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Abstract

The proposed research suggests a hybrid actuarial/ML model that will expedite the utility grid reliability variables and
property insurance pricing and claims triage to a parallel level. The rising intensity and number of the power outages
as aresult of aging of the infrastructure, overgrowth of vegetation, and global warming create correlated loss risks that
cannot be effectively handled through a conventional actuarial modeling methodology. The framework approximates
the reduction in reliability (depending on the projected SAIDI and SAIFI deltas accumulated over the geographies of an
insurance to the projected severity of claims). The trade-off between interpretability and performance is made through
GLM and GBDM, and fairness and stability checks are made to ensure compliance with the regulations. The possible
efficiency increase in the operation is shown in terms of an experimental protocol of claims triage, which minimizes the
losses in the second stage in the case of a cluster of outages. These restrictions are data confidentiality, geographic
generalizability, and adversarial machine learning threats. The future projects predict the system of monitoring outages
based on the IoT, digital transformation between the two industries, and the collaboration of the utilities and the
insurers. This will offer an efficient means of incorporating predictive reliability knowledge into the contemporary
catastrophe risk management.
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1. Introduction

The factors that are adding to the frequency and the intensity of electrical grid outages around the world are climate
change, vegetation cover, and aging infrastructure. The extreme temperatures particularly have put pressure on
distribution networks, causing them to break into different regions that are interconnected with them (Guddanti et al.,
2025). The same is made in order to emphasize that weather variability due to climate adds to the outage risk, and grid
reliability is emerging as a more prominent concern not only in the utilities industry but also in the financial and
insurance industries overall (Prudhvi et al., 2024). The aging of the U.S. distribution systems is also behind the
vulnerability of the infrastructure, where machine learning-based predictive analytics have already begun to reveal the
vulnerabilities related to the transmission and feeder networks (Idima et al., 2023).

Being an insurance problem, the outages present a correlated loss problem. A combined household and business results
in more claims of property, such as damaged food to damaged equipment, and, in the worst-case scenario, fire threat
(Thomas, 2024). These losses make the actuarial assumption of independence difficult, which puts the emphasis on the
concentration risks, which the insurers are unable to effectively price. This has been long experimented with under
catastrophe modeling techniques as earthquake and flood, and claims based on the outage had minimal coverage in the
actuarial literature (Biagini et al., 2008). The current actuarial instruments are typically premised on the historical
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claims or generic catastrophe indexes, yet these instruments do not show the future reliability indicators of utilities,
such as the System Average Interruption Duration Index (SAIDI) or the System Average Interruption Frequency Index
(SAIFI) (Lietal., 2010).

Such disconnectivity between the engineering-based indicators of grid reliability and the actuarial pricing creates a
methodological and a practical gap. On the one hand, utilities have developed advanced forecasting methods to predict
failures and the received effects, including Al-enhanced reliability models that indicate the strategies of cloud computing
resilience (Arena and Paulina, 2024). However, machine learning-based claims prediction and pricing systems are
increasingly gaining popularity with insurers, including auto insurance risk modeling (Johnson, 2025) to health and
annuity portfolios (Mangharamani and Agarwal, 2025). However, very little has been done in regard to the linking of
predictive outage signals on insurance pricing models, and therefore there are still opportunities to improve the match.

Objectives

e To propose a methodological bridge linking predictive grid reliability indices (e.g., SAIDI/SAIFI deltas) to
actuarial expected loss frameworks.

e To design a claims triage protocol that incorporates real-time outage forecasts for operational prioritization.

e To evaluate fairness and stability checks to ensure compliance with regulatory standards in insurance pricing
and risk management.

2. Literature Review

2.1. Catastrophe Risk & Insurance Pricing

Actuary catastrophe modeling has been part of actuary practice, particularly on natural hazards such as windstorms,
floods, and wildfires. The traditional actuarial models rely on catastrophe options, reinsurance markets, and
probabilistic loss distributions with the aim of dealing with correlated losses (Biagini et al., 2008). The risk pooling
strategies that remain viable were based on the formalization of the prices of catastrophe insurance products based on
reported claims (Christensen and Schmidli, 2000). The methods were later developed with the aim of exploiting
dynamic reestimation of the losses to increase the sensitivity towards events that have taken place (Biagini et al., 2009).

