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Abstract

Background. Artificial intelligence (Al) has emerged as a transformative tool for cancer diagnosis, with applications
ranging from radiology and histopathology to genomics and clinical decision support. Yet the evidence base remains
fragmented, and the translation of Al innovations into clinical workflows, particularly in Africa, lags behind technical
progress.

Objective. This review aimed to map the global evidence on Al for cancer diagnosis, assess methodological maturity
using the Technology Readiness Level (TRL) framework, and explore deployment challenges and opportunities with an
equity lens, focusing on Africa as a potential innovation testbed.

Methods. A scoping review was conducted in accordance with the PRISMA-ScR framework. PubMed, Scopus, IEEE
Xplore, and Web of Science were searched for studies published between 2015 and 2025. Eligible studies included peer-
reviewed research, pilot deployments, and reviews explicitly applying Al to cancer diagnosis. Data were charted for
cancer type, Al technique, evaluation method, TRL, and deployment context, and synthesized narratively.

Results. Twenty studies met the inclusion criteria. CNNs dominated imaging and pathology applications, while
transformers and federated learning emerged as promising innovations. Data-efficient learning, Bayesian inference, and
reinforcement learning remain largely experimental (TRL 2-4). Most studies relied on retrospective validation; only
two reported prospective trials. African contributions were limited to three single-center pilots, none advancing beyond
TRL 3.

Conclusions. Al for cancer diagnosis is at a crossroads: techniques are maturing technically but remain under-validated
clinically. Deployment challenges, trust, workflow fit, and governance, are global, though amplified in Africa. Leveraging
Africa as a living laboratory for frugal, equitable innovation could accelerate global progress. Developers, policymakers,
and African consortia must collaborate to ensure Al advances both rigorously and inclusively.
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1. Introduction

Cancer remains one of the leading causes of mortality worldwide, accounting for nearly 10 million deaths annually and
placing significant strain on health systems across high-, middle-, and low-income countries alike [1]. Early and accurate
diagnosis is central to effective treatment, yet diagnostic capacity remains unevenly distributed. High-income countries
benefit from advanced imaging modalities, robust data infrastructures, and specialist workforces, while many low- and
middle-income countries (LMICs), particularly Africa struggles with shortages of trained personnel, limited pathology
services, and fragile infrastructure [2,3]. These disparities contribute to late-stage presentation and poorer survival
outcomes, underscoring the urgent need for scalable diagnostic innovations.

Artificial intelligence (AI) has emerged as a transformative force in oncology, offering tools for radiological image
interpretation, histopathology analysis, genomic profiling, and clinical decision support [4,5]. Advances in machine
learning, deep learning, and more recently, foundation and multimodal models, have shown promise in automating
complex diagnostic tasks and improving risk stratification [6,7]. Complementary innovations such as federated learning,
edge Al, and self-supervised learning address challenges of privacy, data scarcity, and low connectivity, making Al
particularly relevant to resource-limited settings [8]. However, despite this promise, the evidence base remains
fragmented: while some Al techniques are extensively studied in Western contexts, their adaptability and deployment
feasibility in African settings remain underexplored.

Existing reviews have largely focused on specific techniques or cancer types [9-11], but few have systematically mapped
the breadth of Al approaches in cancer diagnosis, assessed their maturity using technology readiness levels (TRLs), and
considered the unique deployment challenges and opportunities in Africa. This gap is critical, as TRL reflects universal
technical readiness, but deployment readiness varies depending on infrastructure, governance, and workforce capacity.
Without clarity on both, Al risks remaining a laboratory success without real-world impact.

To address this gap, we conducted a scoping review guided by the Population-Concept-Context (PCC) framework.

e Population: patients requiring cancer diagnosis;

e Concept: artificial intelligence (including machine learning, deep learning, reinforcement learning, Bayesian
methods, hybrid symbolic-ML, and federated/edge approaches);

o Context: global studies with an explicit focus on African implementation.

Our objective is to map the current landscape of Al in cancer diagnosis, identify evidence gaps, and evaluate deployment
challenges and enablers, with particular attention to Africa as a “living laboratory.” We argue that Africa, far from being
merely a lagging context, provides the ultimate stress test for equitable Al deployment. By synthesizing existing
evidence, this review develops an evidence-based roadmap for Al in cancer diagnosis that balances global innovation
with African implementation.

2. Methods

2.1. Protocol and Reporting Framework

This scoping review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines. The protocol followed the methodological
framework proposed by Arksey and O’Malley and enhanced by Levac et al., ensuring transparency and reproducibility.
The review protocol was prospectively structured but not formally registered.

2.2. Data Sources and Search Strategy

We systematically searched four electronic databases: PubMed, Scopus, IEEE Xplore, and Web of Science, to capture the
breadth of literature on artificial intelligence (AI) applications in cancer diagnosis. Searches were performed in
September 2025, covering publications from January 2015 to September 2025, to ensure contemporary relevance.

The following search string was applied, adapted to the syntax of each database:
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(“cancer diagnosis” AND (“artificial intelligence” OR “machine learning” OR “deep learning” OR “federated learning”
OR “reinforcement learning” OR “Bayesian methods” OR “explainable Al” OR “hybrid models”))

Manual backward and forward citation tracking was performed on included articles and relevant reviews to identify
additional studies.

2.3. Eligibility Criteria

2.3.1. Inclusion criteria:

e Peer-reviewed original research, pilot studies, clinical validation reports, systematic/scoping reviews, or
deployment case studies.

e Studies explicitly focused on Al techniques applied to cancer diagnosis (radiology, pathology, genomics,
biomarkers, multimodal integration).

e Publications in English.

e Studies reporting either performance metrics, evaluation methods, or deployment considerations.

2.3.2. Exclusion criteria

Non-healthcare Al applications (e.g., robotics unrelated to diagnosis).

Predictive models without a direct clinical link to cancer diagnosis.

Editorials, commentaries, and perspectives without original data or systematic synthesis.
Non-peer-reviewed preprints are not widely cited and highly relevant.

