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Abstract 

Quantum machine learning (QML) is an emerging interdisciplinary field which incorporates some features of quantum 
computing with machine learning. Quantum hardware development has sparked research interest for AI scientists 
because it gives capabilities in high-dimensional data processing and simultaneous operation execution. The 
investigation within this paper traces the main features of QML by reviewing variational quantum classifiers (VQCs) as 
well as quantum kernels and hybrid quantum-classical models. VQCs serve as quantum parameterized circuits whose 
optimization process with classical feedback achieves quantum superiority for classification applications. Quantum 
kernels expand Hilbert space features to improve traditional kernel methods, thus proving their functionality in 
quantum feature space. Hybrid approaches unite NISQ hardware with classical systems, which makes QML applicable 
to real-world applications right now. (Rietsche et al., 2022; Tychola et al., 2023) An analysis explores separate functions 
and combined effects of these components, which enhance model performance, extend generalization, and boost 
computational efficiency. The paper discusses necessary knowledge first, along with existing applications, before 
analyzing them against traditional methods. The paper reviews current QML tools while exploring their operational 
readiness as well as practical issues and deployment barriers for broader adoption. The paper conducts an in-depth 
investigation of significant limitations that include hardware noise alongside questions regarding scalability and 
interpretability. This paper shows how QML will transform machine learning applications through its review of 
obstacles that must be resolved to achieve its complete potential development. The study presents researchers and 
practitioners with an extensive comprehension of QML developments and emerging paths for this revolutionary field. 

Keywords: Quantum Computing; Machine Learning; Quantum Machine Learning; Variational Quantum Classifiers; 
Hybrid Quantum-Classical Models 

1. Introduction

Breakthroughs have been achieved by classical ML across fields like image recognition, natural language processing, 
etc. Using huge information and improved PCs like neural systems help vector machines, and pack strategies, ML 
frameworks are great at example acknowledgment and prediction (Ian Jamesiasch, Patrick Zschech, and Lars Heinrich, 
2021). As datasets and model complexities grow exponentially, classical resources have too much of a challenge. 
Training deep models (as high dimensional parameters) and processing the massive dataset within reasonable time 
limits are bottlenecks (Paleyes, Urma, & Lawrence, 2022). As a result of these computational limitations, researchers 
have pursued alternatives with the hope of providing exponential speedups and solving intractable problems on 
classical systems. 

Quantum computing (QC) is a rapidly developing area in which the way of computation is fundamentally different. 
Classical bits are used to represent the ‘0 or 1’ type of values, but quantum bits (qubits) can exist in the superposition 
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of both states at the same time. Quantum entanglement, which is an intrinsic correlation between the qubits and 
quantum interference, allows for a unique form of parallelism, and with the help of some algorithms, one can solve the 
problem faster than one's classical counterpart (Hassija et al., 2020). The quantum advantage in factoring and searching 
has been proved in theory by notable quantum algorithms, such as Shor’s and Grover’s. Taking these principles further, 
there has been substantial interest in marrying quantum computing with ML, which has become a very promising 
frontier of research. The area at the junction of quantum computing and artificial intelligence is thus known as Quantum 
Machine Learning (QML). The goal is to take advantage of quantum hardware and quantum algorithms for greater 
efficiency and expressiveness of machine learning models as well as better performance in prediction. Some variational 
quantum classifiers are found (Blance & Spannowsky, 2021), quantum kernels to be used as support vector machines 
(Jäger & Krems, 2023), and hybrid quantum/classical models that stack quantum subroutines on top of classical 
processing (Brunken & Reiher, 2021; He et al., 2023a). 

The motivation for QML lies in both theoretical promise and the increasing availability of quantum hardware. This shift 
follows the introduction of Noisy Intermediate-Scale Quantum (NISQ) devices; three orders of magnitude that promise 
50 ~ 100 qubits yet still suffer from noise, and emphasize near-term applications that can tolerate noise (Claudino, 
2022). Such developments are already being realized in QML, with early theoretical explorations anticipating that these 
topics should reveal themselves once NISQ systems can be operated, and yet it is the appearance of NISQ systems that 
takes QML from a theoretical concept to an experimentally testable area (Motta & Rice, 2022; Lubinski et al., 2023). We 
also discuss the challenges in scaling a quantum model (Kottahachchi Kankanamge Don et al., 2024; Metawei et al., 
2023), generalizing the model, and deploying the model. 

