

Monitoring Changes in Airborne Bismuth Pollution and the Feasibility of Using *Robinia pseudoacacia* for Pollution Reduction

Ramazan ERDEM *

Department of Forestry, Kastamonu University, Arac Rafet Vergili Vocational School, Kastamonu, Türkiye.

World Journal of Advanced Research and Reviews, 2025, 27(03), 1982-1988

Publication history: Received on 21 August 2025; revised on 26 September 2025; accepted on 29 September 2025

Article DOI: <https://doi.org/10.30574/wjarr.2025.27.3.3373>

Abstract

Air pollution is one of the greatest threats to human health on a global scale today. Heavy metals, in particular, are harmful air pollutants even at low concentrations. Therefore, monitoring changes in the concentration of heavy metals in the air and reducing pollution are priority research topics. In this study, the feasibility of using *Robinia pseudoacacia*, cultivated in Düzce, where heavy metal pollution is known to be high, to monitor changes in Bi pollution in the air and reduce it was investigated. Within the scope of the study, changes in Bi concentration were evaluated based on organ, direction, and age range over the last 60 years. The study concluded that Bi pollution in the region is largely due to agricultural activities. The study determined that *Robinia pseudoacacia* is not a suitable species for monitoring changes in Bi pollution but can be used to reduce pollution.

Keywords: Heavy metal; Bismuth; Biomonitor; Phytoremediation; *Robinia pseudoacacia*

1. Introduction

Over the last century, industrial production has increased significantly due to the industrial revolution and developments in the technological field. The use of fossil fuels to provide the energy needed for production has significantly increased the CO₂ levels in the atmosphere [1]. Thus, global climate change has become the most significant global issue of our time [2-4]. Mining activities carried out to supply the raw materials needed in industry and the production process have released various elements into nature in large quantities. As a result, pollution has increased significantly and has become a problem that threatens both living beings and ecosystems [5-8]. The job opportunities created by the labor force required for industrial production have caused people to gather in certain areas, thus giving rise to the problem of urbanization [9-11]. Thus, pollution, global climate change, and urbanization, which are interrelated today, have become the most important and pressing issues on a global scale [12-14]. Moreover, global climate change and urbanization are now considered irreversible problems [15].

Among these problems, air pollution is the one that most affects human health. According to World Health Organization (WHO) reports, approximately 92% of the world's population currently lives in areas with poor air quality [16]. One in every eight deaths is linked to air pollution. Air pollution is reported to cause approximately 4 million premature births and 7 million human deaths each year [17-19]. The most harmful component of air pollution is heavy metals. This is because some heavy metals can be harmful, toxic, carcinogenic, and lethal to humans even at low concentrations [20-22]. Furthermore, they can remain in nature for a long time without decomposing. Moreover, even those that are essential as nutrients for living organisms can be harmful to health at high doses [23,24]. Heavy metals can be even more harmful when they are inhaled into the human body through the air [25]. Therefore, monitoring changes in airborne heavy metal pollution is of great importance.

* Corresponding author: Ramazan ERDEM

This study also attempted to determine the applicability of *Robinia pseudoacacia* in identifying changes in airborne bismuth pollution over time. Metallic bismuth and bismuth compounds, widely used in various industries, have low toxicity for humans; however, bismuth toxicity can occur in excessive doses depending on the area of application [26]. Therefore, monitoring changes in Bi pollution in the air is of great importance. One of the most commonly used methods for monitoring changes in heavy metal pollution in the air is tree annual rings. Dendrochronological studies reveal the presence of heavy metals from the past to the present [27-29]. However, not every tree may be a suitable biomonitor for determining the change in each element. Therefore, it is necessary to separately determine the tree species suitable for determining the change in each element. In this study, the suitability of *Robinia pseudoacacia* as a biomonitor for Bi was also investigated.

2. Material and methods

The study was conducted on *Robinia pseudoacacia*, which is important in both forestry and landscaping studies in our country and across Europe. Wood and bark samples were obtained from Düzce province, one of the five cities with the most polluted air in Europe according to the World Air Pollution Report 2021 [30,31]. Samples were taken in 2022 at the end of the vegetation period by cutting approximately 50 cm above the ground from the main trunk, with the north direction determined. The surface of the log brought to the laboratory was cleaned, and samples were taken from the wood, inner bark, and outer bark using a steel drill. Since the tree was 60 years old, the wood was grouped from the outside to the inside in five-year increments. Thus, 14 samples were taken, consisting of 12 pieces of wood, 1 inner bark, and 1 outer bark from each direction. Since samples were taken from 4 directions, 48 samples were studied.

