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Abstract 

Inverse Synthetic Aperture Radar (ISAR) has recently advanced to volumetric 3D-ISAR imaging, creating new 
opportunities and challenges for automatic target recognition (ATR). This work proposes a spatiotemporal deep 
learning framework that jointly learns target structure and motion dynamics from high-resolution 3D-ISAR sequences. 
A CNN backbone (ResNet) extracts per-frame spatial features, which are fed to temporal models Bidirectional LSTM 
and/or ConvLSTM to capture micro-Doppler cues and aspect-dependent scattering over time; the pipeline is supported 
by physics-aware formation and backprojection-style 3D reconstruction. We evaluate on a four-class dataset (aircraft, 
helicopter, drone, tank) comprising 400 labeled samples drawn from MSTAR and simulated 3D-ISAR sequences, with 
standard train/validation/test partitions and targeted denoising, normalization, and augmentation to enhance 
robustness. The proposed model achieves strong performance across metrics: an overall accuracy of 95% on the final 
evaluation set with near-ideal class separability (AUC ≈ 0.98–1.00), and a best accuracy of 96.7% when all preprocessing 
and geometric/data-level augmentations are enabled. Ablation and robustness studies show consistent gains from 
motion-aware temporal modeling and the preprocessing stack under low-SNR and distortion conditions, while 
confusion is largely confined to visually and dynamically similar aerial classes. These results demonstrate that coupling 
modern spatiotemporal architectures with principled ISAR signal processing yields reliable, accurate, and deployment-
oriented ATR for 3D-ISAR systems. 

Keywords: 3D-ISAR imaging; Spatiotemporal deep learning; Automatic target recognition (ATR); Convolutional 
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1. Introduction

Inverse Synthetic Aperture Radar (ISAR) imaging has become a cornerstone technology in the field of radar remote 
sensing, especially in defense, aerospace, and surveillance domains. Unlike conventional optical imaging systems, ISAR 
offers high-resolution imaging capabilities under all weather and lighting conditions, enabling it to reliably detect and 
classify moving targets such as aircraft, ships, and ground vehicles(Wang et al., 2023). ISAR systems generate 2D or 3D 
radar images by exploiting the relative motion between the radar sensor and a non-cooperative target, producing 
detailed representations of target geometry and motion-induced scattering effects(Zou et al., 2022). Recent advances 
have extended ISAR into the third dimension, giving rise to 3D-ISAR systems capable of capturing volumetric radar 
cross-section distributions that more accurately describe the spatial structure of targets. This progression has enabled 
improved target discrimination by incorporating depth and motion dynamics into the imaging process. However, the 
transition from 2D to 3D introduces additional challenges, including increased computational complexity, motion 
compensation requirements, and greater sensitivity to noise and phase errors (Ni et al., 2022),(Pui et al., 2024). Despite 
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the promise of 3D-ISAR, automatic target classification remains a challenging task. Conventional machine learning 
techniques such as Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and Principal Component Analysis 
(PCA) have been widely used for ISAR image classification (Zaied et al., 2018), (Furukawa, 2017). However, these 
approaches rely heavily on handcrafted features, which are often brittle under real-world conditions, especially when 
dealing with noisy, cluttered, or misaligned ISAR images. They also lack the capability to adaptively learn from complex 
patterns present in the radar data, particularly temporal signatures such as micro-Doppler shifts and aspect-dependent 
scattering (Arnous & Narayanan, 2024). 

Moreover, traditional ISAR classification pipelines typically operate on static 2D slices or averaged projections of radar 
returns, thereby discarding valuable temporal evolution cues embedded in sequential radar frames. In contrast, modern 
high-resolution ISAR systems are capable of producing continuous image sequences that reflect target articulation and 
dynamic behavior. These temporal variations carry critical information for target identification but remain 
underutilized in most existing methods (Ni et al., 2022) ,(Fan Zhang, Chen Hu, Qiang Yin, Wei Li, Hengchao Li, 2017). 
The convergence of deep learning with radar signal processing presents a compelling opportunity to overcome these 
limitations. Convolutional Neural Networks (CNNs) have shown exceptional performance in learning spatial hierarchies 
from visual and radar data, while Recurrent Neural Networks (RNNs) particularly Long Short-Term Memory (LSTM) 
networks are adept at modeling time-series dependencies (Kim, 2023). Hybrid architectures such as CNN-LSTM, 3D-
CNN, ConvLSTM, and Spatiotemporal Transformers have emerged as powerful tools for capturing both the structural 
and temporal dynamics of complex sequences, making them ideal for processing 3D-ISAR data (Ni et al., 2022), (Arnous 
& Narayanan, 2024), (Lang et al., 2020). In this work, we present a novel spatiotemporal deep learning framework for 
classifying targets in high-resolution 3D-ISAR radar image sequences. Our model integrates CNNs for spatial feature 
extraction and LSTMs for modeling the temporal evolution of radar images. This dual-focus architecture enables the 
system to simultaneously learn from static structural cues and dynamic behavioral patterns, significantly improving 
classification performance over existing approaches. 

The main contributions of this research are summarized as follows: 

• We develop a hybrid CNN-LSTM architecture (optionally extendable to 3D-CNN or Transformer-based models) 
tailored for learning spatiotemporal features from 3D-ISAR radar data (Ni et al., 2022), (Kim, 2023). 

• We construct and utilize a comprehensive 3D-ISAR dataset consisting of multiple target classes and dynamic 
motion profiles, using both simulated and real radar data sources (Wang et al., 2023), (Zaied et al., 2018). 

• We demonstrate that the proposed model significantly outperforms classical methods and baseline deep 
learning models, achieving improved accuracy, robustness to noise, and generalization to unseen target 
conditions (Pui et al., 2024), (Furukawa, 2017). 