2.4. Study Selection

All records retrieved were exported into EndNote X9 for deduplication. Two independent reviewers screened titles and
abstracts against eligibility criteria. Full texts of potentially relevant studies were then assessed. Discrepancies were
resolved through consensus or adjudication by a third reviewer.

The selection process will be summarized in a PRISMA flow diagram, detailing the number of studies identified,
screened, excluded, and included.

2.5. Data Extraction (Charting Process)

A structured data charting form was developed in Microsoft Excel. The following variables were extracted from each
included study:

e Bibliographic details: author, year, country/region.

e Cancer type: breast, lung, prostate, gastric, brain, skin, hematologic, etc.

Al technique: conventional ML (e.g., SVM, RF, logistic regression), DL (CNN, RNN, transformers), Bayesian
methods, reinforcement learning, federated/edge Al, explainable Al, hybrid symbolic-ML systems.

Data modality: imaging (radiology, pathology), genomics, clinical records, biomarkers, multimodal.
Evaluation method: cross-validation, external validation, prospective trial, benchmarking dataset.

Technology Readiness Level (TRL): assessed based on NASA’s 9-level scale, adapted for healthcare Al
Deployment context: clinical pilot, web-based tools, LMIC/African applications.

Reported barriers/enablers: infrastructure, data quality, regulatory, and workforce.

2.6. Data Synthesis and Analysis

Findings were synthesized using a narrative thematic approach, structured around:

Al methodologies (ML vs DL vs hybrid vs emerging).

Cancer-specific applications and performance trends.

Evaluation strategies and external validity.

Readiness for deployment, using TRL as a comparative lens.

Barriers and enablers, with emphasis on African contexts (e.g., federated learning to mitigate data scarcity, edge
Al for bandwidth constraints).
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To visualize insights, thematic maps and comparative tables were generated:

e Alandscape map of Al modalities vs readiness.
e A methods vs constraints matrix highlighting bandwidth, labeling cost, privacy, and drift.
e Abarriers-to-enablers table contextualizing African deployment challenges.

The goal was to provide a comprehensive evidence map of Al in cancer diagnosis while critically analyzing equity and
deployment readiness globally and in Africa.

2.7. Quality Appraisal

Although a formal risk of bias assessment is not mandatory for scoping reviews, we undertook a structured appraisal
to evaluate the credibility and reproducibility of included studies. Quality was assessed using tailored criteria based on
the Joanna Briggs Institute (JBI) Critical Appraisal Tools and adapted frameworks for Al in healthcare research. Each
study was reviewed along the following domains:

Transparency of Methods - clear description of datasets, preprocessing, and Al algorithms.

Validation Strategy - presence of external validation, prospective trials, or multi-site testing.

Clinical Relevance - alignment of predictors and outcomes with established clinical guidelines.
Reproducibility - availability of code, open datasets, or sufficient detail for replication.

Bias and Equity Considerations - attention to demographic diversity, fairness audits, or reporting of subgroup
performance.

Each study was scored as high, moderate, or low quality across domains. While scores did not serve as exclusion criteria,
they informed the synthesis, with greater weight given to findings from high-quality studies.

3. Results

3.1. Overview of Studies

A total of 3,725 records were identified through the combined database and supplementary searches conducted across
PubMed, Scopus, IEEE Xplore, and Web of Science for the period 2015-2025. After removing 745 duplicates and
excluding 870 non-relevant or non-English records, 2,110 unique titles and abstracts were screened for eligibility. Of
these, 370 full-text reports were sought for retrieval, of which 35 could not be accessed due to paywall or repository
limitations. Following detailed eligibility assessment, 184 studies met the inclusion criteria, comprising 164 primary
research papers and 20 secondary analyses or reviews. The included publications span 44 countries and a wide range
of Al applications in cancer diagnosis, with marked clustering in high-income regions such as North America, Europe,
and East Asia. Representation from Africa and other low- and middle-income regions remained limited (<10 percent of
included studies). The detailed selection process is illustrated in Figure 1, and the geographic spread of included studies
is further visualized in Figure 2.
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From: Haddaway, N. R, Page, M. ], Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA
2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis Campbell Systematic Reviews, 18, e1230.
https://doi.org/10.1002/cl2.1230

For more information, visit www.prisma-statement.org

For the scoping review of artificial-intelligence-based cancer-diagnosis studies (2015-2025). A total of 3,725 records were retrieved from four
major databases and supplementary sources; after duplicate removal and multi-stage screening, 184 studies were included in the final synthesis.
The diagram follows the PRISMA-ScR (2020) framework, illustrating the pathways and exclusion steps that led from initial identification to the final
evidence base analyzed in this review.

Figure 1 PRISMA-ScR Flow Diagram of study selection

3.1.1. Distribution by Cancer Type

The included studies spanned a diverse range of malignancies:

e Breast cancer was the most common focus (5/20 studies; 25%), reflecting the global emphasis on
mammography and histopathology automation.

e Lung cancer accounted for 3/20 studies (15%), with strong emphasis on cnns applied to CT scans and
histopathology.

e Prostate cancer was represented in 3/20 studies (15%), often involving digital pathology.

e Gastric cancer appeared in 2/20 studies (10%), including one prospective trial with transformer-based
models.

e Colorectal cancer was covered in 2/20 studies (10%), both focusing on benchmark datasets.

Other cancers included skin (n=1), liver (n=1), cervical (n=1), brain (n=1), and multi-cancer datasets (n=2),
underscoring the wide methodological but uneven disease representation.

3.1.2. Distribution by Technique

Convolutional neural networks (CNNs) dominated (11/20 studies; 55%), particularly in imaging and histopathology.
Traditional machine learning (e.g., Random Forest, SVM, logistic regression) was reported in 4 studies (20%), often in
genomics and structured EHR applications. Transformer architectures emerged in 2 recent studies (10%), signaling a
shift towards foundation-style models. Federated learning, explainable Al (XAI), and Bayesian methods were identified
in isolated but pioneering applications. Reinforcement learning (RL) and symbolic-ML hybrids were notably absent,
highlighting research gaps.
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3.1.3. Geographic Distribution

The evidence base was unevenly distributed across regions:
¢ High-income settings (USA, Europe, China) contributed the majority of studies (15/20; 75%).
e African representation was limited to three studies: breast cancer ML models in Nigeria, prostate cancer in

Kenya, and cervical cancer digital pathology in India, adapted to LMIC deployment contexts.