The samples were first left on cardboard in a ventilated room for two weeks to dry to room temperature. The samples were then placed in glass Petri dishes and dried for 2 weeks in an oven at 45 °C. At the end of the drying process, a pre-combustion process was applied in a specially designed microwave oven. Bi analyses of the samples were performed using an ICP-OES device. The study was conducted in triplicate. The method used in this study has been widely used in related studies in recent years [32-34]. The data obtained were analyzed using the SPSS 22.0 software package, and variance analysis and Duncan's test were applied to the data. After the data were presented in tabular form, taking into account the results of the Duncan test, analyses and interpretations were made.

3. Findings

The mean values and statistical analysis results regarding the change in Bi concentration in *Robinia pseudoacacia* based on organ and direction are given in Table 1.

Table 1 Change in Bi concentration in *Robinia pseudoacacia* based on organ and direction

Organ	North	East	South	West	F Value	Average
OB	70571,5 AB	73412,2 aB	76893,6 C	69694,7 A	12,1**	72643,0
IB	70569,9 A	77840,5 bC	74865,1 B	71834,5 A	8,5*	74846,7
Wood	70710,2 A	73202,8 aB	75572,7 C	70602,7 A	17,6***	72451,2
F Value	0,7 ns	7,2**	0,8 ns	0,6 ns		1,4 ns
Average	70690,2 A	73549,0 B	75616,5 C	70625,8 A	22,6***	

Looking at the values in the table, it can be seen that the change in Bi concentration in *Robinia pseudoacacia* is statistically significant ($p<0.05$) in all organs based on direction. The lowest values based on direction were obtained in the west and north directions, while the highest values were obtained in the south direction in wood and outer bark and in the east direction in inner bark. According to the average values, the highest value was obtained in the south direction. The change in Bi concentration based on organ was statistically significant only in the east direction ($p<0.01$). In this direction, the values were grouped into two groups according to the Duncan test; the value obtained in the inner bark was in the second group, while the value obtained in the wood and outer bark was in the first group. The change in Bi concentration in *Robinia pseudoacacia* based on period and direction is given in Table 2.

Table 2 Change in Bi concentration in *Robinia pseudoacacia* based on period and direction

Period	North	East	South	West	F Value	Average
2018-2022	74258,6	74364,2	75265,5	73730,2 c	0,6 ns	74453,3
2013-2017	74012,5	71936,7	76197,1	73581,2v c	1,9 ns	73905,0
2008-2012	72483,2	73266,0	75717,4	71861,3 bc	2,4 ns	73614,9
2003-2007	60368,4	73165,7	76181,1	73669,2 c	1,3 ns	70846,1
1998-2002	70727,2 A	71707,1 A	75681,8 B	69829,2 abA	5,8*	71986,3
1993-1997	74465,8 B	74364,5 B	76282,4 B	69521,1 abA	6,9*	73658,5
1988-1992	71209,0 A	71774,5 AB	74915,5 B	69527,9 abA	4,4*	71856,7
1983-1987	70142,8 AB	73380,0 BC	75148,4 C	69250,5 abA	5,2*	71980,4
1978-1982	70320,0 A	73192,2 A	76557,6 B	70266,5 abA	9,4**	72584,1
1973-1977	69767,5 A	72979,1 B	75074,5 B	69224,0 abA	9,4**	71761,3
1968-1972	70645,0 AB	73701,5 B	73804,3 B	68113,7 aA	5,2*	71566,1
1963-1967	70122,2 A	74601,8 B	76047,2 B	68657,4 aA	13,9**	72357,1
F Value	0,8 ns	0,6 ns	0,3 ns	4,6**		0,6 ns

According to the results of the variance analysis, it was determined that the change in Bi concentration in *Robinia pseudoacacia* was only significant in the western direction based on organ. It can be said that Bi concentration has increased from the past to the present in this direction. Based on the average values, the change in Bi concentration by period is not statistically significant ($p>0.05$). Changes by direction are statistically significant in all periods before 2022. During these periods, the lowest direction-based values were obtained in the west, while the highest values were generally obtained in the south.