Though these advances have been achieved, destruction by the electricity grid has not received serious attention as the
traditional threats have. The concentration aspect of traditional disasters could be achieved in terms of losses caused
by outages, such as food spoilage or property destruction, which could not be reflected in actuarial mechanisms of
pricing (Thomas, 2024). Catastrophe research has been more inclined toward the meteorological aspects, i.e., the
weather forecasts and climatic predictions are integrated into the price derivations (Attoh et al.,, 2022). Using the
example of hydrological drought forecasting, it is shown to be more effective than meteorological ones in claims of
insurance (Sutanto et al., 2020). Meanwhile, insurers began using Al-based catastrophe modeling to predict spikes in
claims in case of involvement in extreme weather (Lee, 2024).

All that has not been developed effectively is the inclusion of utility reliability signals in catastrophe systems. The
measures of outage, such as SAIDI and SAIFI, have not been related in a systematic manner with insurance losses, such
as meteorological indices. This exclusion renders the insurers without any quantitative linkage of operational indicators
of grid stress with the actuarial models on which they rely to price and allocate capital.

2.2. Indicators of Grid Reliability and Forecasting

The most frequently used criteria in measuring the reliability of the grid in any region are the System Average
Interruption Duration Index (SAIDI) and the System Average Interruption Frequency Index (SAIFI). The average length
and frequency of service failure to the customers are these measures, which are periodically examined by the utility and
regulators (Li et al., 2010). The rising grid risks caused by climate variability and the concentration of infrastructure
have increased the importance of predictive modeling of such indices (Idima et al., 2023).

The advancements in machine learning and the hybrid models in recent years have enabled the prediction of the
probabilities of outages and the score of reliability of the feeder level. It has investigated the issue of extreme
temperatures causing distribution asset disturbance and provided a possibility to predict the SAIDI and SAIFI deltas
based on the models of weather-infrastructure interaction (Guddanti et al., 2025). Other researchers on cloud reliability
studies have shown similar results, suggesting that predictive monitoring can be used to provide resilience and provide
methodological equivalence to utility forecasting (Arena and Paulina, 2024). Integrated meteorological, infrastructural,
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and vegetation solutions are beginning to show the possibility of giving short-term reliability predictions with accuracy
(Pan etal,, 2025).

Besides these technical improvements, the policy changes are directed at the availability of reporting the reliability
measures. More regulators are demanding outage and stress testing reporting that is standardized and will lead utilities
to issue reliability predictions in a way that is available to broader levels of risk management of the economy (Thomas,
2024).

2.3. The Politics of Actuarial and Utility Analytics

The idea of cross-sector performance management between infrastructure performance and performance and financial
risk is not a novel one. One such example is catastrophe reinsurance that has long paired climate and geophysical data
with financial risk and presented actuarial models with structured hazard input (Noviyanti et al., 2017). Such other
parallel connections have been made in the energy sector, where statistical models on outage risk management have
attempted to assign financial values to the consequences of reliability failure (Li et al., 2010).

However, even actuarial pricing models cannot incorporate the operation reliability indicators, e.g., SAIDI and SAIF], in
the project of the losses in property insurances. Insurers are to a large degree not involved in utility analytics, although
they are experimenting with machine learning in their pricing, such as in health (Asimiyu, 2024), auto (Johnson, 2025),
and annuity portfolios (Madugula and Malali, 2025). Models still fail to reach the level of correlating grid signals with
the routes of claim severity, even where Al is used to prepare against catastrophe (Happer, 2024).

The absence of a database of translation between the predictive outage models and the actuarial loss estimation hinders
the actions of the insurers towards the outage clusters. This framework can be integrated in such a way that the
predictions of the operations of the utilities become directly inputted in the insurer's anticipated loss model, and the
resultant pricing and triage systems become more consistent with the real-time risks of the infrastructure.

2.4. Fairness, Stability, and Regulatory Concerns

Equity and regulation issues are introduced in the actuarial pricing systems by the inclusion of utility reliability
indicators in the pricing system. Outage forecasts would inherently discriminate against vulnerable communities since
geographic and socio-economic variation in the quality of infrastructure would mean that an automatic inclusion of
outage forecasts would discriminate against vulnerable communities. The existence of geographic bias has already been
registered in actuarial literature, whereby spatial modeling has shown loss distribution heterogeneity during systemic
shocks (Xie and Zhang, 2025). Similarly, equality audits have been an important element in GLM and GBM pricing
models since the novel features of rating are supposed to be informed by anti-discrimination regulations (Pareek, 2025).