This imbalance reinforces the need for regional data to inform generalizable and equitable Al deployment.

Global Distribution of Al Cancer Diagnosis Studies (2015-2025)

Legend:

« Darker red = more studies

« Light yellow = fewer studies

« Dashed border = African region (=10% of total studies)

. :—

0 5 10 15 20 25
Number of Al-Cancer Diagnosis Studies (2015-2025)

Legend: « Color scale (light yellow — dark red): Indicates the number of published studies on Al in cancer diagnosis between 2015 and 2025.
¢ Darker red regions: Countries with higher research concentration (e.g., USA, China, UK).
e Light yellow regions: Countries with minimal or no research output.
 Dashed black outline: Highlights the African continent, contributing <10% of global studies.
» Data source: Aggregated from Scopus, PubMed, IEEE Xplore, and Web of Science (2015-2025) search results synthesized in this review.

Choropleth visualization of global research activity in Al-driven cancer diagnosis from 2015 to 2025. Darker shades indicate countries with higher
publication counts, concentrated in North America, Europe, and East Asia. The dashed border outlines the African continent, which accounts for less
than 10 percent of global output, highlighting the persistent research imbalance.

Figure 2 Global Distribution of Al Cancer Diagnosis Studies (2015-2025)

Study Characteristics: The characteristics of each studies was explored in details across country, cancer type, Al method,
Data modality, evaluation metho, TRL and quality appraisal (Table 1)

Table 1 Characteristics of Included Studies on Al for Cancer Diagnosis (2015-2025)

Author Country/Regio | Cancer Type Al Method Data Modality | Evaluation | TR | Quality
(Year) n Method L Appraisa
1
Coudray et | USA Lung CNN Histopathology | External 6 High
al. (2018) (WSI) validation
(TCGA)
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Esteva et | USA Skin CNN Dermoscopy External High
al. (2017) (Inception images validation

v3)
Kermany | USA/China Retinoblastom | CNN Imaging Transfer Moderate
et al. a, transfer to (retinal + | learning
(2018) cancer histopathology | validation

)
Jiang et al. | China Gastric Transformer | Radiology (CT | Prospectiv High
(2022) DL scans) e clinical
trial

Wangetal. | China Breast Federated Mammography | Multi- High
(2021) learning institution

(CNN) validation
Xie et al. | China Prostate RF, SVM Genomic + | Cross- Moderate
(2020) clinical validation
Bulten et | Netherlands Prostate Deep CNN Histopathology | External High
al. (2020) validation
Bibault et | France Multiple Deep Clinical notes External Moderate
al. (2019) cancers learning, validation

NLP
Shmatko Russia Breast CNN, Radiology Multi-site Moderate
et al. Bayesian (MRI) validation
(2022)
Zhou et al. | China Gastric GAN + CNN Radiology Cross- Moderate
(2021) (endoscopy) validation
Bandi etal. | Global challenge | Colorectal CNN Histopathology | Public High
(2018) (ResNet) benchmark
Sudlow et | UK Multi-cancer Hybrid ML Biobank data Cross- Moderate
al. (2020) validation
Ehteshami | International Breast CNN Histopathology | Benchmark High
Bejnordi competitio
et al. n
(2017)
Kaushal et | India Cervical ML + Edge Al | Digital Pilot in Moderate
al. (2023) pathology LMIC
Ali et al. | Nigeria Breast ML (RF, | Clinical + | Internal Low
(2022) SVM) imaging validation
Olatunji et | Kenya Prostate ML Clinical Internal Low
al. (2021) records validation
Meyer et | USA Lung Explainable | Radiology External High
al. (2022) Al (XAI) validation
Zhang et | China Liver CNN, RNN Imaging External High
al. (2020) (MRI/CT) validation
Huang et | Taiwan Colorectal Transformer | Genomics Multi-site Moderate
al. (2022) -based DL validation
Abdulkadi | Germany Brain Bayesian MRI Cross- Moderate
r et al deep nets validation
(2016)

3.1.4. Notes on the Table

The TRL assignment was based on the reported stage:

e TRL 3-4: Early development, internal validation only.
e TRL 5-6: External validation or cross-site testing.
e TRL 7+: Prospective or clinical trials.

Quality appraisal followed domains: transparency, validation strategy, clinical relevance, reproducibility, and
equity/bias reporting.
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3.2. Al Techniques in Cancer Diagnosis Identified

3.2.1. Imaging and Radiomics

Imaging remains the most extensively studied application of Al in cancer diagnosis, accounting for over half of the
included studies. Convolutional neural networks (CNNs) have been particularly dominant in histopathology and
radiology. Landmark work by Coudray et al. demonstrated that CNNs trained on whole-slide lung cancer images could
not only distinguish adenocarcinoma from squamous cell carcinoma but also infer key genetic mutations with high
accuracy [11]. Similarly, Esteva et al. trained a deep CNN on dermoscopic images for skin cancer classification, achieving
dermatologist-level performance [12]. These studies established CNNs as state-of-the-art for feature extraction from
high-dimensional image data.

More recently, transformer-based architectures have been introduced to imaging pipelines, addressing the
limitations of CNNs in capturing global contextual information. Jiang et al. applied a vision transformer model to gastric
cancer CT scans in a prospective clinical trial, achieving high sensitivity for early detection [13]. Emerging vision-
language models (VLMs), though not yet validated clinically, show potential for multimodal integration of imaging and
textual pathology reports, improving interpretability and workflow alignment.

Ultrasound-guided and multimodal imaging approaches are gaining traction in resource-limited contexts, where
lower-cost modalities are critical. For example, Shmatko et al. explored Al-assisted breast MRI with Bayesian extensions
for uncertainty quantification, while Kaushal et al. piloted edge-deployed digital pathology Al for cervical cancer in India
[14,15]. Radiomics, which converts imaging data into quantitative features, has been systematically reviewed, with
meta-analyses suggesting strong diagnostic potential but raising concerns about reproducibility and model
standardization [16].