4. Result and Discussion

The study determined that the Bi concentration was above the detectable limits in all samples. This indicates that the Bi concentration in the environment is high. However, the lack of variation in Bi concentration between organs prevents obtaining information about Bi uptake into the plant body. This is because heavy metals can enter the plant body through leaves, roots, or stem sections [35]. The lack of variation between organs can be interpreted as indicating that Bi uptake through these pathways occurs at similar rates.

The study determined that the highest Bi concentrations were obtained in the wood and outer bark in the southern direction. Agricultural areas are located to the south of the study area. As is known, anthropogenic heavy metals originate primarily from industry [36], mining activities [37], vehicles [38], human activities in urban areas [39], and agricultural activities [40]. Various heavy metals are released into the environment as a result of fertilizers, pesticides, hormones, etc. used in agricultural production [40]. Based on these results, it can be assumed that the Bi contamination in the study area is due to agricultural activities.

The study found that the Bi concentrations in wood tissues were quite similar. This indicates that the Bi element can be transferred between wood tissues. As is known, in tree species that can be used to monitor changes in atmospheric heavy metal concentrations, the limited transport of heavy metals within the wood tissue is a desirable characteristic. Studies conducted to date have shown that each tree species can be suitable as a biomonitor for different heavy metals. For example, *Cedrus deodora* is suitable for Cu, *Picea orientalis* for Tl, *Cedrus atlantica* for Ni, Cr, and Mn, *Cupressus arizonica* for Cd, Ni, Cr, Tl, Fe, and Zn, *Corylus colurna* for Cd, Ni, Zn, Co, Pb, Cr, Mn, and Zn, and *Pseudotsuga menziesii* for Cr. This is because the transfer of these elements in the wood of these species is limited. However, *Cedrus deodora* is not a suitable biomonitor for tracking changes in Pb and Zn concentrations, *Pinus nigra* As, Sr, Pd, V, Ag, Se, Sb, and Tl concentrations, *Cedrus atlantica* Co concentrations, and *Cupressus arizonica* Bi, Li, and Cr concentrations [1,36,41].

Heavy metal accumulation can vary significantly between species and between organs within the same species [42]. This is because many factors simultaneously play a role in the uptake and accumulation of heavy metals in plants. The

entry and movement of heavy metals within plants are influenced by various factors, including plant species, organ structure, surface area, interactions between heavy metals and plants, and weather conditions [36,43]. This is because plant development is shaped by environmental factors [44,45]. However, the responses of plants to the same environmental conditions vary significantly depending on the plant species, i.e., its genetic structure [46-49]. The fundamental environmental factors affecting plant development are primarily climatic and edaphic factors [50-54]. Studies have shown that microclimatic and micro edaphic factors affect plant development and plant phenotypic characteristics more than macro factors [55-59]. Because plants can be stressed by many factors such as temperature, water deficit, frost, disease and pests, air pollution, and unsuitable climatic and edaphic factors, and in this case, plant growth and phenotypic characteristics are greatly affected [60,61]. In addition, activities such as hormone applications, pruning, irrigation, and fertilization can significantly affect plant development [62-64]. All these factors can directly or indirectly affect the entry and accumulation of heavy metals in plants.

5. Conclusion

Within the scope of this study, the concentrations of bismuth in the bark and wood of *Robinia pseudoacacia* were evaluated. The results of the study show that Bi concentrations in these organs are quite high. Based on this result, the *Robinia pseudoacacia* species can be used for phytoremediation to reduce Bi contamination.

The study found that the Bi concentration in wood varied within a narrow range. This result indicates that Bi can be transferred between wood tissues. Therefore, it can be said that the *Robinia pseudoacacia* species studied is not suitable for monitoring changes in Bi contamination.

It was determined that the Bi contamination in the study area was largely due to agricultural activities. It is recommended that the relevant authorities in the region conduct the necessary investigations and take effective measures against Bi contamination.

Compliance with ethical standards

Acknowledgments

I thank to Kastamonu University.

Disclosure of conflict of interest

The author declare that they no conflict of interest.