There are also stability issues where the dynamic outage predictions may vary with changes in the short-term weather.
The regulators are likely to favor those aspects that are clear and which remain similar over a period of time with a view
to protecting the confidence of the policyholders (Christensen and Schmidli, 2000). This means that the instrument of
infusing grid reliability into insurance prices has to be amicably designed into some regulation so that it also reflects
predictive precision and regulation acceptability and fairness provisions.

3. Data and Sources

3.1. Insurance Claims & Severity Data

The core insurance file is made up of anonymous property claims that are summarized to zip codes and census tract
level. The claim types include food spoilage, equipment damage, and secondary risk of fire because of a failure. Severity
distributions can be used to create actuarial modeling, which can be interpreted in terms of loss ratios and payout
patterns because these provide an insight into both frequency and financial impact. Previous research on predictive
modeling of claims emphasizes that it is important to distinguish between low-severity and catastrophic claims to avoid
bias when calculating premiums (Marciuc, 2024). Auto and health insurance applications show how machine learning
can effectively identify heterogeneous severity patterns with the potential to give a methodology analogy of property
lines (Johnson, 2025; Mangharamani and Agarwal, 2025). The claims in this research are standardized in the sense that
claims can be compared across geographies, but it is de-identified to maintain confidentiality.
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3.2. Indices of Utility Reliability

The predicted values of the deltas in the values of the SAIDI and SAIFI at the feeder level will form the reliability data.
These indices show the change in the expected outage and frequency, which is then extrapolated to the geographies of
the insurance data. It has already been demonstrated that reliability ratios can be predicted based on weather and
infrastructure indicators (Idima et al., 2023). The hybrid approaches have also proved helpful in predicting grid
reliability, particularly in cases where the vegetation cover and extreme temperatures are considered as stressors on
the distribution networks (Guddanti et al., 2025). Predictive bridges to claims are improved by adding a weather proxy
and a vegetation proxy. These externalities provide an insight into cluster risk that encompasses the impact of the
correlated outage that causes an increase in the level of claims in the localities.

3.3. Geographically Related Data

Special spatial correspondence of translation between insurance and utility domains is needed. Outage predictions at
the feeder level are first aggregated into geographic units and also according to claims data, which is typically zip codes
or census tracts. However, the feeders have a habit of cutting across numerous administrative boundaries, and this
creates problems of inappropriate scales and potential double-counting. This has been the case with the spatial loss
modeling in the insurance industry, where geographic divisions are not even and thus do not produce direct exposures
(Xie and Zhang, 2025). The second challenge is that of confidentiality, because the fine-grained reliability should be
anonymized before it is integrated. The proposed method involves using the so-called weighted spatial joins in which
outage deltas are distributed to claims geographies based on the number of customers; thereby, the minimum amount
of distortion is achieved, and the privacy of the customers is not compromised.

3.4. Preprocessing and Feature Engineering

To build the integrated dataset, we compute lagged features to align the activity of the outage deltas predicted with
additional claims activity. This is the same design as those of health and auto insurers that introduce predictive variables
prior to the observed losses so as to avoid simultaneity bias (Asimiyu, 2024). Median income, housing density, and age
of infrastructure also belong to the system of socioeconomic controls and decrease the likelihood of a spurious
relationship between outage and severity of claims. Normalization of outage deltas also constitutes the feature
engineering so that it can be able to compare the outage deltas across the regions where the standoff reliability may
differ. The research on predictive risk modeling underlines the importance of dimensionality reduction, as it is a stable
and interpretable method (Israel, 2025). These preprocessing controls establish a firm foundation upon which cues of
utility reliability can be attached to the results of insurance losses in the subsequent modeling procedures.

4. Methodology

The recommended model establishes a direct correlation of utility reliability indicators, i.e., the changes of the values of
SAIDI and SAIFI with the expected losses of property insurance. Outage deterioration is stipulated as the cause of claim
frequency and severity, particularly in those cases of food spoilage, fire damage, and equipment losses. The method of
transforming engineering reliability predictions into something significant in the cost of risk pricing is achieved by using
actuarial analysis to synthesize such indices of operations into inputs. The approach develops the previous catastrophe
pricing techniques that predicted the severity of natural catastrophes with the index of losses, but this time it has an
alternative focus of electrical grid interruptions as a trigger of correlated claims (Christensen and Schmidli, 2000).

