episodic buffers and short-term contextual layers may bridge this gap. 

The development of attention mechanisms in modern AI already demonstrates partial success in mimicking human 
focus. However, cognitive theories highlight that attention is not purely reactive but intentional, guided by internal goals 
and motivational states. Thus, AGI systems must evolve beyond passive attention models toward purpose-driven 
attentional control. 

The incorporation of metacognitive processes allowing a system to reflect on its performance marks a critical step 
toward self-awareness. By embedding self-evaluation layers that assess uncertainty and ethical boundaries, AGI could 
demonstrate adaptive self-correction and accountability, reducing risks of misalignment. 

Lastly, the embodied cognition perspective shifts the AGI debate from purely symbolic reasoning to sensorimotor 
interaction. This underscores the notion that genuine understanding cannot be achieved without grounding perception 
in physical and social experience. As a result, embodied AGI agents could better interpret contextual cues, emotions, 
and causality central to human intelligence.  
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4. Conclusion and Recommendations 

The findings of this study underscore that the pursuit of Artificial General Intelligence (AGI) must move beyond purely 
algorithmic or data-driven paradigms toward architectures inspired by the adaptive, integrative, and reflective nature 
of human cognition. The convergence of neuroscience and cognitive psychology reveals that intelligence is not a static 
computational state, but an evolving, context-sensitive process characterized by continuous learning, prediction, and 
self-regulation. Thus, the following recommendations emerge as essential strategic directions for the next phase of AGI 
research. 

First, AGI development should incorporate neurobiologically inspired architectures that emulate plasticity, hierarchical 
inference, and energy-efficient computation. Implementing mechanisms analogous to neural plasticity and predictive 
coding could enable systems capable of continuous adaptation and error minimization under uncertain environments. 
Moreover, embedding synchronization and global workspace dynamics may allow artificial agents to integrate 
distributed processes, forming coherent awareness and decision-making like human cognition. 

Second, the psychological dimension of intelligence must be operationalized through cognitive-level modeling. 
Principles derived from working memory, attention, and metacognition should inform AGI’s executive control systems, 
allowing them to manage multiple goals, reflect on internal states, and adjust learning strategies autonomously. 
Introducing metacognitive self-assessment modules would enable artificial systems to evaluate their confidence, 
uncertainty, and ethical boundaries crucial for maintaining interpretability and safety in complex real-world 
interactions. 

Third, AGI research should prioritize embodied and context-aware learning frameworks. Cognitive science 
demonstrates that human understanding emerges from sensorimotor engagement with the environment. Therefore, 
integrating embodied cognition principles through robotics, multimodal perception, and reinforcement-based learning 
could ground AI understanding in real physical and social contexts, enhancing its capacity for abstraction and empathy. 

Finally, the pathway toward AGI requires a unified interdisciplinary methodology, combining computational modeling, 
experimental neuroscience, and cognitive simulation. Collaboration between neuroscientists, psychologists, and 
computer scientists should form the foundation for hybrid models that merge symbolic reasoning with neural 
computation. Such integration will not only advance technical innovation but also promote ethical, transparent, and 
human-aligned intelligence. 

In conclusion, this research demonstrates that the architecture of AGI must reflect the dual essence of intelligence, 
biological adaptability and cognitive intentionality. By synthesizing the structural insights of neuroscience with the 
functional frameworks of cognitive psychology, it becomes possible to design artificial systems capable of reasoning, 
learning, and reflecting in ways that approximate human-level understanding. The future of AGI lies not in replicating 
the brain’s complexity, but in grasping the principles of integration, self-regulation, and contextual awareness that make 
human cognition truly general. Only through such interdisciplinary synthesis can the path to Artificial General 
Intelligence become scientifically grounded, ethically guided, and evolutionarily sustainable.  
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