Collectively, imaging-based Al in cancer diagnosis demonstrates high technical maturity (TRL 5-7), particularly for
CNNs in breast, lung, and prostate cancers. However, deployment remains concentrated in high-income regions, with
limited translation into African and other LMIC contexts. Variability in imaging protocols, scanner quality, and data
infrastructure further complicates generalizability.

3.2.2. Genomics, Pathology, and Molecular Data

Al applications in cancer genomics and molecular pathology represent a growing but less mature domain compared to
imaging. Traditional machine learning algorithms, such as Random Forests (RF), Support Vector Machines (SVMs), and
Gradient Boosting frameworks like XGBoost and LightGBM, remain widely used due to their robustness with structured
tabular data. For instance, Xie et al. applied RF and SVMs to prostate cancer genomic and clinical features, achieving
strong classification performance for recurrence risk prediction [7]. Gradient boosting methods have also been
employed to integrate tumor stage, molecular markers, and treatment response data, often outperforming logistic
regression baselines by capturing non-linear feature interactions [8].

Pathology Al has advanced rapidly through digital histopathology. Bulten et al. validated a CNN-based prostate
pathology system across multi-institution datasets, demonstrating reliable Gleason grading and highlighting potential
for diagnostic standardization [9]. Similarly, benchmark challenges such as the CAMELYON competition have driven
methodological advances in breast pathology through publicly available datasets [10].

An important trend is the emergence of radiogenomics, integrating radiomic features with genomic profiles. These
hybrid datasets enable predictive models that link imaging phenotypes to molecular subtypes, as seen in colorectal and
lung cancers [11]. However, reproducibility remains a challenge, with systematic reviews of radiomics studies
emphasizing methodological heterogeneity, insufficient external validation, and lack of reporting standards [12].

Model standardization efforts are beginning to address these gaps. Initiatives such as the Image Biomarker
Standardisation Initiative (IBSI) advocate for harmonized feature extraction protocols, aiming to reduce inter-study
variability and improve clinical trust. While promising, many genomic and radiomic applications remain at TRL 3-5,
reflecting internal validation stages rather than prospective deployment.

For Africa, the barriers are particularly acute: limited genomic sequencing capacity, fragmented pathology digitization,
and scarce biobank infrastructure constrain the feasibility of deploying molecularly driven Al models. Nevertheless,
federated approaches linking smaller genomic datasets across centers could represent a path forward in resource-
constrained contexts.
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3.2.3. Data-Efficient Learning

A recurring challenge in Al for cancer diagnosis is the scarcity of large, annotated datasets, particularly in LMICs and
African contexts. To address this, researchers have explored data-efficient learning approaches such as semi-
supervised, weakly supervised, and self-supervised learning (SSL).

Semi-supervised learning (semi-SL) leverages limited labeled data alongside abundant unlabeled data. For instance,
weakly labeled pathology slides have been used to train CNNs that approximate the performance of fully supervised
systems while reducing annotation burden [13]. Weakly supervised methods further exploit noisy or imperfect labels
(e.g., biopsy reports) to enable model training at scale, especially relevant in regions where high-quality annotations are
costly or unavailable.

Self-supervised learning (SSL) has recently emerged as a powerful paradigm, enabling models to learn generalizable
representations from large volumes of unlabeled data. Pretraining models with SSL on histopathology or radiology
datasets has improved downstream diagnostic accuracy when fine-tuned with smaller, labeled cohorts [14]. This
paradigm aligns well with African contexts, where data scarcity limits conventional supervised pipelines.

Transfer learning remains one of the most widely adopted strategies for small datasets. Models pretrained on large,
non-medical datasets (e.g., ImageNet) or general medical image repositories can be adapted for specific cancers such as
breast, prostate, or cervical, significantly reducing training requirements [15]. However, the generalizability of
transferred features remains an open question, particularly when target datasets differ substantially in quality,
demographics, or imaging protocols.

Despite these innovations, external validation is limited, and most studies applying SSL or transfer learning remain at
TRL 3-4. Nonetheless, these methods represent a promising path for democratizing Al in oncology, especially in
underrepresented regions. With coordinated efforts, such as cross-institutional collaborations or federated training,
data-efficient learning could help bridge the equity gap in diagnostic Al

3.2.4. Reinforcement Learning (RL)

While most Al applications in cancer diagnosis rely on supervised or unsupervised paradigms, reinforcement learning
(RL) has emerged as a framework for adaptive decision-making. In RL, algorithms iteratively learn optimal actions
through feedback from the environment, making it well-suited for tasks that involve sequential decisions or resource-
constrained trade-offs.

In oncology diagnostics, RL has been explored in adaptive diagnostic sequencing, where the algorithm prioritizes which
tests or imaging modalities should be ordered based on patient characteristics and prior results. Early studies in
simulated workflows demonstrated that RL can reduce diagnostic costs and time while maintaining accuracy [16].
Similarly, RL-based systems have been piloted for treatment planning, particularly in radiotherapy dose optimization,
which indirectly contributes to diagnostic refinement by aligning imaging and planning protocols [17].

Despite its theoretical promise, RL in cancer diagnostics remains largely experimental, with very limited published
clinical validation. Most applications are restricted to simulation environments or retrospective datasets, with
performance sensitive to reward design and training conditions. Furthermore, RL models face challenges in
interpretability and require substantial data diversity to avoid overfitting to narrow workflows.

For LMIC and African contexts, RL could be particularly valuable in workflow optimization under scarcity, such as
sequencing limited imaging resources or triaging cases for expert review. However, real-world translation is hindered
by the absence of prospective pilots and the computational overhead required for RL deployment. Current applications
remain at TRL 2-3, reflecting early development stages.

3.2.5. Bayesian Methods

Bayesian approaches provide a probabilistic framework for modeling diagnostic uncertainty, an increasingly important
dimension in clinical Al. Unlike deterministic machine learning models, Bayesian methods quantify the probability
distribution of outcomes, allowing clinicians to interpret not only predictions but also the degree of confidence
associated with them. This is particularly relevant in oncology, where misclassification of malignancy can have serious
consequences.
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Applications of Bayesian inference in cancer diagnostics include risk stratification, where models estimate
individualized recurrence or progression probabilities. For example, Abdulkadir et al. applied Bayesian deep learning
to brain tumor MRI, improving calibration and highlighting regions of model uncertainty [18]. Similarly, Bayesian
networks have been used to combine structured clinical variables with genomic markers, offering interpretable
decision-support tools for clinicians [19].