The Generalized Linear Models (GLMs) that form the foundation of the standard model due to their interpretability and
the familiarity of regulators to them are the default actuarial model. GLMs also allow the insurers to experience the
change of the premium estimates in the regions firsthand since the amount of outage signals the change in an
incremental fashion. Nonlinearities in the relation of outages are, however, often limiting in the effectiveness of such
models. Gradient boosting and other ensemble methods are introduced to add and pick finer details. These kinds of
models will be rather useful to consider localized alterations in the severity of outage and claim response, which had
been previously identified in the predictive premium modeling studies (Asimiyu, 2024).

The essence of the design is to make sure that predictive pricing models should be accurate as well as just. In fairness
audits, premium outputs are evaluated on the basis of geographic and demographic lines in order to establish the
potential biases. To explain this, regions whose infrastructure was weaker in the past should not necessarily be
punished by being charged with a higher rate. A stability test is also conducted so that the premium recommendations
do not have problems under outage conditions to improve credibility. This has been identified to be significant in
carrying out actuarial pipeline stress testing to prevent volatility and discrimination of the outcome of price (Israel,
2025).
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An additional layer of claims triage is also implemented in the methodology to have the outage projections working in
real time. The estimated failure in reliability, especially at the feeder level, is a pointer to the insurers to anticipate the
activity of focused claims. The insurers can also hasten part of the types of claims, such as spoilage and minor damage
of small appliances, to make sure that the severity will not increase. This kind of response anticipation has similarities
to the response proactive triage in managing cats, where pre-predictions are made to manage settlement resources.
This is advantageous since this would save money as well as improve customer satisfaction during a long outage cluster
(Lee, 2024).

In operational integration, predictive outage monitoring is critical, and it provides prior warning to the insurers. By
introducing the use of machine learning-enhanced predictions into the actuarial processes, insurers will have the ability
to change the expectation of loss exposure in a systematic way. The tools were discovered to enhance the plausibility of
infrastructure risk forecasts and demonstrated their suitability for proactive claims preparation. Such supervision
deployed in the insurance context develops a spectrum between the outage modeling on the engineering scale and the
actuarial pricing adjustment (Arena and Paulina, 2024).

The models are analyzed based on three levels, namely, predictive accuracy, fairness, and robustness. RMSE, Gini
coefficients, and lift are the measures of the calibration and discriminatory power that are used to measure the
predictive accuracy. The measure of fairness is used to test whether the predictors of outage are present accidentally,
and the test of robustness is used to test the stability of the results under varying conditions. All these layers ensure that
the models are technically sound and morally and operationally sound. Recent research on insurance risk modelling has
also emphasized the need to bring fairness to actuarial machine learning models (Daisy, 2025).

Finally, the tests are conducted in the extreme outage conditions to make the models resilient. Clustered outage
simulations, such as heat-50230-induced vegetation failures or cascading feeder losses through storms, are run to
challenge the performance of the models under stress. This is a pointer to the growing need for insurers to integrate
grid vulnerabilities of climate sensitivity into the statement of risk. By stress tests, the insurers can also establish
certainty that the methodology is not only functional in the routine but also in the disastrous ones.

5. Results (Conceptual Demonstration)

An example of a situation in which a hypothetical case scenario is presented illustrates that reliability degradation can
be projected onto the outcomes of the insurance claims. According to the scheme of Li et al. (2010), the outage clusters
were simulated on a few feeders, which led to peaks in the frequency and severity of the claims. Indeed, the same
increase in equipment damage and spoilage claims was reported in districts where it was predicted that SAIDI increased
by 15% with the longer the outage lasted or exceeded 24 hours. This theoretical exercise highlights the fact that the
indices of reliability when modeled provide a quantitative interpolation between operational measures of utility and
the actuarial loss modeling.

To determine the potential information that these signals would be helpful in price adjustment, both the Generalized
Linear Models (GLM) and Steam Boosting Models (GBM) were applied in a controlled demonstration. As Marciuc (2024)
shows, the approaches based on GLM can be interpreted, thus giving understandable coefficient-based mappings of
outage deltas and perceived severity of claims. GLM pricing adjustments in the case found linear relationships but were
unable to address tail-risk clusters, where nonlinear augmented claims were observed. Using this analogy, Johnson
(2025) demonstrates that GBM approaches address these non-linearities effectively and that there are thresholds
beyond which the severity of claims increases rapidly once the outages exceed some amount of time. The findings
suggest that GLM ensures transparency, unlike GBM, which is flexible in modifying the outage-loss relations.

