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Abstract 

The proposed research suggests a hybrid actuarial/ML model that will expedite the utility grid reliability variables and 
property insurance pricing and claims triage to a parallel level. The rising intensity and number of the power outages 
as a result of aging of the infrastructure, overgrowth of vegetation, and global warming create correlated loss risks that 
cannot be effectively handled through a conventional actuarial modeling methodology. The framework approximates 
the reduction in reliability (depending on the projected SAIDI and SAIFI deltas accumulated over the geographies of an 
insurance to the projected severity of claims). The trade-off between interpretability and performance is made through 
GLM and GBDM, and fairness and stability checks are made to ensure compliance with the regulations. The possible 
efficiency increase in the operation is shown in terms of an experimental protocol of claims triage, which minimizes the 
losses in the second stage in the case of a cluster of outages. These restrictions are data confidentiality, geographic 
generalizability, and adversarial machine learning threats. The future projects predict the system of monitoring outages 
based on the IoT, digital transformation between the two industries, and the collaboration of the utilities and the 
insurers. This will offer an efficient means of incorporating predictive reliability knowledge into the contemporary 
catastrophe risk management. 
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1. Introduction

The factors that are adding to the frequency and the intensity of electrical grid outages around the world are climate 
change, vegetation cover, and aging infrastructure. The extreme temperatures particularly have put pressure on 
distribution networks, causing them to break into different regions that are interconnected with them (Guddanti et al., 
2025). The same is made in order to emphasize that weather variability due to climate adds to the outage risk, and grid 
reliability is emerging as a more prominent concern not only in the utilities industry but also in the financial and 
insurance industries overall (Prudhvi et al., 2024). The aging of the U.S. distribution systems is also behind the 
vulnerability of the infrastructure, where machine learning-based predictive analytics have already begun to reveal the 
vulnerabilities related to the transmission and feeder networks (Idima et al., 2023). 

Being an insurance problem, the outages present a correlated loss problem. A combined household and business results 
in more claims of property, such as damaged food to damaged equipment, and, in the worst-case scenario, fire threat 
(Thomas, 2024). These losses make the actuarial assumption of independence difficult, which puts the emphasis on the 
concentration risks, which the insurers are unable to effectively price. This has been long experimented with under 
catastrophe modeling techniques as earthquake and flood, and claims based on the outage had minimal coverage in the 
actuarial literature (Biagini et al., 2008). The current actuarial instruments are typically premised on the historical 
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claims or generic catastrophe indexes, yet these instruments do not show the future reliability indicators of utilities, 
such as the System Average Interruption Duration Index (SAIDI) or the System Average Interruption Frequency Index 
(SAIFI) (Li et al., 2010). 

Such disconnectivity between the engineering-based indicators of grid reliability and the actuarial pricing creates a 
methodological and a practical gap. On the one hand, utilities have developed advanced forecasting methods to predict 
failures and the received effects, including AI-enhanced reliability models that indicate the strategies of cloud computing 
resilience (Arena and Paulina, 2024). However, machine learning-based claims prediction and pricing systems are 
increasingly gaining popularity with insurers, including auto insurance risk modeling (Johnson, 2025) to health and 
annuity portfolios (Mangharamani and Agarwal, 2025). However, very little has been done in regard to the linking of 
predictive outage signals on insurance pricing models, and therefore there are still opportunities to improve the match. 

Objectives 

• To propose a methodological bridge linking predictive grid reliability indices (e.g., SAIDI/SAIFI deltas) to 
actuarial expected loss frameworks. 

• To design a claims triage protocol that incorporates real-time outage forecasts for operational prioritization. 
• To evaluate fairness and stability checks to ensure compliance with regulatory standards in insurance pricing 

and risk management. 

2. Literature Review 

2.1. Catastrophe Risk & Insurance Pricing 

Actuary catastrophe modeling has been part of actuary practice, particularly on natural hazards such as windstorms, 
floods, and wildfires. The traditional actuarial models rely on catastrophe options, reinsurance markets, and 
probabilistic loss distributions with the aim of dealing with correlated losses (Biagini et al., 2008). The risk pooling 
strategies that remain viable were based on the formalization of the prices of catastrophe insurance products based on 
reported claims (Christensen and Schmidli, 2000). The methods were later developed with the aim of exploiting 
dynamic reestimation of the losses to increase the sensitivity towards events that have taken place (Biagini et al., 2009). 