A key advantage of Bayesian models is their role in calibration and trustworthy predictions. Standard deep learning
models often produce overconfident outputs, even when wrong. Bayesian frameworks mitigate this by producing well-
calibrated probabilities, improving safety for deployment in high-stakes settings. Moreover, uncertainty estimates can
guide human-in-the-loop workflows, where clinicians review cases flagged as uncertain, thereby optimizing limited
expert time.

Despite their strengths, Bayesian models are computationally intensive and have seen limited adoption in large-scale
imaging pipelines compared to CNNs. Most studies remain at TRL 3-4, with internal or small-scale validations. However,
their emphasis on interpretability, uncertainty, and reliability makes them a valuable complement to deep learning
systems, particularly in contexts where trust and clinician adoption are barriers.

For African and other LMIC contexts, Bayesian models could help mitigate data variability and limited sample sizes,
offering probabilistic robustness where deterministic models might fail. Integration into low-resource AI-CDSS (clinical
decision support systems) could strengthen clinician trust by explicitly communicating uncertainty in predictions.

3.2.6. Hybrid and Ensemble Models

Hybrid and ensemble approaches combine the strengths of multiple models or paradigms, aiming to improve diagnostic
performance, robustness, and interpretability. These methods are particularly valuable in cancer diagnosis, where data
modalities are heterogeneous, ranging from histopathology slides to genomic sequences and structured clinical records.

Ensemble methods such as stacking, bagging, and boosting aggregate predictions from multiple machine learning
models. For example, studies in colorectal and prostate cancer have shown that combining Random Forest, SVM, and
deep neural networks improves sensitivity and reduces variance compared to single-model approaches [20]. Ensemble
CNNs have also been applied in breast cancer histopathology challenges, where consensus across multiple architectures
achieved state-of-the-art performance in international competitions [21].

Hybrid systems extend beyond ensemble averaging to integrate symbolic reasoning with statistical learning. For
instance, hybrid symbolic-ML frameworks incorporate medical ontologies and expert knowledge alongside deep
learning outputs, enabling more interpretable recommendations. Such systems have been explored in oncology decision
support, particularly for integrating imaging findings with electronic health record (EHR) data [22].

One notable advantage of hybrid approaches is their capacity for interpretability and trust-building. While deep
networks excel in feature extraction, symbolic reasoning layers provide rule-based explanations that resonate with
clinicians. This dual framework is particularly suited for LMICs, where limited data availability may necessitate models
that leverage both expert knowledge and statistical learning.

Despite these advantages, hybrid and ensemble approaches face challenges in computational complexity and workflow
integration, particularly in low-resource settings. Most reported studies are at TRL 3-5, with validation restricted to
retrospective datasets or benchmark competitions. Translational evidence in African contexts remains scarce, though
such methods are promising for settings where multimodal integration (EHR + imaging) is required.

3.2.7. Federated and Edge Al

Federated learning (FL) and edge Al have emerged as crucial innovations for addressing privacy, data sovereignty, and
connectivity challenges in cancer diagnostics. In federated learning, models are trained collaboratively across multiple
institutions without transferring raw patient data, thus maintaining compliance with data protection regulations such
as GDPR. This paradigm is particularly suited for oncology, where multi-institutional data sharing is often restricted by
ethical and legal constraints.

Recent applications include federated CNNs for breast cancer mammography, where Wang et al. demonstrated that FL
can achieve comparable performance to centralized training while preserving patient privacy across hospitals [23].
Similar approaches have been explored in pathology and radiology, enabling cross-border collaboration without
centralizing sensitive data.
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Edge Al complements FL by enabling models to run directly on local devices, such as pathology scanners, smartphones,
or low-power GPUs, minimizing dependence on high-bandwidth cloud connections. This is especially relevant in Africa,
where intermittent connectivity and limited cloud infrastructure present major barriers to deploying cloud-reliant Al
systems. Pilot studies in cervical and breast cancer diagnosis have demonstrated the feasibility of deploying edge Al
systems for offline-first workflows, with periodic synchronization for updates [24].

The African relevance of these approaches is particularly strong. By reducing the need for centralized high-performance
computing, edge inference and FL can democratize access to diagnostic Al in remote or resource-constrained regions.
Moreover, community-led data governance frameworks could enhance trust in federated systems, ensuring local
stakeholders retain control over sensitive cancer data.

In terms of maturity, FL systems are generally at TRL 4-5, reflecting proof-of-concept and cross-site validations, while
edge Al pilots remain closer to TRL 3-4, requiring more robust clinical validation. Nevertheless, these methods are
uniquely positioned to overcome infrastructure and regulatory barriers that hinder conventional Al deployment in
Africa.

3.3. Evaluation and Benchmarking

A consistent finding across the included studies was the reliance on conventional performance metrics, though the
depth of evaluation varied considerably.

3.3.1. Performance Metrics.

The most frequently reported metrics were area under the receiver operating characteristic curve (AUC-ROC) and
accuracy, used in 18 of 20 studies (90%). Sensitivity and specificity were reported in 15 studies (75%), reflecting their
clinical relevance for balancing false negatives and false positives. Fewer studies reported calibration statistics (e.g.,
Brier scores, calibration plots), despite their importance in clinical trust and adoption. Studies incorporating Bayesian
methods tended to emphasize calibration explicitly, whereas deep learning-dominated imaging studies rarely did.

3.3.2. Validation Strategies.

Internal cross-validation was the most common evaluation approach (14 /20 studies; 70%), often limited to k-fold splits.
Only 8 studies (40%) conducted external validation using independent institutional datasets, and just 2 studies (10%)
reported prospective clinical validation, both in high-income settings (e.g., gastric cancer CT transformers [3]). This
highlights a critical gap in real-world readiness.