QML is the main perspective that lies at the intersection of two computational trends: the quantum processor (QP) 
brings new computational strengths, and the amplitude of ML is imbued with data dependency, both of which together 
may redefine how we do learning from data, an approach that is more data driven, and, therefore more computation 
than intelligent. 

2. Quantum computing fundamentals for qml 

An entirely new information processing paradigm is introduced by quantum computing through the use of principles of 
quantum mechanics for the representation and manipulation of data that classical computers cannot access. In the case 
of Quantum Machine Learning (QML), to understand the mechanisms supporting QML, it is necessary to understand 
more deeply how quantum systems, e.g., quantum gates, circuits, and their computational peculiarities, behave. These 
concepts provide new ways of improving the properties of learning models, increasing computational capacity, and 
addressing problems previously thought to be intractable to classical methods. 

2.1. Quantum Gates, Circuits, and Measurement 

Classical bits, physical bits that are 0 or 1, can exist in a superposition between themselves – e.g., 0 and 1 simultaneously. 
Quantum gates implement reversible unitary transformations (such operation) to achieve and manipulate this 
characteristic. The Hadamard gate, analogous to the Z gate, creates an equal superposition, the Pauli X gate (a NOT gate 
counterpart) and the CNOT gate (or controlled-NOT gate) that entangles two states. 

Quantum operations are performed on a qubit register in a sequence, which is represented by a combination of such 
gates in quantum circuits. These circuits, especially variational quantum circuits (VQCs) are the basis of many models 
including variational quantum classifiers (Blance & Spannowsky, 2021), the success of quantum algorithms; in 
particular, QML. Measurement is the final operation in a circuit collapsing the qubit state to the classical value (either 0 
or 1) (the probability of which is dependent on the amplitude of the qubit before measurement) (Bardin, Slichter, & 
Reilly, 2021). 

Table 1 Common Quantum Gates and Their Functions 

Gate Symbol Function Example Use 

Hadamard H Creates superposition Initializes qubits 

Pauli-X X Bit-flip Acts like NOT gate 

CNOT CX Entangles qubits Used in quantum circuits 
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2.2. Quantum Circuit Complexity and Computational Advantage 

Depth (number of gate layers) and width (number of qubits used) are the means for evaluating quantum circuits. The 
computational complexity of the algorithm and its feasibility in being implemented on current quantum hardware 
depends on these parameters. Although there are many examples where quantum circuits provide a computational 
advantage over equivalent classical circuits, e.g., when the output state is specified by an NP-complete problem, a 
primary motivation for using quantum circuits for machine learning tasks is a possibly forthcoming point in time, 
quantum advantage, where the quantum algorithm outperforms any (known) classical algorithm in terms of, perhaps 
computational or communication runtime, or resource efficiency. 

Similarly, theoretical speedups in QML have also been derived from algorithms such as Shor’s algorithm for factorization 
and Grover’s search algorithm (Lubinski et al., 2023). Variational quantum models execute a parameterized quantum 
circuit combined with classical gradient descent or other similar optimization techniques (Miyahara & Roychowdhury, 
2022). In so doing, this hybrid approach makes better function approximation than deep neural networks with fewer 
parameters. 

2.3. Quantum Parallelism and Interference: Implications for ML 

Superposition allows a quantum computer to execute a quantum parallelism and process an immense number of input 
states at the same time. In the case of a VQC, a qubit can represent many states at the time of initialization, so quantum 
gates act on these states from exponentially large Hilbert space. This allows quantum models to be supplied access to 
features and patterns that are invisible or too costly to calculate classically (Jäger & Krems, 2023). 

Quantum interference also guarantees that desirable computational paths support each other and that erroneous paths 
are wiped out. This is crucial for amplifying correct classifications in quantum models, such as support vector machines 
and neural networks with quantum enhancements (Gupta et al., 2023). Parallelism and interference, together, 
constitute the source of the expressive power of quantum models and their ability (in principle) to outperform their 
classical counterparts in problems with high dimensional and structured data. 