• We conduct a detailed ablation and robustness analysis to evaluate the contribution of each model component 
and assess its resilience under noise and distortion conditions typical of radar operations (Zou et al., 2022), 
(Fan Zhang, Chen Hu, Qiang Yin, Wei Li, Hengchao Li, 2017). 

This study bridges the gap between advanced radar imaging technologies and deep learning methodologies, proposing 
a unified solution for spatiotemporal feature learning and target classification in 3D-ISAR systems. Our results indicate 
that this approach holds considerable potential for enhancing the reliability, accuracy, and real-time capability of 
modern automatic target recognition (ATR) systems. 

2. Related work 

2.1. Traditional ISAR Target Classification Techniques 

Traditional approaches to ISAR-based automatic target recognition (ATR) often rely on classical machine learning 
models e.g. Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and Principal Component Analysis (PCA) 
working with handcrafted features such as scattering centers or Doppler signatures extracted from 2D ISAR imagery 
(Kent et al., 2008). While these methods can perform adequately under controlled settings, they typically struggle with 
generalization to noisy or misaligned radar data and are sensitive to changes in target orientation or clutter (Saidi et al., 
2009). 

2.2. Deep Learning for ISAR and SAR Classification 

The advent of deep learning ushered in methods that automatically learn hierarchical spatial features. CNN-based 
models trained on SAR/ISAR imagery (e.g. aircraft or maritime targets) consistently outperform earlier feature-based 
techniques (Jiang et al., 2021). For example, a CNN-Bi-LSTM architecture demonstrated improved accuracy when 
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modeling sequences of ISAR frames, illustrating the power of automatic feature learning over handcrafted ones (Ni et 
al., 2022). 

2.3. Hybrid CNN-LSTM Architectures for Sequential Radar Data 

CNN-LSTM models have become popular for classifying time-varying radar measurements. Such architectures have 
been successfully applied to high-resolution radar range profiles (HRRPs) and SAR/ISAR image series, balancing spatial 
encoding with temporal dependency modeling (L. Zhang et al., 2021)(Mohammadimanesh et al., 2019). For instance, 
combining CNNs and LSTM units within a pipeline significantly enhanced recognition robustness even under occlusion 
or motion artifacts. 

2.4. Advanced Spatiotemporal Models: ConvLSTM, 3D-CNNs, and Transformers 

Recent literature explores more holistic spatiotemporal modeling: 

• ConvLSTM blends convolutional and recurrent operations to jointly capture spatial and temporal features in 
radar-derived sequences and has been applied in ship classification and traffic radar tasks, improving 
robustness in dynamic scenarios (Jia et al., 2023)(Deng & Su, 2024). 

• 3D-CNNs have been used to process volumetric ISAR data directly, allowing structural and temporal continuity 
exploitation (Pui et al., 2024). 

• Transformer-based architectures with self-attention mechanisms are also emerging as competitive models for 
long-range dependencies in radar-based target recognition (Sun et al., 2021). 

2.5. Deep Learning for 3D ISAR Image Generation and Enhancement 

Several works have explored deep learning-driven ISAR preprocessing. GANs and CNNs have been applied to enhance 
image quality, correct defocusing artifacts, and improve resolution under conditions like wide-angle target motion or 
low SNR regimes (Thilakanayake et al., 2024). Additionally, semantic segmentation or CapsNet-based methods have 
been proposed for component-level recognition in ISAR images, aiming for better interpretability (X. Zhang et al., 2022). 

2.6. Related Methods in mmWave Radar and Automotive Applications 

Although beyond direct ISAR imagery, research on automotive radar classification demonstrates hybrid architectures 
such as CNN-LSTM or range-Doppler tensor-based deep networks. These significantly improve classification of 
pedestrians, vehicles, and dynamic traffic participants under practical noise conditions (Deng & Su, 2024)(Cai et al., 
2021). Similarly, radar-to-point-cloud deep learning frameworks like 3DRIMR capture volumetric structure from 
mmWave radar, showing the feasibility of volumetric deep learning on radar data (Sun et al., 2021). 

3. Methodology 

This section describes our dataset, 3D-ISAR imaging pipeline, preprocessing techniques, and the design of our proposed 
deep learning architecture with complete mathematical formulations, a dataset composition table, and pointers to 
figures. 

3.1. Dataset Description 

The dataset used for this study is the MSTAR dataset, which contains radar signals or ISAR imagery representing 
multiple object classes under varying environmental and clutter conditions. For this research, the dataset was 
preprocessed to extract labeled instances of different object types. The preprocessing involved resizing, normalizing, 
and splitting the dataset into training, validation, and test sets using an 80:10:10 ratio. Data augmentation techniques 
such as rotation, scaling, and horizontal flipping were applied to enhance generalization during model training. The final 
dataset includes a total of N samples across C object classes. Our experiments employ a combination of simulated 
3D-ISAR sequences and public radar datasets. The target classes include aircraft, helicopter, drone, and tank, each 
captured under varying motion profiles and aspect angles. The dataset is split into 70% training, 15% validation, and 
15% testing subsets. 

3.1.1. Dataset Split 

The dataset is partitioned into training and validation sets in a typical 70-30 ratio to ensure generalization and proper 
evaluation. 
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Dataset Composition 

Table 1 Dataset Composition 

Class Name Train Samples Validation Samples Total Samples 

Aircraft 70 30 100 

Drone 70 30 100 

Helicopter 70 30 100 

Tank 70 30 100 

Total 280 120 400 

Dataset Statistics Table 

This includes dataset statistics such as average image size, signal duration, or point cloud density depending on data 
type: 

Table 2 Dataset Statistics Table  

Feature Value 

Total Samples 400 

Number of Classes 4 

Image Size 224 × 224 pixels 

Train/Val Split 280 / 120  

Data Augmentation Used Rotation, Scaling, Flipping 

Dataset Type  3D ISAR radar 

Augmentation Techniques Summary 

Description: This is the Summary of the radar augmentation techniques applied during training to improve model 
generalization and prevent overfitting. 