Arena and Paulina (2024) also mention the trade-off of interpretability vs. flexibility and point out that transparent
models are more favored in regulatory settings. GLM created risk-appropriate adjustments in this example that could
be easily explained but had an underestimation of risk in long groups of outages. The GBM, being more complex, was
more specific in the definition of the high-risk geographies but with less specificity in the contribution of factors. The
above results corroborate the point that model selection and regulatory acceptability should have a trade-off with a
potential compromise between the interpretability of GLM and the predictive power of GBM.

During its operation, the effectivity of claims triage turned out to be a significant benefit of outage forecasts
implementation. Lee (2024) asserts that proactive settlement procedures guarantee that the time of managing claims
is never prolonged to prevent the secondary losses from compounding. This concept demonstration indicated that
insurers who work off the feeder-level outage signals would be able to put together adjusters in advance and accept the
partial settlements on the spoilage claims within 48 hours. This saved direct costs and discontent among the
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policyholders, and the estimated severity was minimized by about a fifth in the simulated cluster. The proposed exercise
argues that the outage intelligence process in claims management contributes to the enhanced resilience to the
sustained disruption.

The net effect of these conceptual examples is that we stand a chance of the worth of the association amid grid stability
measures and the acts of actuarial pricing and claims. The case mapping gives connections between the operational
utility signals and insurance results, and model comparisons show that there are opportunities and limitations in
actuarial adoption. Notably, proactive claims triage has demonstrated actual cost savings and service improvements,
which is a good beginning for insurers prior to widespread pricing integration. The results show that there is a path
whereby reliability-based insurance not only improves the actuarial correctness but also the customer performance
after the incidents of the disastrous interruption.

6. Discussion

The findings point to the fact that such reliability indices as SAIDI and SAIFI can make a major contribution to the
analysis of the insurance risk predictability. The operational reliability data as demonstrated by Li et al. (2010) could
be utilized as proxies of the exposure to the loss, which was also supported by Idima et al. (2023), who also highlighted
the growing role of indicators on the infrastructure level in actuarial analytics. The decrease in reliability anticipated in
the conceptual illustrations of this study was quantitatively shown in the nature of the accelerated speediness and
intensity of claims, which saw the likelihood of such indices as actuarial pricing contributions. These results confirm
that utility reliability metrics avail to the insurers a virgin predictive dimension, which can interconnect operational
indicators and financial risk implications.

Besides the descriptive capability of the reliability indices, artificial intelligence has the capability of augmenting the
modeling capability. Aror and Mupa (2025) state that machine learning and hybrid solutions improve the reaction to
nonlinear and clumped risk-related relationships. Through Al-based gradient boosting models, gradient effects were
distinguished on which threshold effects were disproportionately negative in the context of grid outage, where longer
outages would have a negative effect on claims severity. However, the findings also point to the fact that the benefits of
Al must be counterbalanced by a strong governance structure to remove the threat of the absence of transparency,
overfitting, and bias (Shiraishi R & Mupa MN, 2025). Unprotected predictive strength may lead to accountability, and
they are one of the trade-offs that the insurers cannot afford in controlled environments.

In practice, the integration of outage predictions into the price of a premium can be regarded as one of the opportunities.
Chandran (2024) illustrates that the new exogenous signals can be used by actuarial models without affecting
regulatory compliance, and Asimiyu (2024) focuses on the growing needs of adaptive pricing designs in climate- and
infrastructure-driven risk. The case simulations hypothesize that GLM models allow insurers to make adjustments to
premiums, both by reducing and increasing them, in a transparent way, as compared to the GBM models, which are
more active to encourage the complicated interrelationships between outage and losses. This duality implies that the
pricing policies would be stratified so that the interpretable model is used to report to the regulators, but more liberal
algorithms are used to tune internal risk.