2.4. Challenges in Quantum Computation 

Theoretical benefits are substantial, but quantum computing is far from easy to practice. Related problems that are chief 
among them include decoherence the loss of quantum properties of a quantum system due to interaction with the 
environment. However, the slightest noise can collapse a qubit’s state early, which is extremely hard to overcome when 
keeping computations along long circuits (Hassija et al., 2020). Therefore, there is a need for quantum error correction 
(QEC), which encodes the logical qubits into several physical qubits for noise protection. However, the use of QEC brings 
substantial overhead. Due to short coherence windows and shallow circuits, most of quantum algorithms (including 
QML models), must be implemented on today’s noisy intermediate scale quantum (NISQ) devices within short 
coherence windows and use shallow circuits (Brunken & Reiher, 2021; He et al., 2023b). 

Therefore, hybrid quantum‐classical models are currently the most accessible ones. The models referred to these as 
quantum circuits for parts of the computation (e.g., feature encoding, kernel evaluation, or sampling) and classical 
processors for optimization and decision (Metawei et al., 2023). 
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Figure 1 Overcoming Challenges in Quantum Computing 

2.5. The Quantum Software and Hardware Ecosystem 

In recent years, the quantum computing ecosystem has seen great advances across hardware and software platforms 
to aid the research and deployment of QML in the real world. Major players include: 

• Quantum programming on superconducting qubit-based machines provided by IBM Q 
• Forest SDK and quantum hardware will be provided by Rigetti Computing through the cloud. 
• Their use of trapped ion technologies that should have longer coherence times; 
• Xanadu is focused on photonic quantum computing, with its specific aim being to develop and supply the PennyLane 

library, which focuses on quantum machine learning (Claudino, 2022; Chen & Yoo, 2021). 

Some of these tools enable the development of VQCs, quantum kernels, quantum neural networks, and integrate with 
classical ML libraries such as TensorFlow and PyTorch. In particular, gradient based optimization on quantum circuits 
is available directly in PennyLane, making it well suited for training variational models in QML. 

Table 2 Quantum Data Encoding Strategies 

Encoding 
Method 

Description Qubits 
Required 

Advantages Limitations 

Angle Encoding Maps features to qubit 
rotation 

O(n) Simple and hardware-
friendly 

Limited feature 
entanglement 

Amplitude 
Encoding 

Encodes data in state 
amplitudes 

O(log n) Efficient 
representation 

Complex state 
preparation 

Basis Encoding Direct binary mapping to 
qubit state 

O(n) Intuitive interpretation Low information density 
per qubit 

3. Core QML techniques: VQCS and quantum kernels 

3.1. Variational Quantum Classifiers (VQCs) 

Variational Quantum Classifiers (VQCs) are a prominent class of hybrid algorithms at the heart of quantum machine 
learning, which requires quantum computing to solve a problem that can be assisted by classical optimization. 
Parametrized quantum circuits (PQCs) are parametrized by tunable parameters of quantum gates. A classical feedback 
loop optimizes these parameters to minimize a task-specific cost function (Miyahara & Roychowdhury, 2022). 
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Encodings of classical input data into quantum states using a data embedding scheme (generally amplitude or angle 
encoding) form part of the general workflow of a VQC. The second part of this thesis involves the application of a 
parametrized quantum circuit to transform the encoded input into a representation that separates the data classes. 
Based on the measured output, the probabilities are used to compute a cost function, which will usually be cross-entropy 
or mean squared error and minimized using gradient-based or gradient-free optimizers (Tanwar, 2024) (Maheshwari 
et al., 2022). 

Table 3 Comparison of VQCs vs Classical Classifiers 

Feature VQC (Quantum) Classical Classifiers 

Model Type Parametrized quantum circuit SVM, Logistic Regression, etc. 