Table 3 Augmentation Techniques Summary 

Augmentation 
Technique 

Description Applied 
To 

Impact on Training Set 
Size 

Horizontal Flip Horizontally flips ISAR image frames Training +100% 

Random Rotation Rotates frames within ±15 degrees Training +100% 

Gaussian Noise Adds noise to simulate radar interference Training +100% 

Brightness Adjustment Randomly adjusts image brightness Training +50% 

Time-step Shuffle Randomly reorders time steps (LSTM 
input) 

Training +50% 

Normalization Scales pixel intensities to [0, 1] All 0% 

3.1.2. Target Classes and Diversity 

The dataset includes four primary target classes: 

• Aircraft 
• Helicopter 
• Tank 
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• Drone 

Each target class is represented by multiple samples from varying aspect angles and flight dynamics to introduce 
diversity and temporal variations. 

3.2. 3D-ISAR Image Formation 

The generation of 3D-ISAR radar data follows a systematic pipeline involving signal processing stages that convert raw 
radar returns into interpretable spatial representations. 

3.2.1. Range-Doppler Processing 

In the initial stage of the radar signal processing pipeline, raw radar echoes are transformed into the range-Doppler 
domain to extract fundamental motion and spatial characteristics of targets. 

Range Estimation 

The range 𝑅(𝑡) to a target is computed based on the round-trip time delay 𝑡 of the transmitted radar pulse. Since the 
pulse travels to the target and back, the total distance covered is twice the actual target range. Using the speed of light 
ccc, the range is given by: 

𝑅(𝑡) =
𝑐. 𝑡

2
 

This fundamental radar equation determines the spatial location of scatterers (i.e., the target or parts of it) along the 
range axis, which forms the first dimension of the 2D Range-Doppler image. 

Doppler Frequency Estimation 

The Doppler shift 𝑓𝐷 is used to infer relative velocity of a target or its components. When a target is in motion, the 
returned echo experiences a frequency shift proportional to its radial velocity 𝜐. This shift is computed as: 

𝑓𝐷 =
2𝜐

𝜆
 

where λ is the radar wavelength. This allows us to distinguish moving components from static ones, which is critical in 
forming focused ISAR (Inverse Synthetic Aperture Radar) images where rotational or translational motion is used to 
synthesize high cross-range resolution. 

In the context of this study, Range-Doppler processing serves as a foundational preprocessing step for extracting 
structured features from raw radar returns. Initially, the received radar signals are subjected to matched filtering or 
pulse compression, followed by a Fast Fourier Transform (FFT) along both the fast-time and slow-time axes to generate 
a Range-Doppler (RD) map. This RD map represents the target scene in terms of range bins and Doppler bins, effectively 
encoding both spatial location and motion characteristics. These 2D Range-Doppler images act as intermediate 
representations, capturing the temporal evolution of the target’s motion before proceeding to ISAR image formation. 
The Doppler motion history is particularly critical in ISAR, which relies on relative motion between radar and target to 
synthesize the third spatial dimension cross-range. 

For targets exhibiting non-linear or complex motion, such as rotating structures, the time-varying Doppler signatures 
are essential for building a meaningful spatiotemporal representation. These signatures are further exploited by the 
deep learning network through architectures such as 3D Convolutional Neural Networks (3D CNNs) or Convolutional 
Long Short-Term Memory (ConvLSTM) networks. By stacking the RD maps across coherent pulses, a 3D radar data cube 
is formed and subsequently transformed into high-resolution 3D-ISAR images. These physics-informed features 
particularly the velocity-dependent Doppler signatures and precise range estimates are instrumental in enabling the 
deep learning model to accurately classify different target types. Moreover, the temporal consistency across frames 
enhances the model’s ability to learn dynamic behavior, making it robust for classification tasks in complex and 
cluttered environments. 
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3.2.2. Phase Correction and Motion Compensation 

Accurate reconstruction of high-resolution 3D-ISAR images critically depends on precise motion compensation and 
phase correction. These steps are essential to mitigate the effects of unwanted platform motion (e.g., from airborne 
radar systems) or the dynamic behavior of the target itself (e.g., rotating or vibrating components). Without proper 
compensation, motion-induced phase errors can blur the ISAR image, distort the geometry, and degrade classification 
performance. 

To correct phase distortions, autofocus algorithms are employed. These algorithms estimate and compensate for 
unknown phase errors directly from the data without relying on external motion sensors. The general approach 
involves optimizing a focus metric that quantifies image sharpness. The corrected phase 𝜙𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑  is computed by 
subtracting the phase offset that minimizes image blurring: 

𝜙𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝜙𝑟𝑎𝑤 − 𝑎𝑟𝑔𝑚𝑎𝑥(𝑓𝑜𝑐𝑢𝑠_𝑚𝑒𝑡𝑟𝑖𝑐(𝜙)) 

This expression indicates that the phase correction term is derived by finding the phase estimate that maximizes a 
chosen focus metric, such as image contrast, entropy minimization, or sharpness indicators in the frequency domain. In 
essence, the algorithm iteratively adjusts the phase to achieve the best image focus, directly improving the spatial 
resolution of the ISAR image. 

Two widely adopted techniques are utilized in this project for robust motion compensation: Keystone transformation 
and Phase Gradient Autofocus (PGA) (Zou et al., 2022). The Keystone transformation corrects for range cell migration 
(RCM), a phenomenon where moving scatterers shift across range bins due to non-linear target motion. It re-aligns 
range histories by applying a non-linear mapping in the time-frequency domain. On the other hand, PGA is a dominant 
autofocus method that estimates the phase error gradient across the aperture and uses this to iteratively refocus the 
image. PGA operates on the assumption that dominant scatterers exist and their phase errors can be estimated by 
analyzing the phase slope in the frequency domain. 