Though these advances have been achieved, destruction by the electricity grid has not received serious attention as the 
traditional threats have. The concentration aspect of traditional disasters could be achieved in terms of losses caused 
by outages, such as food spoilage or property destruction, which could not be reflected in actuarial mechanisms of 
pricing (Thomas, 2024). Catastrophe research has been more inclined toward the meteorological aspects, i.e., the 
weather forecasts and climatic predictions are integrated into the price derivations (Attoh et al., 2022). Using the 
example of hydrological drought forecasting, it is shown to be more effective than meteorological ones in claims of 
insurance (Sutanto et al., 2020). Meanwhile, insurers began using AI-based catastrophe modeling to predict spikes in 
claims in case of involvement in extreme weather (Lee, 2024). 

All that has not been developed effectively is the inclusion of utility reliability signals in catastrophe systems. The 
measures of outage, such as SAIDI and SAIFI, have not been related in a systematic manner with insurance losses, such 
as meteorological indices. This exclusion renders the insurers without any quantitative linkage of operational indicators 
of grid stress with the actuarial models on which they rely to price and allocate capital. 

2.2. Indicators of Grid Reliability and Forecasting 

The most frequently used criteria in measuring the reliability of the grid in any region are the System Average 
Interruption Duration Index (SAIDI) and the System Average Interruption Frequency Index (SAIFI). The average length 
and frequency of service failure to the customers are these measures, which are periodically examined by the utility and 
regulators (Li et al., 2010). The rising grid risks caused by climate variability and the concentration of infrastructure 
have increased the importance of predictive modeling of such indices (Idima et al., 2023). 

The advancements in machine learning and the hybrid models in recent years have enabled the prediction of the 
probabilities of outages and the score of reliability of the feeder level. It has investigated the issue of extreme 
temperatures causing distribution asset disturbance and provided a possibility to predict the SAIDI and SAIFI deltas 
based on the models of weather-infrastructure interaction (Guddanti et al., 2025). Other researchers on cloud reliability 
studies have shown similar results, suggesting that predictive monitoring can be used to provide resilience and provide 
methodological equivalence to utility forecasting (Arena and Paulina, 2024). Integrated meteorological, infrastructural, 
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and vegetation solutions are beginning to show the possibility of giving short-term reliability predictions with accuracy 
(Pan et al., 2025). 

Besides these technical improvements, the policy changes are directed at the availability of reporting the reliability 
measures. More regulators are demanding outage and stress testing reporting that is standardized and will lead utilities 
to issue reliability predictions in a way that is available to broader levels of risk management of the economy (Thomas, 
2024). 

2.3. The Politics of Actuarial and Utility Analytics 

The idea of cross-sector performance management between infrastructure performance and performance and financial 
risk is not a novel one. One such example is catastrophe reinsurance that has long paired climate and geophysical data 
with financial risk and presented actuarial models with structured hazard input (Noviyanti et al., 2017). Such other 
parallel connections have been made in the energy sector, where statistical models on outage risk management have 
attempted to assign financial values to the consequences of reliability failure (Li et al., 2010). 

However, even actuarial pricing models cannot incorporate the operation reliability indicators, e.g., SAIDI and SAIFI, in 
the project of the losses in property insurances. Insurers are to a large degree not involved in utility analytics, although 
they are experimenting with machine learning in their pricing, such as in health (Asimiyu, 2024), auto (Johnson, 2025), 
and annuity portfolios (Madugula and Malali, 2025). Models still fail to reach the level of correlating grid signals with 
the routes of claim severity, even where AI is used to prepare against catastrophe (Happer, 2024). 

The absence of a database of translation between the predictive outage models and the actuarial loss estimation hinders 
the actions of the insurers towards the outage clusters. This framework can be integrated in such a way that the 
predictions of the operations of the utilities become directly inputted in the insurer's anticipated loss model, and the 
resultant pricing and triage systems become more consistent with the real-time risks of the infrastructure. 

2.4. Fairness, Stability, and Regulatory Concerns 

Equity and regulation issues are introduced in the actuarial pricing systems by the inclusion of utility reliability 
indicators in the pricing system. Outage forecasts would inherently discriminate against vulnerable communities since 
geographic and socio-economic variation in the quality of infrastructure would mean that an automatic inclusion of 
outage forecasts would discriminate against vulnerable communities. The existence of geographic bias has already been 
registered in actuarial literature, whereby spatial modeling has shown loss distribution heterogeneity during systemic 
shocks (Xie and Zhang, 2025). Similarly, equality audits have been an important element in GLM and GBM pricing 
models since the novel features of rating are supposed to be informed by anti-discrimination regulations (Pareek, 2025). 