Data Encoding Quantum feature maps (angle, etc.) Vectorized feature arrays 

Optimization Process Hybrid quantum-classical loop Gradient descent or similar 

Computational Demand Requires quantum simulator/hardware Fully classical 

Expressiveness Potentially exponential Depends on kernel/architecture 

Barren plateaus regions of vanishing gradients are prevalent in the training process of VQCs (Miyahara & 
Roychowdhury, 2022). Recently, attempts have been made to address this problem with better circuit architectures and 
initialization schemes (Kottahachchi Kankanamge Don, Khalil, & Atiquzzaman, 2024). Furthermore, the approach of 
measurement strategy and cost function for modeling indoor navigation also affects the convergence and generalization 
of the model (Maheshwari, Sierra-Sosa, & Garcia Zapirain, 2022). 

VQCs have promise from the performance standpoint, which has been demonstrated in tasks on synthetic datasets and 
domain-specific applications. For example, Maheshwari, Garcia Zapirain, and Sierra Sosa (2022) conducted a systematic 
review and concluded that some VQCs outperformed certain classical relatives in small data sets. Rather similarly, 
variational classifiers have been used in high energy physics for event classification tasks, obtaining similar accuracy to 
more classical models at the price of working in a smaller, more compact representation of the features (Blance & 
Spannowsky, 2021). One particularly relevant case study is implementing a VQC to distinguish real and synthetic 
datasets. Here, the classifier was trained to generalize across data distribution using fewer training samples than a 
classical model would need and driven by the expressiveness of the quantum circuit (Maheshwari, SierraSosa, and 
GarciaZapirain, 2022). Moreover, VQCs are inherently quantum objects that work with exponentially large Hilbert 
spaces and can project the inputs onto higher dimensional spaces more efficiently than classical deep networks (Jäger 
& Krems, 2023). 

However, implementation of VQCs in real world is still limited by the hardware limitations (qubit decoherence and also 
noise). These factors limit the depth and expressivity of circuits which may be run on present NISQ devices (Lubinski et 
al., 2023). Therefore, the research direction of developing the error resilient VQC architectures still remains critical. 

3.2. Quantum Kernels and Feature Space Expansion 

Kernel methods are the foundation of classical machine learning and are present in such well‐known algorithms as the 
Support Vector Machines (SVMs), which make use of implicitly mapping the input space to higher dimensionality feature 
space. The kernel function itself computes the inner product between data points after being transformed by said 
function, which is the so-called kernel trick. 

Quantum-enhanced kernels push this idea further by using quantum circuits to accomplish the mapping. In particular, 
input vectors are encoded into quantum states, and a quantum feature map is used. The quantum kernel is the fidelity 
between quantum states, which is the inner product between the quantum states (Jäger & Krems, 2023). It enables the 
computation of similarities in exponentially large Hilbert spaces, with a potential quantum advantage, for separating 
complex data distributions. 

The kernel matrix is constructed by estimating fidelities between all pairs of inputs through a Quantum Kernel 
Estimation (QKE) protocol, and hence, quantum kernels are typically evaluated this way. Then these matrices are fed to 
classical kernel-based classifiers (SVMs, Blance & Spannowsky, 2021). The authors Jäger and Krems (2023) 
demonstrated that quantum kernels can achieve universality in which they can represent a variety of decision borders 
with a shallow quantum circuit. However, in the past, quantum kernel methods have been investigated in the case of 
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high-energy physics, where traditional feature engineering is computationally expensive. However, the work of Guan et 
al. (2021) has shown that a process similar to this could be automated with the assistance of QML techniques, such as 
quantum kernels, to improve classification performance in particle ID tasks. The same is the case for quantum kernel 
methods in the biomedical domain using binary classification problems with small to medium data sets (Maheshwari, 
Garcia-Zapirain, & Sierra-Sosa, 2022). 

Furthermore, similarity matrices are also central to unsupervised learning tasks, and quantum kernels have the 
potential in such tasks, e.g., clustering. The less explored notion is that early stage research shows how quantum 
enhanced similarity metrics can improve clustering algorithms with a better representation of complex dataset latent 
structure (Metawei et al., 2023). Although these have the advantage, there are also some limitations to be recognized. 
Quantum kernel methods are not scalable in large datasets, all pairwise fidelities are impossible to estimate in 
reasonable time due to exponential growth in the computations, as well as the limited coherence time of quantum 
computers (Lubinski et al., 2023). Additionally, quantum feature maps are not very interpretable. Since quantum 
kernels act in somewhat abstract spaces, it is hard to have intuition with regard to the model behavior, unlike classical 
kernels that have custom basis functions (RBF and polynomial kernels) (Roscher et al., 2020; Rudin et al., 2022) 
(Paleyes, Urma, & Lawrence, 2022). 