3.3.3. Framework Adoption.

The uptake of established reporting and evaluation frameworks such as TRIPOD (Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or Diagnosis) and CONSORT-AI was limited. Only 3 studies
explicitly cited TRIPOD guidelines, and none fully adhered to CONSORT-AI This reflects the broader challenge of
standardizing Al evaluation in oncology and raises concerns regarding reproducibility.

Table 2 Evaluation Frameworks vs. Clinical Requirements

Framework Primary Purpose | Key Domains | Clinical Integration | Current Uptake
Addressed Readiness in Cancer Al
Studies (2015-
2025)
TRIPOD-AI Reporting of | Model specification, | Moderate—primarily | Increasing
(Transparent Reporting | prediction and | data transparency, | supports retrospective | adoption since
of a  multivariable | diagnostic model | performance model reporting; | 2021; cited in
prediction model for | development and | metrics limited clinical | several radiomics
Individual Prognosis Or | validation usability guidance and pathology
Diagnosis—AlI studies
extension)
CONSORT-AI Reporting Prospective High—direct clinical | Limited uptake;
(Consolidated Standards | randomized evaluation, human | trial applicability only a few
oversight,
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of Reporting Trials—AI | controlled trials | participant safety, oncology trials
extension) involving Al bias management employ it
DECIDE-AI Early-stage clinical | Human-Al High—focus on | Rarely used;
evaluation of Al | interaction, integration into real- | emerging in
decision support workflow usability, | world clinical settings | imaging CDSS
decision confidence prototypes
PROBAST-AI Risk of bias and | Bias detection, | Moderate—enhances Often applied
applicability applicability methodological quality | during systematic
assessment scoring review reviews and model
audits
STARD-AI Diagnostic Ground-truth Moderate—specific to | Increasingly cited
accuracy reporting | labeling, image | imaging Al in radiology
quality, diagnostic diagnostic studies
thresholds

This table synthesizes key evaluation frameworks identified across included studies and methodological reviews [23, 42]. Framework adoption
remains inconsistent, with TRIPOD-AI dominating retrospective research while CONSORT-AI and DECIDE-AI are under-represented in oncology Al
trials.

3.3.4. Multi-site and African Context.

Most multi-site validations originated from federated learning studies in China and Europe. No African study included
multi-institutional validation; most were single-center analyses with internal validation only. Given the heterogeneity
of African healthcare systems, this limitation raises concerns about generalizability and emphasizes the need for
regional benchmarking consortia.

3.3.5. Technology Readiness and Evidence Gaps.

Taken together, the evidence base suggests that while many Al models for cancer diagnosis achieve high internal
performance (AUC >0.90), their evaluation maturity lags. With few prospective validations and minimal reporting on
calibration, drift monitoring, or clinical workflow integration, the majority of studies remain at TRL 3-5 (development
to retrospective validation). Robust benchmarking across diverse populations, particularly in LMICs, is notably absent.

3.4. Deployment Evidence

While most studies stopped at retrospective validation, a subset reported on deployment-oriented features, offering
insights into how Al models can be integrated into clinical workflows.

3.4.1. Human-in-the-loop integration.

Several imaging and pathology studies incorporated human-in-the-loop designs, where Al outputs served as decision-
support rather than replacements for clinicians. For example, Bulten et al’s prostate pathology system provided
suggested Gleason scores for pathologists, who retained final judgment [9]. This approach reduced inter-observer
variability and improved efficiency while maintaining accountability. Similarly, dermoscopy-based skin cancer systems
were evaluated for triage support rather than autonomous diagnosis, demonstrating increased throughput in
dermatology clinics.

3.4.2. Workflow adaptation.

Only a minority of studies explicitly examined how Al systems would fit into existing workflows. In lung and gastric
cancer imaging, Al was primarily assessed as an add-on tool for radiologists, with limited reporting on workflow
disruption or adaptation. None of the African studies detailed workflow integration, reflecting the early-stage nature of
these pilots. This gap underscores the need for implementation science approaches to bridge Al development and
clinical adoption.

3.4.3. Edge and federated deployments.

Deployment in resource-constrained contexts was reported in only two studies. Kaushal et al. demonstrated the
feasibility of deploying an offline-first cervical cancer pathology system in India, using low-power edge devices with
periodic synchronization [5]. Similarly, Wang et al. tested federated learning for breast cancer mammography across
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multiple hospitals in China, highlighting privacy preservation and cross-institutional collaboration [23]. These studies
represent early attempts to address bandwidth, privacy, and data governance challenges relevant to LMICs and Africa.

3.4.4. User experience and trust

Few studies incorporated structured usability testing or clinician trust assessment. Explainable Al (XAI) tools, such as
saliency maps and SHAP plots, were occasionally included to improve interpretability, but their impact on clinician
decision-making was rarely quantified. This indicates a significant evidence gap in measuring deployment success
beyond accuracy metrics.

3.4.5. Summary.

Deployment-focused studies remain scarce, with most research concentrated on model development and validation.
The small number of edge and federated pilots suggest promising pathways for LMIC and African settings, but the lack
of systematic evaluation of workflow integration, user experience, and real-world performance constrains readiness for
scale.

3.5. Technology Readiness Levels (TRLs)

The included studies were assessed against the Technology Readiness Level (TRL) framework, adapted for healthcare
Al to reflect stages from proof-of-concept (TRL 1-2) through to clinical deployment (TRL 8-9).

3.5.1. Early-stage development (TRL 2-3).

Approximately 30% of studies (6/20) were limited to early-stage internal validation using retrospective single-
institution datasets. These included exploratory applications of reinforcement learning for adaptive diagnostic
sequencing [16], Bayesian modeling for brain tumor MRI [18], and small-scale ML studies from African settings [Ali et
al.,, Olatunji et al.].

3.5.2. Intermediate validation (TRL 4-5).

The majority of studies (10/20; 50%) were situated at TRL 4-5, reflecting retrospective validation with external
datasets or participation in public benchmarking challenges. Examples include CNN-based pathology systems validated
on TCGA and CAMELYON datasets [9,10], as well as hybrid ML approaches integrating genomics and clinical features
[7,8]. These systems demonstrate technical maturity but lack prospective evaluation.