References

- [1] Sevik H, Yildiz Y, Ozel HB. (2024). Phytoremediation and Long-term Metal Uptake Monitoring of Silver, Selenium, Antimony, and Thallium by Black Pine (*Pinus nigra* Arnold), *BioResources*, 19(3). 4824-4837.
- [2] Cobanoglu H, Canturk U, Koç İ, Kulaç Ş, Sevik H. (2023). Climate change effect on potential distribution of Anatolian chestnut (*Castanea sativa* Mill.) in the upcoming century in Türkiye. *Forestist*, 73(3);247-256.
- [3] Ertürk N, Arıçak B, Şevik H, & Yiğit N. (2024). Possible Change in Distribution Areas of *Abies* in Kastamonu due to Global Climate Change. *Kastamonu University Journal of Forestry Faculty*, 24(1), 81-91.
- [4] Canturk, U., Koç, İ., Erdem, R., Ozturk Pulatoglu, A., Donmez, S., Ozkazanc, N. K., Sevik, H. & Ozel, H. B. (2025). Climate-Driven Shifts in Wild Cherry (*Prunus avium* L.) Habitats in Türkiye: A Multi-Model Projection for Conservation Planning. *Forests*, 16(9), 1484. <https://doi.org/10.3390/f16091484>
- [5] Sevik H, Ozel HU, Yildiz Y, & Ozel HB. (2025). Effects of Adding Fe203 and Fe304 Nanoparticles to Soil on Germination and Seedling Characteristics of Oriental Beech. *BioResources*, 20(1), 70-82.
- [6] Şimşek A, & Mutlu E. (2023). Assessment of the water quality of Bartın Kışla (Kozcağız) Dam by using geographical information system (GIS) and water quality indices (WQI). *Environmental Science and Pollution Research*, 30(20), 58796-58812.
- [7] Demir T, Mutlu E, Aydin S, & Gültepe N. (2021). Physicochemical water quality of Karabel, Çaltı, and Tohma brooks and blood biochemical parameters of *Barbus plebejus* fish: assessment of heavy metal concentrations for potential health risks. *Environmental monitoring and assessment*, 193, 1-15.

[8] Emin N, & Mutlu E. (2024). Akgöl Gölet Havzasının (Sinop-Ayancık) Su Kalitesinin Yerinde Analizlerle Tespiti ve Ağır Metal Kirliliğinin Araştırılması. *Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi*, 10(3), 243-252.

[9] Bayraktar OY, Özel HB, Benli A, Yilmazoğlu MU, Türkeli İ, Dal BB, ... & Kaplan G. (2024). Sustainable foam concrete development: Enhancing durability and performance through pine cone powder and fly ash incorporation in alkali-activated geopolymers. *Construction and Building Materials*, 457, 139422. <https://doi.org/10.1016/j.conbuildmat.2024.139422>

[10] Dogan, S., Kilicoglu, C., Akinci, H., Sevik, H., Cetin, M., & Kocan, N. (2024). Comprehensive risk assessment for identifying suitable residential zones in Manavgat, Mediterranean Region. *Evaluation and program planning*, 106, 102465.

[11] Türkeli, İ., Özkan, İ. G. M., Baltaoğlu, E., Benli, A., Bayraktar, O. Y., Özel, H. B., Sevik, H. & Kaplan, G. (2025). Enhancing thermal insulation, mechanical strength, and durability of one-part fly ash-based geopolymer foam concrete using lime and mahogany sawdust. *Construction and Building Materials*, 491, 142656.

[12] Isinkaralar K, Isinkaralar O, Özel HB, & Sevik H. (2024). A Comparative Study About Physical Properties of Copper Oxide and Zinc Oxide Nanoparticles on *Fagus orientalis* L. as Bioindicator. *Water, Air, & Soil Pollution*, 235(11), 738.

[13] Isinkaralar O, Isinkaralar K, Sevik H, & Küçük Ö. (2024). Spatial modeling the climate change risk of river basins via climate classification: a scenario-based prediction approach for Türkiye. *Natural Hazards*, 120(1), 511-528.

[14] Koç İ, Canturk U, Cobanoglu H, Kulac S, Key K, & Sevik H. (2025). Assessment of 40-year Al Deposition in some Exotic Conifer Species in the Urban Air of Düzce, Türkiye. *Water, Air, & Soil Pollution*, 236(2), 1-14.

[15] Cantürk U, Koç İ, Özel HB, & Sevik H. (2024). Possible changes of *Pinus nigra* distribution regions in Türkiye with the impacts of global climate change. *BioResources*, 19(3), 6190-6214

[16] Koç İ, Canturk U, Isinkaralar K, Ozel HB, & Sevik H. (2024). Assessment of metals (Ni, Ba) deposition in plant types and their organs at Mersin City, Türkiye. *Environmental Monitoring and Assessment*, 196(3), 282.