In the context of this study, accurate phase correction ensures that the 3D-ISAR images used as input to the deep 
learning model are well-focused and geometrically consistent. This is crucial for the spatiotemporal feature extraction 
stages, as even small motion-induced distortions can mislead the network, reducing classification accuracy. Proper 
motion compensation preserves the structural integrity of radar signatures across frames, enabling the model to learn 
class-discriminative patterns reliably over time. 

3.2.3. Backprojection and 3D Reconstruction 

After performing motion compensation and phase correction, the radar returns are spatially coherent and geometrically 
aligned, making them suitable for image formation through backprojection. This stage is essential for converting the 
corrected 1D radar signals into meaningful 2D spatial representations known as ISAR slices and ultimately into a 3D 
volumetric image that captures the spatial structure of the target across multiple cross-range and elevation angles. 
Backprojection is a well-established image formation technique that reconstructs an image by integrating radar returns 
over all observation angles and projecting them into the spatial domain. Specifically, for each voxel at location 
(𝓍, 𝓎, 𝓏), the backprojection algorithm sums the phase-corrected complex radar signals 𝑆𝑛(𝑡) from multiple aperture 
positions 𝑛 , weighted by a spatial phase term that accounts for the time delay and frequency of each return. The 
mathematical formulation is given by: 

𝐼(𝓍, 𝓎, 𝓏) = ∑ 𝑠𝑛(𝑡). 𝑒
−𝑗2𝜋𝑓𝑛(𝓍,𝓎,𝓏)

𝑁

𝑛=1

 

Where: 
𝐼(𝓍, 𝓎, 𝓏) is the reconstructed 3D-ISAR intensity at the voxel location (𝓍, 𝓎, 𝓏) 
𝑠𝑛(𝑡) represents the received complex signal at time 𝑡 for aperture index 𝑛, 
𝑓𝑛(𝓍, 𝓎, 𝓏) denotes the frequency term associated with the spatial location and the observation geometry, 
𝑁 is the total number of coherent aperture samples (i.e., the number of radar pulses or platform positions). 

This process is repeated for each spatial voxel, resulting in a full 3D radar reflectivity map. In practice, the initial output 
is a series of 2D ISAR slices each representing a specific azimuth or elevation perspective that are then stacked and 
interpolated across multiple angles to form a dense 3D volumetric ISAR image. Interpolation may be applied to correct 
for non-uniform sampling in angular space or to improve resolution in under-sampled directions. 
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The resulting volumetric data preserves both structural and motion-related features of the target, making it highly 
suitable for spatiotemporal analysis using deep learning. These 3D radar images serve as the input domain for the 
classification model, where convolutional layers can exploit rich spatial features and temporal evolution across multiple 
frames or look angles. By maintaining geometric fidelity during reconstruction, the deep network can better 
differentiate between target types, including those with subtle differences in shape, size, or motion behavior. 

3.3. Preprocessing Techniques 

Effective preprocessing plays a critical role in improving the performance of deep learning models, especially when 
applied to high-resolution radar imagery such as 3D-ISAR data. The key objectives of preprocessing in this context are 
to enhance the visual and structural quality of the radar volumes, normalize pixel-level distributions, and augment the 
dataset in ways that improve the model's ability to generalize to unseen target variations. 

3.3.1. Denoising 

Radar imagery, including 3D-ISAR data, is often corrupted by various forms of noise such as thermal noise, clutter, and 
speckle distortions which can obscure fine structural details and negatively impact classification accuracy (Ni et al., 
2022). As such, denoising is a fundamental preprocessing step in the pipeline, aimed at suppressing noise while 
preserving the critical structural and spatial features that characterize each target class. 

Gaussian Filtering 

The Gaussian filter is particularly effective at reducing high-frequency noise, which appears as random voxel-level 
intensity fluctuations. This is achieved by convolving the entire 3D radar volume 𝐼(𝓍, 𝓎, 𝓏) with a 3D Gaussian kernel 
defined by: 

𝐺(𝓍, 𝓎, 𝓏) =  
1

(2𝜋𝜎2)3 2⁄
. exp (−

𝓍2 + 𝓎2 + 𝓏2

2𝜎2
) 

Where: 

(𝓍, 𝓎, 𝓏) are the spatial offsets relative to the center of the kernel, 

𝜎 is the standard deviation, which controls the filter bandwidth or the degree of smoothing. 

The kernel size is typically chosen as an odd-sized cube which is 5 × 5 × 5, and the value of σ is often set empirically 
between 0.5 and 2.0, based on the noise level in the ISAR volume. 

 The filtered output 𝐼(𝓍, 𝓎, 𝓏) is calculated by convolving this kernel with the original radar volume: 

𝐼(𝓍, 𝓎, 𝓏) = ∑ ∑ ∑ 𝐼(𝓍 − 𝑖, 𝓎 − 𝑗, 𝑧 − 𝑙). 𝐺(𝑖, 𝑗, 𝑙)

𝑘

𝑙=−𝑘

𝑘

𝑗=−𝑘

𝑘

𝑖=−𝑘

 

Where 𝑘 = [
𝑛

2
]  𝑎𝑛𝑑 𝑛 is the kernel size in each dimension. 

This convolution effectively weights each voxel by its neighbors, giving higher influence to nearby values while 
suppressing abrupt, isolated changes thus reducing high-frequency noise while maintaining the smoothness of the 
target’s structure. The use of a 3D kernel, rather than a 2D one, ensures that spatial coherence is preserved across range, 
cross-range, and elevation axes, which is vital for maintaining volumetric integrity of the reconstructed target. 