In order to counter these issues, hybrid strategies are being designed based on complementarity between quantum 
feature extractors and classical post-processing. These achieve partial quantum advantage with proxy use of classical 
resources for kernel PCA or model explanation (Brunken & Reiher, 2021). On the other hand, the use of parameterized 
quantum feature maps (which are in this form reminiscent of the VQCs) is receiving attention as a tool that can be used 
in different problem domains. 

Thus, VQCs and quantum kernels are two of the most mature and theory-backed approaches in quantum machine 
learning today. Quantum kernels utilize data embedding into a rich, high-dimensional space with the goal of exploiting 
structural differences, while VQCs train quantum circuits as trainable models with classical techniques. The merits of 
both approaches demonstrate that the future of QML lies in hybrid quantum-classical architectures and shows the 
promise of future QML use cases to solve intractable problems on classical methods and, in particular, problems of low 
data and high complexity. 

 

Figure 2 Quantum Kernel Methods in Machine Learning 
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4. Hybrid quantum-classical architectures 

With the onset of the Noisy Intermediate-Scale Quantum (NISQ) era of quantum computing, where it suffers from 
limited qubit counts and imperfect quantum gates, hybrid quantum-classical architectures are emerging as an agile 
approach to benefit quantum advantage with the constrained hardware (Burić et al., 2013; Brunken & Reiher, 2021). 
They consist of quantum computing subroutines located strategically within classical workflows so that tasks like 
learning, optimization, and simulations can be carried out for quantum system design without fault-tolerant quantum 
systems. 

4.1. Architectural Design: Embedding Quantum Layers 

In the hybrid architectures, quantum layers appear as part of the classical neural network models. Parameterized 
quantum circuits (PQCs) can be constructed to act as parameterized trainable modules that can be used as quantum 
layers. In training, classical optimization algorithms are used to optimize (i.e., adjust) the parameters of the quantum 
circuit using gradients (or loss feedback). This is another variational quantum algorithm (VQA) (Miyahara & 
Roychowdhury, 2022; Kottahachchi Kankanamge Don et al., 2024). 

An example of such approach is Quantum Neural Networks (QNNs). Quantum circuits are sandwiched between classical 
pre-processing and post-processing stages in order to build them. It has been shown that a subclass of QNNs, notably 
the variational quantum classifier (VQC), is promising in classification task by optimizing a cost function defined over 
quantum measurements (Blance & Spannowsky, 2021; Maheshwari et al., 2022). 

The other important approach is the Quantum Approximate Optimization Algorithm (QAOA), which solves 
combinatorial optimization problems by combining quantum evolution with classical parameter updates. However, 
QAOA is most applicable for optimization problems in which classical heuristics are not scalable or sufficiently accurate 
(Lubinski et al., 2023). 

4.2. Real-World Applications 

Hybrid quantum-classical systems have already been applied to several domains. QNNs have been applied to image 
recognition where low dimensional images e.g., MNIST digits have been classified with very good accuracy, yet they are 
able to capture data structure that classical models may miss (Senokosov et al., 2024) (He et al., 2023a). To encode 
textual data into quantum state (quantum encodings), natural language processing (NLP) has explored hybrid models 
that operate the semantic PQC based transformations (Metawei et al., 2023). 

Of all the hybrid methods, none have had more impact on quantum chemistry. Hybrid quantum classical treatment of 
lithium ion transfer reactions at graphite electrolyte interface has provided new insights at the atomic level to the 
battery performance (He et al., 2023b). Likewise, the electrostatic effects simulations conducted in quantum dots using 
hybrid models have resulted in higher accuracy than what purely classical models have obtained (Liu et al., 2017). 