[17] Özel, H. B., Koç, İ., Yıldız, Y., & Sevik, H. (2025). Dose-dependent effects of CuO nanoparticles on germination and early seedling growth in *Prunus avium*. *Baltic Forestry*, 31(1), id767-id767.

[18] Kulac, S., Pulatoglu, A.O., Koç, İ., Sevik, H., & Ozel, H. B. (2025). Assessing Tree Species for Monitoring and Mitigating Strontium Pollution in Urban Environments. *Water Air Soil Pollut* 236, 605 (2025). <https://doi.org/10.1007/s11270-025-08244-z>

[19] Koc, İ., Cobanoglu, H., Canturk, U., Key, K., Sevik, H., & Kulac, S. (2025). Variation of 40-year Pb deposition in some conifers grown in the air-polluted-urban area of Düzce, Türkiye. *Environmental Earth Sciences*, 84(7), 186.

[20] Sevik H, Cetin M, Ozel HB, & Pinar B. (2019). Determining toxic metal concentration changes in landscaping plants based on some factors. *Air Quality, Atmosphere & Health*, 12, 983-991.

[21] Sevik H, Cetin M, Ozturk A, Ozel HB, & Pinar B. (2019). Changes in Pb, Cr and Cu concentrations in some bioindicators depending on traffic density on the basis of species and organs. *Applied Ecology And Environmental Research* 17(6):12843-12857

[22] Erdem, R. (2023). Change of Cr, Co, and V concentrations in forest trees by species, organ, and soil depth. *BioResources*, 18(3), 6183.

[23] Key K, Kulaç Ş, Koç İ, & Sevik H. (2023). Proof of concept to characterize historical heavy-metal concentrations in atmosphere in North Turkey: determining the variations of Ni, Co, and Mn concentrations in 180-year-old *Corylus colurna* L. (Turkish hazelnut) annual rings. *Acta Physiologiae Plantarum*, 45(10); 1-13.

[24] Erdem R, Çetin M, Arıçak B, & Sevik H. (2023). The change of the concentrations of boron and sodium in some forest soils depending on plant species. *Forestist*, 73(2); 207-212.

[25] Ghoma WEO, Sevik H, & Isinkaralar K. (2023). Comparison of the rate of certain trace metals accumulation in indoor plants for smoking and non-smoking areas. *Environmental Science and Pollution Research*, 30(30): 75768-75776.

[26] Isinkaralar K, Isinkaralar O, Koç İ, Özel HB, & Sevik H. (2024). Assessing the possibility of airborne bismuth accumulation and spatial distribution in an urban area by tree bark: A case study in Düzce, Türkiye. *Biomass conversion and biorefinery*, 14(18), 22561-22572.

[27] Ozturk Pulatoglu A, Koç İ, Özel HB, Şevik H, & Yıldız Y. (2025). Using Trees to Monitor Airborne Cr Pollution: Effects of Compass Direction and Woody Species on Cr Uptake during Phytoremediation. *BioResources*, 20(1), 121-139.

[28] Sevik, H., Koç, İ., Cregg, B., & Nzokou, P. (2025). Tissue-specific barium accumulation in five conifer species: a 40-year dendrochemical assessment from a polluted urban environment. *Environmental Geochemistry and Health*, 47(9), 1-13.

[29] Erdem, R. (2023). Changes in Strontium Levels in Bark and Over the Past 40 Years in the Wood of Trees Exposed to High Levels of Air Pollution. *BioResources*, 18(4), 8020-8036

[30] Koc I, Cobanoglu H, Canturk U, Key K, Kulac S, & Sevik H. (2024). Change of Cr concentration from past to present in areas with elevated air pollution. *International Journal of Environmental Science and Technology*, 21(2), 2059-2070.

[31] Canturk U, Koç, İ, Ozel HB, & Sevik H. (2024). Identification of proper species that can be used to monitor and decrease airborne Sb pollution. *Environmental Science and Pollution Research*, 1-11.

[32] Erdem R, Aricak B, Cetin M, & Sevik H. (2023). Change in some heavy metal concentrations in forest trees by species, organ, and soil depth. *Forestist*, 73(3), 257-263.