There are also stability issues where the dynamic outage predictions may vary with changes in the short-term weather. 
The regulators are likely to favor those aspects that are clear and which remain similar over a period of time with a view 
to protecting the confidence of the policyholders (Christensen and Schmidli, 2000). This means that the instrument of 
infusing grid reliability into insurance prices has to be amicably designed into some regulation so that it also reflects 
predictive precision and regulation acceptability and fairness provisions. 

3. Data and Sources 

3.1. Insurance Claims & Severity Data 

The core insurance file is made up of anonymous property claims that are summarized to zip codes and census tract 
level. The claim types include food spoilage, equipment damage, and secondary risk of fire because of a failure. Severity 
distributions can be used to create actuarial modeling, which can be interpreted in terms of loss ratios and payout 
patterns because these provide an insight into both frequency and financial impact. Previous research on predictive 
modeling of claims emphasizes that it is important to distinguish between low-severity and catastrophic claims to avoid 
bias when calculating premiums (Marciuc, 2024). Auto and health insurance applications show how machine learning 
can effectively identify heterogeneous severity patterns with the potential to give a methodology analogy of property 
lines (Johnson, 2025; Mangharamani and Agarwal, 2025). The claims in this research are standardized in the sense that 
claims can be compared across geographies, but it is de-identified to maintain confidentiality. 
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3.2. Indices of Utility Reliability 

The predicted values of the deltas in the values of the SAIDI and SAIFI at the feeder level will form the reliability data. 
These indices show the change in the expected outage and frequency, which is then extrapolated to the geographies of 
the insurance data. It has already been demonstrated that reliability ratios can be predicted based on weather and 
infrastructure indicators (Idima et al., 2023). The hybrid approaches have also proved helpful in predicting grid 
reliability, particularly in cases where the vegetation cover and extreme temperatures are considered as stressors on 
the distribution networks (Guddanti et al., 2025). Predictive bridges to claims are improved by adding a weather proxy 
and a vegetation proxy. These externalities provide an insight into cluster risk that encompasses the impact of the 
correlated outage that causes an increase in the level of claims in the localities. 

3.3. Geographically Related Data 

Special spatial correspondence of translation between insurance and utility domains is needed. Outage predictions at 
the feeder level are first aggregated into geographic units and also according to claims data, which is typically zip codes 
or census tracts. However, the feeders have a habit of cutting across numerous administrative boundaries, and this 
creates problems of inappropriate scales and potential double-counting. This has been the case with the spatial loss 
modeling in the insurance industry, where geographic divisions are not even and thus do not produce direct exposures 
(Xie and Zhang, 2025). The second challenge is that of confidentiality, because the fine-grained reliability should be 
anonymized before it is integrated. The proposed method involves using the so-called weighted spatial joins in which 
outage deltas are distributed to claims geographies based on the number of customers; thereby, the minimum amount 
of distortion is achieved, and the privacy of the customers is not compromised. 

3.4. Preprocessing and Feature Engineering 

To build the integrated dataset, we compute lagged features to align the activity of the outage deltas predicted with 
additional claims activity. This is the same design as those of health and auto insurers that introduce predictive variables 
prior to the observed losses so as to avoid simultaneity bias (Asimiyu, 2024). Median income, housing density, and age 
of infrastructure also belong to the system of socioeconomic controls and decrease the likelihood of a spurious 
relationship between outage and severity of claims. Normalization of outage deltas also constitutes the feature 
engineering so that it can be able to compare the outage deltas across the regions where the standoff reliability may 
differ. The research on predictive risk modeling underlines the importance of dimensionality reduction, as it is a stable 
and interpretable method (Israel, 2025). These preprocessing controls establish a firm foundation upon which cues of 
utility reliability can be attached to the results of insurance losses in the subsequent modeling procedures. 