Median Filtering 

To further reduce artifacts such as salt-and-pepper noise or spiky reflectivity outliers (often due to clutter or impulsive 
reflections), a 3D median filter is applied. This non-linear filter processes each voxel by replacing its intensity with the 
median value of its local neighborhood within 5 × 5 × 5 cube. 

Mathematically, for each voxel 𝐼(𝓍, 𝓎, 𝓏) ,the median filter performs: 

𝐼(𝓍, 𝓎, 𝓏) = 𝑚𝑒𝑑𝑖𝑎𝑛 {𝐼(𝑖, 𝑗, 𝑘) |𝑖 ∈ [𝓍 − 𝑘, 𝓍 + 𝑘], 𝒿 ∈ [𝓎 − 𝑘,𝓎 + 𝑘], 𝑘 ∈ [𝓏 − 𝑘, 𝑧 + 𝑘]} 



World Journal of Advanced Research and Reviews, 2025, 28(01), 1359-1378 

1366 

Unlike Gaussian filtering, which can slightly blur edges, median filtering preserves sharp boundaries and fine structural 
features making it ideal for denoising while retaining critical target characteristics like edges, corners, and angular 
components. 

3.3.2. Normalization 

Normalization is a critical preprocessing step that transforms the intensity values of each 3D-ISAR volume into a 
consistent numerical range, typically [0,1]. This ensures numerical stability during deep learning model training and 
prevents voxel intensity variations from dominating the learning process. Without normalization, differences in scale 
or magnitude between ISAR volumes could lead to poor convergence or biased gradient updates. 

The min-max normalization technique is applied to each ISAR volume III individually, using the following equation: 

𝐼𝑛𝑜𝑟𝑚 = 
𝐼 − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

 

Where: 
𝐼 is the original voxel intensity value, 
𝐼𝑚𝑖𝑛  and 𝐼𝑚𝑎𝑥  are the minimum and maximum intensity values within the entire 3D ISAR volume, 
𝐼𝑛𝑜𝑟𝑚  is the resulting normalized intensity in the range [0,1]. 

This process linearly scales all voxel values such that: 

• The minimum value maps to 0, 
• The maximum value maps to 1, and 
• All intermediate values fall proportionally between 0 and 1. 

This uniform scaling enables the network to learn relative intensity contrasts rather than being biased by absolute 
reflectivity values, which may vary between radar acquisitions due to environmental noise, target material, distance, or 
calibration variations. Moreover, this normalization technique enhances gradient flow during backpropagation, 
reducing the likelihood of exploding or vanishing gradients, and ensures consistency when batches contain multiple 
targets or scenarios. 

Data Augmentation 

To increase the robustness and generalization capability of the deep learning model, data augmentation is applied to 
the 3D-ISAR volumes during training. Augmentation artificially expands the training dataset by applying random but 
label-preserving transformations to the original data, thereby reducing overfitting and improving performance on 
unseen examples. 

In this study, the following augmentation techniques were implemented: 

• Rotation: The 3D ISAR volumes are randomly rotated along one or more axes (e.g., yaw, pitch, roll), simulating 
different viewing angles or target orientations. This helps the model generalize across real-world pose 
variations. 

• Horizontal flipping: Random mirroring along the cross-range axis is used to simulate symmetrical 
appearances of targets. This is particularly effective in scenarios where the target's structure is orientation-
agnostic. 

• Brightness shifts: Global voxel intensities are randomly scaled or offset within a small range to simulate 
variations in radar cross-section (RCS) or gain, making the network more resilient to intensity-based noise. 

• Gaussian noise injection: Low-level additive Gaussian noise is introduced to mimic thermal and 
environmental disturbances, forcing the model to learn invariant features despite noisy input. 

Each of these augmentation methods is applied stochastically during training, typically with a certain probability (e.g., 
0.2–0.5), and is parameterized to ensure that the transformations remain realistic and do not degrade the semantic 
structure of the ISAR volume. 
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3.4. Proposed Deep Learning Architecture 

This study introduces a hybrid spatiotemporal deep learning architecture designed specifically for target classification 
in high-resolution 3D-ISAR (Inverse Synthetic Aperture Radar) images. The architecture is composed of two key 
modules: 

Spatial feature extractor using Convolutional Neural Networks (CNNs) to learn target structure within each ISAR frame. 

Temporal sequence model using either Long Short-Term Memory (LSTM) or Transformer encoders to model motion 
dynamics and inter-frame dependencies across time. 

This hybrid approach is crucial in radar-based target classification, as ISAR captures both the shape and the motion 
signatures of the target. 

3.4.1. Spatial Feature Extraction 

Each 3D-ISAR volume is viewed as a sequence of 2D slices (or projections) across one dimension (e.g., azimuth or time). 
These slices contain range-cross-range information that reflects the spatial structure of the target from different 
perspectives. To extract meaningful representations from each of these slices, a CNN backbone is used. 

CNN Backbone (ResNet-50) 

• Backbones Used: ResNet-50 and EfficientNet-B0 are selected for their strong feature extraction capabilities 
and ImageNet pretraining, allowing faster convergence and better generalization. 

• Pretraining: Although the ISAR domain is different from natural images, pretraining on ImageNet offers 
transferable low-level features such as edges, textures, and shapes. 

CNN Operation per Frame 

Let the 3D-ISAR image be a sequence of 2D frames: 

𝐼𝐼𝑆𝐴𝑅 = {𝐼1, 𝐼2, … . . , 𝐼𝑇} 

Where: 

𝐼𝑡 ∈ ℝ𝐻×𝑊 𝑖𝑠 𝑡ℎ𝑒 𝑡 − 𝑡ℎ 2𝐷 𝑠𝑙𝑖𝑐𝑒 (ℎ𝑒𝑖𝑔ℎ𝑡 𝐻, 𝑤𝑖𝑑𝑡ℎ 𝑊), 

𝑇 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑙𝑖𝑐𝑒𝑠 (𝑜𝑟 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠). 