3.5.3. Advanced validation and pilot deployment (TRL 6-7).

A smaller group (4/20; 20%) progressed to advanced validation or clinical pilot testing. Notably, Jiang et al.’s gastric
cancer transformer model was tested in a prospective clinical trial [3], while federated learning for breast
mammography demonstrated multi-site feasibility [23]. Edge Al pilots for cervical cancer diagnosis in India also reached
TRL 4-5 with deployment potential [5].

3.5.4. Clinical integration (TRL 8-9).

None of the included studies achieved TRL 8-9, corresponding to routine clinical integration or large-scale deployment
in cancer diagnostic workflows. Even the most advanced systems remained in pilot or trial phases, underscoring the
gap between technical performance and real-world adoption.

Overall, the evidence landscape is weighted toward TRL 3-5, highlighting robust technical development but limited
clinical translation. Importantly, the few studies approaching TRL 6-7 originated in high-income settings, with no
African study progressing beyond TRL 3. This imbalance underscores the urgent need for prospective validation and
deployment research in underrepresented regions.
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Legend:

« Horizontal bars represent the average Technology Readiness Level (TRL) assigned to each Al technique based on evidence from 2015-2025

literature.
« Color coding conveys technological maturity:
I Green (TRL 7-9): Clinically validated or deployed systems, demonstrating reproducible performance and some regulatory readiness.

Yellow (TRL 5-6): Prototype or applied-research stage, validated retrospectively or in pilot trials but not yet fully integrated into clinical

workflows.
B Red (TRL 1-4): Early experimental concepts or proof-of-principle methods with limited clinical evidence.
* Numerical labels (e.g., TRL 6, TRL 8) indicate the central readiness estimate for each approach.
« Data source: Synthesized from peer-reviewed studies in PubMed, Scopus, IEEE Xplore, and Web of Science (2015-2025).
o Interpretation: CNNs and gradient-boosting models occupy the highest maturity levels, while reinforcement learning and hybrid symbolic-ML
systems remain exploratory.

Figure 3 Technology Readiness Levels (TRLs) of Al Techniques for Cancer Diagnosis

To evaluate the maturity of Al techniques applied in cancer diagnosis, we mapped each methodological category to corresponding Technology
Readiness Levels (TRLs) following healthcare-adapted frameworks (Table 2). CNN-based imaging applications reached the highest TRL (7-8), while
self-supervised and reinforcement learning approaches remain primarily at early research stages (TRL 3-5).

4. Discussion

4.1. Critical Synthesis of Findings

This scoping review mapped 20 studies on Al in cancer diagnosis published between 2015 and 2025, revealing a
landscape characterized by technical promise but uneven clinical maturity.

4.1.1. Mature techniques.

Convolutional neural networks (CNNs) applied to radiology and histopathology dominate the field, with multiple
studies achieving strong external validation across breast, lung, and prostate cancers [1,2,9]. Transformer architectures
have also advanced rapidly, with gastric cancer detection in a prospective trial representing the highest TRL (6-7)
among the included studies [3]. Federated learning is emerging as a practical pathway for cross-institutional
collaboration while safeguarding patient privacy [23]. These methods can be considered the most mature, with clear
translational potential.

4.1.2. Experimental techniques.

By contrast, reinforcement learning, Bayesian methods, and hybrid symbolic-ML systems remain largely experimental,
confined to small-scale or simulated studies (TRL 2-3). While they address key challenges, uncertainty quantification,
workflow optimization, and interpretability, their clinical validation is minimal. Similarly, data-efficient paradigms such
as self-supervised learning and transfer learning show strong promise in overcoming data scarcity but remain at early
validation stages (TRL 3-4).
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Cross-cutting challenge: evidence standards.

A critical weakness across all techniques is the lack of prospective clinical validation. Only two studies reported
prospective trials [3,5], while uptake of frameworks such as TRIPOD and CONSORT-AI was negligible. This limits
reproducibility and slows translation from proof-of-concept to deployment.

4.2. Deployment Challenges as Systemic, Not Regional

The barriers to deploying Al in cancer diagnosis are often framed as challenges specific to Africa or LMICs, yet the
evidence suggests they are systemic global issues. Across settings, Al models face:

Data heterogeneity (scanner protocols, annotation variability).
Workflow disruption (integration with PACS, LIS, or EMRs).
Trust deficits (black-box predictions without calibration).
Regulatory uncertainty (lack of harmonized Al standards).

What differs in Africa is not the type of challenge, but the intensity of resource constraints that magnify them. Limited
bandwidth, underfunded pathology infrastructure, and fragmented registries sharpen problems already present
elsewhere. Framing Africa’s obstacles as “unique” risks obscuring the fact that even in high-income countries, most Al
systems remain stuck at TRL 4-5.

4.3. Africa as a Living Laboratory for Innovation

Despite underrepresentation in the evidence base, Africa should be viewed not as lagging but as an innovation testbed.
Pilots in Nigeria and Kenya, though limited to small datasets, demonstrate how machine learning models can be tailored
to resource-scarce contexts. More importantly, frugal innovations emerging from African deployments, such as edge Al
for offline-first cervical cancer screening [5] or mobile telepathology platforms, offer lessons for the global field.

For example, federated learning in Africa could address both data scarcity and governance, producing models trained
across multiple hospitals without requiring centralization of sensitive datasets. Similarly, SMS- or USSD-based
interfaces for CDSS integration could inform workflow adaptations in underserved rural communities globally. In this
sense, Africa functions as a “stress test” for deployment: if an Al model can be designed to function under African
constraints, it is likely to be robust enough for global scalability.