There has also been potential in quantum–classical fusion for healthcare. Consequently, in these studies, Gupta et al. 
(2023) argue that hybrid quantum models could drastically improve diagnostic accuracy and efficiency in the post-
COVID-19 healthcare ecosystem by accelerating the computational complexity of complex pattern recognition tasks that 
overwhelm current classical systems. 

4.3. Tools and Frameworks 

Several open-source frameworks have appeared to support research and development in QML. Qiskit Machine Learning 
(IBM developed) provides a means to construct and run quantum circuits within scikit learn pipelines. The Xanadu 
created PennyLane is an API that allows quantum layers to work with classical machine learning toolkits such as 
PyTorch and TensorFlow. Automatic differentiation is required for training hybrid models, and it supports that 
(Brunken & Reiher, 2021). 

Google develops TensorFlow Quantum (TFQ), which brings quantum computing to the TensorFlow ecosystem and 
empowers researchers to compose quantum enhanced machine learning applications quite easily. This abstracts much 
of the difficulty of quantum circuit design so that a broader range of quantum design participants from the classical ML 
community can participate (Claudino, 2022). 
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4.4. Benchmarking Against Classical Models 

Performance benchmarking is, without a doubt, one of the critical concerns in the hybrid QML landscape. Tasks of 
classification, regression, and clustering have been performed using classical deep-learning counterparts and compared 
to QML models in comparative studies. Although, at the current quantum scales, hybrid models do not generally 
outperform classical models, it is shown that they generalize well on specific synthetic datasets and have potential 
advantages in learning entangled data distributions (Maheshwari et al., 2022; Jäger & Krems, 2023). 

Lubinski et al. (2023) proposed application-oriented benchmarks that factor in both quantum hardware limitations and 
end-task performance. The importance of utilizing practical evaluation metrics for comparing quantum and classical 
models is emphasized, due to such metrics being defined by metrics such as accuracy-per-runtime and parameter 
efficiency. 

Hybrid models are close to the hardware bottlenecks, and are attempting to push the modern boundaries. With 
increasing capabilities of quantum hardware, these hybrid frameworks are on their way to leap from experimental tools 
to practical solutions for any field from drug discovery to logistics to finance. 

5. Current limitations and future directions 

Yet, as QML have been rapidly progressing, many technical and theoretical barriers stand in the way of practical 
deployment. Three major classes contributing to these problems are hardware limitations, algorithmic constraints, and 
societal issues that have not been fully addressed. Still, there is emerging research that provides directions to achieve 
scalable and impactful learning with quantum enhancement. 

5.1. Practical Barriers 

The primary limitation of QML is the existing QML hardware. Currently, most quantum devices are in the Noisy 
Intermediate Scale Quantum (NISQ) era, with very few qubits and lots of gate noise (Hassija et al., 2020). Are variational 
quantum classifiers (VQCs) potential in the small dataset? However, variational quanta classifiers (VQCs) are generally 
restricted by decoherence and circuit depth limitations inhibiting scalability (Ur Rasool et al., 2023) (Blance & 
Spannowsky, 2021; Miyahara & Roychowdhury, 2022). Encoding classical data into quantum states—namely quantum 
feature mapping—is computationally expensive and can even be unfavorable if not optimized properly (Jäger & Krems, 
2023). 

A workaround to hardware limitations has been to delegate part of the computation to classical processors via hybrid 
quantum classical models. Nevertheless, these systems also exhibit bottlenecks when it comes to data transfer latency 
and circuit training overhead (He et al., 2023) a, Brunken and Reiher, 2021). Finally, the classical interface presents 
itself as an expensive, complex to scale object. (Verbraeken et al., 2020) 

5.2. Algorithmic Limitations 

QML is very much in its infancy algorithmically. While quantum models are typically highly problem-specific, classical 
machine learning is a developed  research area with tens of years of development time and an assortment of general-
purpose algorithms that can be readily repurposed as needed by any problem. Despite their popularity, variational 
methods are heuristic and have heuristic guarantees of convergence and generalization (Maheshwari et al., 2022; 
Lubinski et al., 2023). Furthermore, there are no standard benchmarks to evaluate quantum learning models between 
tasks (Lubinski et al., 2023). 