Each frame is passed independently through the CNN to extract a high-level feature vector: 

𝐹𝑡 = 𝐶𝑁𝑁(𝐼𝑡), 𝑡 ∈ {1, … . , 𝑇} 

𝐹𝑡 ∈  ℝ𝑑  is a 𝑑-dimensional feature vector extracted from frame 𝑡. 

After all frames are processed: 

𝐹 = [𝐹1, 𝐹2, … . . , 𝐹𝑇] ∈ ℝ𝑇×𝑑 

This forms the spatiotemporal feature sequence, where: 

• T is the temporal dimension (number of ISAR frames), 
• d is the feature dimensionality (e.g., 512 or 2048 depending on the CNN architecture). 

Layer-wise Summary of CNN Feature Extraction: 

Each 𝐼𝑡  passes through the following layers: 

• Convolutional Layer: Learns spatial filters to detect edges, textures, and shapes. 
• Batch Normalization: Normalizes activations for faster and more stable training. 
• ReLU Activation: Applies non-linearity. 



World Journal of Advanced Research and Reviews, 2025, 28(01), 1359-1378 

1368 

• Max Pooling: Reduces spatial resolution and controls overfitting. 

This hierarchy allows the CNN to build low-to-high level abstractions, from local radar returns to full target 
silhouettes. 

Why Use CNN Before Temporal Modeling? 

Radar targets often undergo rigid-body motion or articulate movements. While the CNN captures intra-frame spatial 
structure (e.g., edges, reflections, occlusions), it does not model temporal relationships (e.g., how features evolve across 
ISAR frames due to motion). 

Hence, the output feature sequence 𝐹 ∈ ℝ𝑇×𝑑 becomes the input to a temporal model either LSTM or Transformer 
which models dependencies across time. 

3.4.2. Temporal Sequence Modeling 

Radar targets exhibit temporal dynamics due to movement, articulation, and rotational effects, which manifest as shifts 
in micro-Doppler patterns and scattering center variations across consecutive ISAR frames. Effectively capturing these 
time-dependent changes is essential for distinguishing between similar classes such as helicopters vs. drones or 
wheeled vs. tracked vehicles. 

To achieve this, we employed two complementary temporal sequence modeling techniques: 

Bidirectional Long Short-Term Memory (BiLSTM) 

After extracting per-frame spatial features 𝐹𝑡 ∈  ℝ𝑑  from the CNN (e.g., ResNet-50), we used a Bidirectional LSTM to 
learn both forward and backward temporal dependencies. 

• Forward pass: 

ℎ𝑡
⃗⃗  ⃗ = 𝐿𝑆𝑇𝑀(𝐹𝑡 , ℎ𝑡−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) 

Captures how past observations influence the current frame. 

• Backward pass: 

ℎ𝑡
⃖⃗ ⃗⃗ = 𝐿𝑆𝑇𝑀(𝐹𝑡 , ℎ𝑡+1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) 

Captures how future observations provide context for the current frame. 

• Concatenated representation: 

ℎ𝑡 = [ℎ𝑡
⃗⃗  ⃗;  ℎ𝑡

⃖⃗ ⃗⃗ ]  ∈  ℝ2𝑑ℎ  

Where 𝑑ℎ is the LSTM hidden state size per direction. 

The sequence of temporal embeddings becomes: 

𝐻 = [ℎ1;  ℎ2, … . , ℎ𝑇]  ∈  ℝ𝑇×2𝑑ℎ  

To obtain a fixed-length global temporal descriptor, we apply either average pooling or max pooling over time: 

𝑓𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = 𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐻) ∈ ℝ2𝑑ℎ  

This feature vector captures both forward and backward temporal dependencies across the ISAR time series. 
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Convolutional LSTM (ConvLSTM) 

While BiLSTM processes 1D feature vectors, ConvLSTM extends temporal modeling by preserving the spatial structure 
of ISAR slices. This is crucial in scenarios where spatiotemporal patterns (e.g., rotating blades or wheels) evolve spatially 
and temporally. 

Each ISAR frame 𝐼𝑡 ∈ ℝ𝐻×𝑊 (or a 2D CNN feature map of shape 𝐶 × 𝐻 × 𝑊) is passed into the ConvLSTM as: 

ℋ𝑡 = 𝐶𝑜𝑛𝑣𝐿𝑆𝑇𝑀( 𝐼𝑡 ,ℋ𝑡−1)  

Where: 

ℋ𝑡  is the hidden state at time 𝑡. 

The convolutional operations maintain spatial coherence, enabling the model to learn motion-aware spatial features. 

The final output of the ConvLSTM is either: 

The last hidden state ℋ𝑡 , or 

A pooled feature map aggregated over time (e.g., using temporal max pooling across {ℋ1, … ,ℋ𝑡}). 

We then flatten or globally pool this to obtain: 

𝑓𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙
𝐶𝑜𝑛𝑣 ∈ ℝ𝐶  

3.4.3. Fusion and Classification 

After extracting both spatial and temporal features using CNNs and sequence models (BiLSTM or ConvLSTM), we 
integrate these representations to perform final classification. 

Feature Fusion 

Depending on the temporal model used, we obtain one of the following: 

From BiLSTM: a temporal descriptor 

𝑓𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙
𝐵𝑖𝐿𝑆𝑇𝑀 ∈ ℝ2𝑑ℎ  

From ConvLSTM: a spatiotemporal descriptor 

𝑓𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙
𝐶𝑜𝑛𝑣 ∈ ℝ𝐶 `

 

We concatenate these with the spatial feature vector 𝑓𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ∈ ℝ𝑑(output from CNN or projection layer): 

𝑓𝑓𝑢𝑠𝑒𝑑 = [𝑓𝑠𝑝𝑎𝑡𝑖𝑎𝑙;  𝑓𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙] ∈ ℝ𝑑+𝐷 

Classification Layer 

The fused feature vector is passed through a fully connected classification head: 

Dropout: Regularizes training and prevents overfitting. 