[33] Isinkaralar K, Isinkaralar O, Koc I, Sevik H, & Ozel HB. (2025). Atmospheric Trace Metal Exposure in a 60-Year-Old Wood: A Sustainable Methodological Approach to Measurement of Dry Deposition. *Int J Environ Res* 19, 112 (2025). <https://doi.org/10.1007/s41742-025-00783-x>

[34] Erdem R, Koç İ, Çobanoglu H, & Şevik H. (2024). Variation of Magnesium, One of the Macronutrients, in Some Trees Based on Organs and Species. *Forestist*, 74(1). 84-93

[35] Cobanoglu H, Sevik H, & Koç İ. (2023). Do annual rings really reveal Cd, Ni, and Zn pollution in the air related to traffic density? An Example of the Cedar Tree. *Water, Air, & Soil Pollution*, 234(2); 65.

[36] Koç İ. (2025). Chronological Levels of As, Pd, V, and Sr in 356-year-old *Pinus nigra* Annual Rings in Northern Türkiye. *BioResources*, 20(1); 2215-2233

[37] Kuzmina N, Menshchikov S, Mohnachev P, Zavyalov K, Petrova I, Ozel HB, Aricak B, Onat SM, and Sevik H. (2023). Change of aluminum concentrations in specific plants by species, organ, washing, and traffic density, *BioResources*, 18(1); 792-803.

[38] Yaşar İsmail, T.S., İsmail, M.D, Çobanoğlu, H., Koç, İ., & Sevik, H. (2024). Monitoring arsenic concentrations in airborne particulates of selected landscape plants and their potential for pollution mitigation, *Forestist*. <https://doi.org/10.5152/forestist.2024.24071>

[39] Gültekin Y, Bayraktar MK, Sevik H, Cetin M, & Bayraktar T. (2025). Optimal vegetable selection in urban and rural areas using artificial bee colony algorithm: Heavy metal assessment and health risk. *Journal of Food Composition and Analysis*, 139, 107169.

[40] Canturk U. (2023). Determining the plants to be used in monitoring the change in thallium concentrations in the air. *Cerne*, 29, e-103282.

[41] Key, K., Kulaç, Ş., Koç, İ., & Sevik, H. (2022). Determining the 180-year change of Cd, Fe, and Al concentrations in the air by using annual rings of *Corylus colurna* L. *Water, Air, & Soil Pollution*, 233(7), 244.

[42] Sevik H, Koç İ, & Cobanoglu H. (2024). Determination of Some Exotic Landscape Species As Biomonitorers That Can Be Used for Monitoring and Reducing Pd Pollution in the Air. *Water, Air, & Soil Pollution*, 235(10), 615.

[43] Isinkaralar O, Isinkaralar K, & Sevik H. (2025). Health for the future: spatiotemporal CA-MC modeling and spatial pattern prediction via dendrochronological approach for nickel and lead deposition. *Air Quality, Atmosphere & Health*, 1-13.

[44] Ertürk N, Arıcak B, Yiğit N, & Sevik H. (2024). Potential Changes in the Suitable Distribution Areas of *Fagus orientalis* Lipsky in Kastamonu Due to Global Climate Change. *Forestist*, doi:10.5152/ forestist.2024.23024.

[45] Aricak B, Canturk U, Koc I, Erdem R, Sevik H. (2024). Shifts That May Appear in Climate Classifications in Bursa Due to Global Climate Change, *Forestist*. 74: 129-137. Doi:10.5152/ forestist.2024.23074

[46] Sevik H, Yahyaoglu Z, & Turna I. (2012). Determination of genetic variation between populations of *Abies nordmanniana* subsp. *bornmulleriana* Mattf according to some seed characteristics, genetic diversity in plants. *Chapter*, 12; 231-248.

[47] Yigit N, Öztürk A, Sevik H, Özel HB, Ramadan Kshkush FE, & Işık B. (2023). Clonal Variation Based on Some Morphological and Micromorphological Characteristics in the Boyabat (Sinop/Turkey) Black Pine (*Pinus nigra subsp. pallasiana* (Lamb.) Holmboe) Seed Orchard. *BioResources*, 18(3): 4850-4865

[48] Hrvnák M, Krajmerová D, Paule L, Zhelev P, Sevik H, Ivanković M, Goginashvili N, Paule J, Gömöry D. (2024). Are there hybrid zones in *Fagus sylvatica* L. sensu lato?. *European Journal of Forest Research*, 143, 451-464. <https://doi.org/10.1007/s10342-023-01634-0>

[49] Kurz M, Koelz A, Gorges J, Carmona BP, Brang P, Vitasse Y, ... & Csillary K. (2023). Tracing the origin of Oriental beech stands across Western Europe and reporting hybridization with European beech—Implications for assisted gene flow. *Forest Ecology and Management*, 531; 120801.