In addition, while QML algorithms are complex to trust, most of them are still not very robust to noise and variation of 
input data (Chen & Yoo, 2021; Bardin et al., 2021). Thus, these algorithms are complex to adapt to in mission-critical 
domains like finance or even healthcare without further theoretical validation. 
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Figure 3 How to address the limitations of QML algorithms? 

5.3. Emerging Research and Theoretical Opportunities 

Despite these, research has been speedy. Lastly, there are new studies that proposed noise-resilient quantum circuits 
and adaptive learning algorithms that promote accuracy in the presence of noise (Metawei et al., 2023). The quantum 
advantage threshold, i.e., the point where the QML algorithm is more beneficial in practice than its classical counterpart 
(Kottahachchi Kankanamge Don et al., 2024), is also under active investigation. Co-design approaches to hybrid 
quantum-classical architectures that jointly optimize their quantum and classical components for better performance 
are becoming more complex (He et al., 2023b). 

QML could look forward transform fields of large scale computations like drug discovery, materials science or 
cryptography. Such as, quantum enhanced models can perform molecular interaction models with greater precision 
than classical counterparts (e.g. Motta & Rice, 2022; Claudino, 2022). Hybrids could fill a gap between data driven 
inference at real time and numerical simulation in scientific computing (Liu et al., 2017). 

5.4. Societal Implications 

The deployment of QML also raises significant societal questions. Now that quantum systems have started to be used in 
AI workflows, data privacy, algorithmic transparency, and equitable access to technology have become related matters 
of immediate importance. One way to obtain better privacy while still performing well at learning is to change how data 
processing is performed by moving it to the edge where data is generated (federated quantum learning), such as in Chen 
and Yoo (2021). Next, access to these quantum computing resources is currently limited but only accessible to elite 
institutions and corporations, which widens the technological divide (Gupta et al., 2023). 

The ethical use of powerful quantum-enhanced AI requires a large degree of prudence in avoiding unintended 
consequences of the AI and a preemptive resolution towards algorithmic bias and the governance of autonomous 
systems.  

Table 4 Challenges in Quantum Machine Learning and Potential Solutions 

Challenge Description Impact Possible Solutions 

Hardware Noise Qubit decoherence Reduces accuracy Error correction 

Scalability Limited qubit count Affects model size Modular hardware 

Interpretability Hard to decode quantum decisions Trust issues Hybrid models for transparency 

6. Conclusion 

At the core of Quantum Machine Learning (QML) there are pivotal components such as variational quantum classifiers 
(VQCs), quantum kernels, and hybrid quantum-classical architectures. In tasks of high dimensional data as well as 
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complex pattern recognition tasks, these models are potentially superior compared to classical algorithms (Jäger & 
Krems, 2023; Miyahara & Roychowdhury, 2022; Brunken & Reiher, 2021). Specifically, VQCs are promising since they 
are feasible with near-term quantum devices and also can be optimized with classical feedback communication loops. 
The theoretical underpinnings of QML are very compelling, but learning QML is a complex problem. However, scalability 
and error correction are limited by current qubit counts, gate fidelity, and decoherence times (Lubinski et al., 2023; 
Hassija et al., 2020). Despite the above, QML is starting to show some promising demonstrations in specific use cases 
during the NISQ era, such as particle physics (Blance & Spannowsky, 2021), quantum chemistry (Motta & Rice, 2022), 
and biomedical applications (Maheshwari, Garcia-Zapirain, & Sierra-Sosa, 2022). 

Interdisciplinary collaboration plays a very crucial role in the advancement of QML (Paleyes, Urma, & Lawrence, 2022). 
Collaboration on these efforts is crucial to guide the use of quantum feature encodings to optimality, enhance model 
interpretability, and remove engineering constraints. Despite the fact that QML is a maturing program, its path towards 
quantum advantage in machine learning is still plausible. Using prolonged innovation, QML can realize prodigious 
theoretical breakthroughs and hone efforts in cross disciplinary engagement in order to break the intellectual 
boundaries to what we can accomplish using intelligent systems. 
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