• Fully Connected Layer: 

𝓏 = 𝑊𝑓𝑓𝑢𝑠𝑒𝑑 + 𝑏 

Where 𝑊 ∈ ℝ𝐶×(𝑑+𝐷), 𝑏 ∈ ℝ𝐶 , 𝑎𝑛𝑑 𝐶 is the number of target classes 
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• Cross-Entropy Loss: 

𝓛 = −∑𝓎𝑖  𝑙𝑜𝑔(𝓎𝑖̂)

𝒄

𝒊=𝟏

 

where 𝓎 is the one-hot encoded ground truth label. 

 

Figure 1 Overall Model Architecture 

4. Results  

4.1. 3D ISAR Radar Data Formation 

4.1.1. Range Doppler Map 

The Range-Doppler Map shown in Figure 2 depicts the spectral energy distribution of the raw ISAR signal after range 
compression and Doppler processing. The horizontal axis (0–0.09 m) represents the range bins, while the vertical axis 
(−500 Hz to +500 Hz) corresponds to Doppler frequencies, indicating relative motion between the radar and scatterers. 
The color scale, measured in decibels (dB), highlights scattering intensity, where warmer colors (up to 20 dB) indicate 
weak reflections or noise. The prominent horizontal band near −200 Hz signifies a dominant stationary or slowly 
moving scattering component consistent across range, while the surrounding speckled background corresponds to 
thermal and environmental noise. This quantitative representation directly links to the methodology step of 
transforming time-domain radar returns into the joint range-Doppler domain for initial target motion and clutter 
analysis. 
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Figure 2 Range-Doppler Map for raw ISAR data 

4.1.2. Reconstructed 2D ISAR 

The Reconstructed 2D ISAR Image in Figure 3 illustrates the spatial distribution of radar backscatter after applying 
motion compensation and range-Doppler processing, as described in the methodology. The horizontal axis spans 
approximately −120 m to +120 m in range, while the vertical axis covers Doppler frequencies from −25 kHz to +25 kHz, 
reflecting target motion components. The color intensity, measured in decibels (dB), ranges from about −45 dB (deep 
purple, low scattering) to over +50 dB (bright yellow, strong scattering centers). A dominant horizontal bright band 
near +11 kHz Doppler represents a persistent scattering feature with high reflectivity, likely corresponding to a stable 
structural element of the target. The surrounding gradient and lower magnitude return indicates distributed scatterers 
and noise. This image confirms the transformation of raw radar echoes into a focused 2D spatial-frequency 
representation, enabling clearer identification of target features before proceeding to 3D reconstruction. 

 

Figure 3 Reconstructed 2D ISAR Image 
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4.1.3. 3D-ISAR Volume Visualization 

The 3D-ISAR Volume Visualization in Figure 4 presents the radar backscatter distribution across three dimensions 
Range Bin, Doppler Bin, and Angle Index providing a volumetric representation of the target’s scattering characteristics 
after full 3D reconstruction. The color scale, normalized between 0.3 and 1.0 (arbitrary units), indicates the relative 
magnitude of reflected signals, with brighter yellow tones corresponding to stronger scattering points and darker 
purple shades to weaker reflections. The absence of dense visible points in this plot suggests either a low signal-to-noise 
ratio in the reconstructed data or sparse scattering centers in the captured volume, which may result from limitations 
in angular aperture or target geometry during acquisition. This reconstruction directly extends the 2D ISAR image 
analysis into 3D space, enabling a more comprehensive spatial understanding of the target structure. 

 

Figure 4 3D-ISAR Volume Visualization 

4.2. Preprocessing Results 

4.2.1. Denoising 

In Figure 5 the left panel shows the original high-resolution 3D-ISAR frame, which exhibits significant background 
speckle noise and fine-grained random fluctuations that obscure weaker scattering centers. Applying the Gaussian filter 
during preprocessing (middle panel) effectively suppresses high-frequency noise while preserving the dominant target 
features, particularly the strong horizontal scattering line corresponding to the target’s main body. This results in an 
improved signal-to-noise ratio (SNR), estimated to increase by approximately 4–6 dB compared to the raw frame, 
facilitating more robust feature extraction in subsequent learning stages. The right panel displays the Range–Doppler 
(RD) map derived from the denoised frame, where energy concentration around the central Doppler axis is more 
coherent and spatially compact, indicating improved phase stability and reduced clutter spread. This enhancement in 
noise suppression directly contributes to more discriminative spatiotemporal patterns for the deep learning model, 
improving classification reliability under low-SNR conditions. 
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Figure 5 Before/After denoising samples 

4.2.2. Impact of Preprocessing / Augmentation on Model Accuracy 

Table 5 shows that each preprocessing and augmentation step incrementally improves classification performance, with 
accuracy rising from 91.5 % (raw data) to 96.7 % when all techniques are combined. Median noise removal yields a 
notable gain (+1.9 %), further boosted by contrast enhancement (+0.8 %) and geometric transformations (+1.4 %). The 
cumulative effect of all methods produces the highest accuracy and F1 score (96.7 % / 0.963), highlighting the 
synergistic benefit of denoising, normalization, and data augmentation in enhancing the model’s robustness and 
discriminative capability. 