[50] Kravkaz-Kuscu IS, Sariyildiz T, Cetin M, Yigit N, Sevik H, & Savaci G. (2018). Evaluation of the soil properties and primary forest tree species in Taskopru (Kastamonu) district. *Fresenius Environmental Bulletin*, 27(3), 1613-1617.

[51] Ertugrul, M., Ozel, H. B., Varol, T., Cetin, M., & Sevik, H. (2019). Investigation of the relationship between burned areas and climate factors in large forest fires in the Canakkale region. *Environmental monitoring and assessment*, 191 (12), 737.

[52] Isinkaralar O, Isinkaralar K, Sevik H, & Küçük Ö. (2025). Thermal comfort modeling, aspects of land use in urban planning and spatial exposition under future climate parameters. *International Journal of Environmental Science and Technology*, 1-14.

[53] Özdkmenli G, Yiğit N, Özel HB, & Sevik H. (2024). Altitude-dependent Variations in Some Morphological and Anatomical Features of Anatolian Chestnut. *BioResources*, 19(3). 4635-4651

[54] Tandoğan M, Özel HB, Gözet FT, & Sevik H. (2023). Determining the taxol contents of yew tree populations in western Black Sea and Marmara regions and analyzing some forest stand characteristics. *BioResources*, 18(2), 3496-3508.

[55] Sevik H, Çetin M, & Kapucu O. (2016). Effect of light on young structures of Turkish fir (*Abies nordmanniana subsp. bornmulleriana*). *Oxidation Communications*, 39(1), 485-492.

[56] Sevik H, Cetin M, Kapucu O, Aricak B, & Canturk U. (2017). Effects of light on morphologic and stomatal characteristics of Turkish Fir needles (*Abies nordmanniana subsp. Bornmulleriana* Mattf.). *Fresenius Environmental Bulletin*, 26 (11), 6579-6587.

[57] Yigit, N., Cetin, M., Ozturk, A., Sevik, H., & Cetin, S. (2019). Variation of Stomatal Characteristics in Broad Leaved Species Based on Habitat. *Applied Ecology and Environmental Research* 17 (6):12859-12868.

[58] Sevik H, Cetin M, Ozturk A, Yigit N, & Karakus O. (2019). Changes in micromorphological characters of *Platanus orientalis* L. leaves in Turkey. *Applied Ecology and Environmental Research*, 17(3);5909-5921.

[59] Yigit, N., Mutevelli, Z., Sevik, H., Onat, S.M., Ozel, H.B., Cetin, M., Olgun, C. (2021). Identification of Some Fiber Characteristics in *Rosa* sp. and *Nerium oleander* L. Wood Grown under Different Ecological Conditions. *BioResources*, 16(3): 5862-5874. DOI:10.15376/biores.14.3.7015-7024

[60] Özel HB, Sevik H, Yıldız Y, & Çobanoğlu H. (2024). Effects of Silver Nanoparticles on Germination and Seedling Characteristics of Oriental Beech (*Fagus orientalis*) Seeds. *BioResources*, 19(2). 2135-2148

[61] Sevik H, & Topacoglu O. (2015). Variation and inheritance pattern in cone and seed characteristics of Scots pine (*Pinus sylvestris* L.) for evaluation of genetic diversity. *Journal of Environmental Biology*, 36(5), 1125.

[62] Ozel HB, Sevik H, Cetin M, Varol T, & Isik B. (2024). Impact of employment policies on disabled individuals in silvicultural activities. *Environment, Development and Sustainability*, 1-14.

[63] Guney, K., Cetin, M., Sevik, H., & Guney, K. B. (2016b). Effects of some hormone applications on germination and morphological characters of endangered plant species *Lilium artvinense* L. Seeds, New Challenges in Seed Biology-Basic and Translational Research Driving Seed Technology, Dr. Susana Araújo. InTech, 2016b, 4, 97-112.

[64] Özel HB, Sevik H, Onat SM, & Yigit N. (2022). The effect of geographic location and seed storage time on the content of fatty acids in stone pine (*Pinus pinea* L.) seeds. *BioResources*, 17(3), 5038.