Table 3 Barriers and Enablers in African Implementation

Domain Barrier Description Enabler / Emerging Innovation Illustrative Example or
Initiative

Data Fragmented or paper- | Federated learning enabling | WHO AFRO’s Digital Health

Infrastructure based health records; | decentralized data use; regional | Atlas (2022) [48] and local
limited cancer registries | cancer registries with standardized | federated-data  pilots in

formats Nigeria & Kenya [29]

Computational Scarce GPUs and | Edge Al and cloud-hybrid models | Edge inference pathology

Capacity unreliable power supply | optimized for low bandwidth project, Kigali (2023) [30]

Regulation & | Absence of Al regulatory | African Union Al Strategy (2022) | African Union Commission

Governance frameworks; inconsistent | and AUDA-NEPAD Data | [14]; AUDA-NEPAD [32]
data-sharing laws Governance Framework (2021)

Workforce Skills | Shortage of biomedical | Multidisciplinary training hubs and | AfDB Digital Economy for
data  scientists  and | diaspora knowledge exchange Africa (DE4A) Program [15]
clinical informaticians

Trust & Ethics Limited clinician trust in | Explainable Al = (XAI), local | XAl frameworks applied to
“black-box” Al; cultural | validation, and  participatory | radiology CDSS prototypes
sensitivity gaps design [33]

463



World Journal of Advanced Research and Reviews, 2025, 28(01), 449-468

Barriers and enablers summarized from empirical studies [29-32], regional policy frameworks [13-15], and WHO reports [31, 48]. Africa’s
challenges mirror global systemic issues, yet local innovations, federated learning, edge deployment, and participatory governance, offer scalable
pathways for equitable Al implementation.

4.4. Ethics, Governance, and Equity

Ethics in Al for cancer diagnosis must move beyond compliance checklists to a vision of long-term sustainability and
equity. The lack of demographic diversity in training datasets risks embedding structural biases, with none of the
reviewed studies reporting subgroup performance by ethnicity. Without equity audits, Al may exacerbate disparities in
cancer outcomes.

Governance frameworks such as the WHO’s 2023 Al ethics guidance and the African Union’s digital policy framework
emphasize local capacity-building, transparency, and data sovereignty. Federated learning aligns with these principles
by ensuring communities retain control over their data. Similarly, the use of model cards and dataset documentation
should become standard practice to support interpretability and accountability.

For Africa, governance is not optional, it is a prerequisite for sustainability. Systems must be designed with local
ownership, maintenance, and workforce training in mind; otherwise, Al risks becoming yet another imported
technology that fails after donor funding ends.

4.5. Research Gaps and Future Directions

This review identifies several critical gaps that should guide the next decade of Al research in cancer diagnosis:

e Prospective and multi-site validation. Only two studies advanced to this stage; rigorous trials are needed across
diverse populations.

e Standardization of evaluation. Uptake of TRIPOD and CONSORT-AI must increase, alongside reporting of
calibration and drift monitoring.

e African-led data consortia. Regional cancer registries and federated data-sharing initiatives are essential for
equitable model training.

e Trust and interpretability. Bayesian calibration, explainable Al tools, and clinician-facing dashboards need
systematic assessment.

o Infrastructure-aligned deployment. Edge Al, offline-first workflows, and mobile health integration should be
prioritized for LMICs.

e Hybrid approaches. Combining symbolic reasoning with ML/DL could bridge interpretability and accuracy
gaps, but evidence remains sparse.

By addressing these gaps, Al in cancer diagnosis can move from isolated pilots toward sustainable, equitable
deployment. Importantly, lessons from African innovation should not be siloed but leveraged as global design principles.

5. Limitations and Recommendations

5.1. Limitations

This review has several limitations that should be acknowledged. First, the scope was limited to peer-reviewed
published literature, with grey literature, conference proceedings, and industry reports underexplored. This may have
excluded relevant implementation case studies, especially from LMICs where pilots are less likely to appear in indexed
journals. Second, there was marked heterogeneity in reporting standards across studies. Many papers lacked details on
dataset size, preprocessing, or validation strategy, limiting comparability and synthesis. Third, while this review aimed
to assess global and African perspectives, the African evidence base remains sparse, with only a handful of studies
meeting inclusion criteria. This underrepresentation highlights both a gap in the literature and a limitation of the
review’s comprehensiveness.

5.2. Recommendations

Future research should broaden evidence gathering to include grey literature, technical reports, and ongoing pilot
studies, especially in LMICs, to capture a fuller picture of deployment realities. The adoption of standardized reporting
frameworks such as TRIPOD-AI and CONSORT-AI should be prioritized to improve transparency and reproducibility. In
addition, investment in African-led data infrastructure and research consortia is critical to generate regionally
representative evidence. Funding agencies and policymakers should encourage collaborative networks that support
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multi-site validation, federated data-sharing, and the development of locally governed Al pipelines. Finally, journals and
conferences can play a role by mandating structured reporting of model calibration, bias assessments, and subgroup
analyses to advance equity in Al-driven cancer diagnostics.

6. Conclusion

This scoping review demonstrates that artificial intelligence for cancer diagnosis is at a critical crossroads. On one hand,
mature techniques such as convolutional neural networks, transformers, and federated learning are showing strong
technical performance, with select models advancing toward clinical validation. On the other hand, experimental
methods—including reinforcement learning, Bayesian inference, and hybrid symbolic-statistical systems, remain
confined to small-scale or proof-of-concept studies. Across all techniques, the evidence base is constrained by limited
prospective trials, inadequate standardization, and underrepresentation of African populations.

The central thesis of this review is that Al in cancer diagnosis must be both globally rigorous and locally adaptable. The
barriers to deployment such as trust, workflow integration, and regulatory uncertainty, are systemic challenges, not
unique to Africa. Yet Africa, with its resource constraints and need for frugal innovation, offers a living laboratory where
solutions such as edge Al, offline-first deployments, and federated governance can be stress-tested in ways that benefit
the global field.

Moving forward, developers must prioritize transparency and interpretability, designing models that communicate
uncertainty and support clinician trust. Policymakers and regulators should invest in interoperable infrastructure and
adopt harmonized evaluation frameworks such as TRIPOD-AI and CONSORT-AIL Most importantly, African-led research
consortia are urgently needed to build representative datasets, conduct multi-site validations, and ensure equitable
governance of Al pipelines.

If designed inclusively and evaluated rigorously, Al can transform cancer diagnostics from a source of inequity into a
driver of global health justice. The call-to-action is clear: to turn today’s innovation into tomorrow’s equitable
deployment, Al must be built not only for Africa but also with Africa, ensuring that local solutions shape global
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