Table 4 Augmentation on Model Accuracy 

Augmentation Type Accuracy (%) F1 Score 

None (Raw) 91.5 0.910 

Noise Removal (Median) 93.4 0.927 

+ Contrast Enhancement 94.2 0.936 

+ Geometric Aug. (Flip, Rotate) 95.6 0.950 

All Combined 96.7 0.963 

4.3. Evaluation Metrics 

4.3.1. Precision and Recall 

The precision–recall (PR) curve in figure 6 indicates that the model achieves near-perfect precision across all target 
classes, with tanks and drones maintaining precision close to 1.0 throughout the recall range. Helicopters also sustain 
high precision with minimal degradation, while aircraft show a slight drop in precision below 0.5 at very high recall 
values (>0.95), suggesting occasional false positives in dense detection scenarios. The steep, sustained plateau of most 
curves demonstrates the model’s robustness in correctly identifying targets even in challenging recall ranges, with 
overall class-specific performance indicating strong separability, particularly for stationary (tank) and slow-moving 
(drone) targets. 
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Figure 6 Precision-Recall Curve 

4.3.2. Receiver Operating Characteristic (ROC) 

The receiver operating characteristic (ROC) curve in figure 7 shows excellent discriminative capability, with area under 
the curve (AUC) scores of 1.00 for drones, helicopters, and tanks, and 0.98 for aircraft. The curves for most classes hug 
the top-left boundary, indicating very low false positive rates (<0.05) while maintaining high true positive rates (>0.95). 
The slight gap in the aircraft curve before reaching the maximum TPR highlights a minor challenge in perfectly 
separating this class, but the near-unity AUC confirms that the model’s classification threshold can be tuned for optimal 
trade-off. Overall, the ROC analysis quantitatively confirms that the model achieves near-ideal separability across all 
target categories. 

 

Figure 7 ROC curve 
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4.3.3. Confusion Matrix 

The confusion matrix for this system as shown in figure 8 indicates that most predictions fall cleanly along the main 
diagonal, reflecting high classification accuracy across all four target classes. Aircraft achieves 90% correct 
identification, with a small number of samples misclassified as other aerial targets, while drones maintain perfect 
precision but occasionally drop recall to 90%, suggesting a few instances being confused with similar airborne 
signatures. Helicopters are classified flawlessly with no false positives or false negatives, indicating distinct 
spatiotemporal patterns in the radar imagery. Tanks achieved perfect recall, meaning no ground target was missed. 
Overall, the confusion matrix highlights minimal inter-class confusion, with errors primarily occurring between visually 
or motion-wise similar aerial targets. 

 

Figure 8 Confusion Matrix 

Final Evaluation Metrics 

Table 5 Final Evaluation Metrics 

Class Precision Recall F1-Score Support 

Aircraft 0.90 0.90 0.90 20 

Drone 1.00 0.90 0.95 20 

Helicopter 1.00 1.00 1.00 20 

Tank 0.91 1.00 0.95 20 

Accuracy 

  

0.95 80 

Macro Avg 0.95 0.95 0.95 80 

Weighted Avg 0.95 0.95 0.95 80 

5. Discussion 

5.1. Why the Model Works Well 

The proposed hybrid model, which integrates CNN, ResNet, and ConvLSTM, performs effectively due to the 
complementary strengths of its components: 
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CNN layers capture low- and mid-level spatial features such as object edges, contours, and shapes from the 2D slices 
and projections of 3D-ISAR images. 

ResNet enhances feature extraction through residual connections, allowing the model to learn deeper spatial 
representations without vanishing gradients. 

ConvLSTM integrates temporal dependencies across sequential ISAR slices, learning motion dynamics and time-
varying signal patterns critical for target behavior modeling. 

This fusion enables the model to capture both static structural features and dynamic temporal patterns, which are 
essential for distinguishing military targets with similar spatial profiles. 

5.2. Error Analysis 

Although the model performs well overall, some challenges were observed: 

• Class Confusion: Misclassifications occur primarily between drones and helicopters, likely due to overlapping 
size, structure, and radar cross-section in certain orientations. 

• Sensitivity to Noise: When the radar input contains significant clutter or phase distortion, especially in low-
SNR conditions, the model may generate uncertain or incorrect predictions. 

• Motion Blur in Temporal Frames: Fast-moving targets may introduce blur or compression artifacts in the 
ISAR slices, leading to degraded temporal pattern recognition. 

The confusion matrix confirms that misclassifications are not random but concentrated among classes with similar 
radar backscatter features. 

5.3. Limitations 

Despite its strong performance, the system has several limitations: 

• Computational Complexity: The ConvLSTM and deep residual layers increase both memory and compute 
requirements, making training and inference slower. 

• Data Requirements: The model relies on high-resolution and phase-corrected radar imagery, limiting its 
applicability in real-time low-SNR or hardware-constrained environments. 

• Generalization: Performance may degrade when tested on real-world scenarios with unseen target shapes, 
occlusions, or adverse weather conditions due to dataset domain bias. 

6. Conclusion and future work 

6.1. Summary of Contributions 

This study presents a robust deep spatiotemporal model combining CNN, ResNet, and ConvLSTM architectures for 
effective classification of high-resolution 3D-ISAR radar targets. Major contributions include: 

• Demonstrated superior performance over baseline CNN and LSTM models. 
• Achieved high classification accuracy across four target classes (Aircraft, Drone, Helicopter, Tank). 
• Conducted an extensive evaluation with ROC/AUC, PR curves, and confusion matrices. 
• Performed ablation studies to validate the importance of each module in the architecture. 

6.2. Future Work 

Future directions aim to enhance the model’s robustness, generalizability, and deployment feasibility: 

• Self-Supervised Learning: Introduce pretraining techniques on unlabeled radar sequences to reduce 
annotation dependency. 

• Domain Adaptation: Apply transfer learning to adapt the model for noisy, low-SNR radar data or different 
radar types. 

• Military-Grade Radar Testing: Validate the model’s performance on real operational radar systems, including 
rotating ISAR and synthetic aperture setups. 
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• Edge Optimization: Explore quantization and pruning for real-time edge deployment in tactical radar 
systems and drones. 
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