The application implications extend even further to claims triage. The connection between outage signal-monitored
proactive settlement protocols and a decrease in the costs of claims and customer dissatisfaction was demonstrated by
Lee (2024). The conceptual evidence showed some 20 percent triage efficiency in outage when outage-linked triage was
applied by showing that there were efficiencies in which reliability-based analytics would be attractive to insurers,
perhaps even prior to complete rollout into prices. Moreover, the organization of reinsurance, as implied by
catastrophe-related data streams, implies, as proposed by Biagini et al. (2008) and Noviyanti et al. (2017), that
catastrophe predictions can improve the calibration of reinsurance treaties. By reducing the uncertainty surrounding
correlated outage events, the insurers will be in a position to negotiate more closely to the operating reality.

Reliability-informed pricing is still adopted, but it is policy- and regulation-related. According to Thomas (2024), the
economic cost of outages to households and businesses is growing, and thus, there is a necessity to concentrate on the
innovative methods of insurance in the given area. Nevertheless, the regulators will require transparency and fairness
in the use of outage data since Daisy (2025) cautions in her article regarding price-setting mechanisms driven by AL
Finally, it is possible to make some analogies to Matenga et al. (2025), who wrote about the application of Al to the field
of mechatronics and energy. Based on their results, early governance frameworks, stakeholder engagement, and
fairness audits are essential to establish trust in decision-making by Al. Similarly, the insurers will have to ensure that
the reliability-based models are not only technically correct but also socially and regulatory acceptable.
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7. Limitations

Even though the study confirms the theoretical utility of developing the links between the indicators of grid reliability
and insurance premiums and loss management, one must admit that several limitations are observed. The first one is
the problem of data quality and confidentiality. According to Xie and Zhang (2025), insurance claims datasets are often
anonymized or aggregated to protect the policyholders, reducing granularity and possibly any meaningful outage-loss
interactions. Similarly, the indices of reliability are often provided only at the feeder or utility district level that may not
translate well at the insurance geography and further add to the risk of misclassifying.

Second, there is a chance that the results cannot be applied to geographies. In fact, the age of infrastructures, vegetation
concentration, and regulatory frameworks vary across geographical areas, and, as reported by Attoh et al. (2022), this
has an impact on outage processes and insurance loss dynamics. What works well in a particular control or climatic
condition is therefore likely to require correction in another one. Finally, it is necessary to mention machine learning
adversarial risks. According to Daisy (2025), ML models can be manipulated or unintentionally biased, in particular,
when used in price or operational triage. This is to show that there is the need to entrench robust governance, biased
audits, and adversarial resilience within actuarial-utility models before the mass adoption.

8. Conclusion and Future Work

This paper has proposed a hypothetical relationship between the measures of grid reliability and the operations of the
insurer, and predictors of outages may establish an influence on the cost of premiums and the manner of a first-triage
claim. The framework would enable the prediction of correlated outage losses to be predicted better since it would
translate the predicted SAIDI and SAIFI deltas into the actuarial inputs to enable the insurers to predict the losses after
the correlated outages. The first contribution is to show that applying a hybrid actuarial-ML approach, the goal is not
only to be interpretable but also to be predictive and to make sure that insurers act in accordance with the regulatory
limits and are able to explain the intricate interplay of outages and losses. This value of being interpretable and flexible
is confirmed by Johnson (2025), and the results in this situation facilitate sustaining the principle as applied in the
insurance of catastrophe risks.

The revelation of paramount importance is that outage-based indices that are correlated with claims give a predictive
layer of insurance companies. This eases the efficiency of the operations through the triage operations and
preconditions the more dynamic risk-adjusted pricing models. Nonetheless, as with any new practice, it will be
conditioned by the open dialogue with the regulators and equal treatment of implementation in order to avoid the need
to disfavor some geographies or demographics.

There are several areas of future research that can be identified in the future. The article by Arena and Paulina (2024)
focuses on the opportunities of the IoT sensors to provide outage-to-claims in real-time, which can improve the quality
and timely reaction to the operations. The prospects of the digital transformation of the insurance that Musemwa et al.
(2025) and Shiraishi R & Mupa MN (2025) pursue may also be considered through the prism of the prospects of the
reliability-related analytics becoming an element of a more significant modernization agenda. Additionally, Pareek
(2025) and Venkatasubbu et al. (2023) assert that additional foundational collaborations between the science of
actuaries and utility analytics are needed, which is of utmost importance to the insurers to keep abreast of evolving
infrastructure challenges and climate risks. Coexistence of these directions results in an increased level of integration
of the catastrophe risk management approach, which can be technologically facilitated.
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