4. Methodology 

The recommended model establishes a direct correlation of utility reliability indicators, i.e., the changes of the values of 
SAIDI and SAIFI with the expected losses of property insurance. Outage deterioration is stipulated as the cause of claim 
frequency and severity, particularly in those cases of food spoilage, fire damage, and equipment losses. The method of 
transforming engineering reliability predictions into something significant in the cost of risk pricing is achieved by using 
actuarial analysis to synthesize such indices of operations into inputs. The approach develops the previous catastrophe 
pricing techniques that predicted the severity of natural catastrophes with the index of losses, but this time it has an 
alternative focus of electrical grid interruptions as a trigger of correlated claims (Christensen and Schmidli, 2000). 

The Generalized Linear Models (GLMs) that form the foundation of the standard model due to their interpretability and 
the familiarity of regulators to them are the default actuarial model. GLMs also allow the insurers to experience the 
change of the premium estimates in the regions firsthand since the amount of outage signals the change in an 
incremental fashion. Nonlinearities in the relation of outages are, however, often limiting in the effectiveness of such 
models. Gradient boosting and other ensemble methods are introduced to add and pick finer details. These kinds of 
models will be rather useful to consider localized alterations in the severity of outage and claim response, which had 
been previously identified in the predictive premium modeling studies (Asimiyu, 2024). 

The essence of the design is to make sure that predictive pricing models should be accurate as well as just. In fairness 
audits, premium outputs are evaluated on the basis of geographic and demographic lines in order to establish the 
potential biases. To explain this, regions whose infrastructure was weaker in the past should not necessarily be 
punished by being charged with a higher rate. A stability test is also conducted so that the premium recommendations 
do not have problems under outage conditions to improve credibility. This has been identified to be significant in 
carrying out actuarial pipeline stress testing to prevent volatility and discrimination of the outcome of price (Israel, 
2025). 
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An additional layer of claims triage is also implemented in the methodology to have the outage projections working in 
real time. The estimated failure in reliability, especially at the feeder level, is a pointer to the insurers to anticipate the 
activity of focused claims. The insurers can also hasten part of the types of claims, such as spoilage and minor damage 
of small appliances, to make sure that the severity will not increase. This kind of response anticipation has similarities 
to the response proactive triage in managing cats, where pre-predictions are made to manage settlement resources. 
This is advantageous since this would save money as well as improve customer satisfaction during a long outage cluster 
(Lee, 2024). 

In operational integration, predictive outage monitoring is critical, and it provides prior warning to the insurers. By 
introducing the use of machine learning-enhanced predictions into the actuarial processes, insurers will have the ability 
to change the expectation of loss exposure in a systematic way. The tools were discovered to enhance the plausibility of 
infrastructure risk forecasts and demonstrated their suitability for proactive claims preparation. Such supervision 
deployed in the insurance context develops a spectrum between the outage modeling on the engineering scale and the 
actuarial pricing adjustment (Arena and Paulina, 2024). 

The models are analyzed based on three levels, namely, predictive accuracy, fairness, and robustness. RMSE, Gini 
coefficients, and lift are the measures of the calibration and discriminatory power that are used to measure the 
predictive accuracy. The measure of fairness is used to test whether the predictors of outage are present accidentally, 
and the test of robustness is used to test the stability of the results under varying conditions. All these layers ensure that 
the models are technically sound and morally and operationally sound. Recent research on insurance risk modelling has 
also emphasized the need to bring fairness to actuarial machine learning models (Daisy, 2025). 

Finally, the tests are conducted in the extreme outage conditions to make the models resilient. Clustered outage 
simulations, such as heat-50230-induced vegetation failures or cascading feeder losses through storms, are run to 
challenge the performance of the models under stress. This is a pointer to the growing need for insurers to integrate 
grid vulnerabilities of climate sensitivity into the statement of risk. By stress tests, the insurers can also establish 
certainty that the methodology is not only functional in the routine but also in the disastrous ones. 

5. Results (Conceptual Demonstration) 

An example of a situation in which a hypothetical case scenario is presented illustrates that reliability degradation can 
be projected onto the outcomes of the insurance claims. According to the scheme of Li et al. (2010), the outage clusters 
were simulated on a few feeders, which led to peaks in the frequency and severity of the claims. Indeed, the same 
increase in equipment damage and spoilage claims was reported in districts where it was predicted that SAIDI increased 
by 15% with the longer the outage lasted or exceeded 24 hours. This theoretical exercise highlights the fact that the 
indices of reliability when modeled provide a quantitative interpolation between operational measures of utility and 
the actuarial loss modeling. 

To determine the potential information that these signals would be helpful in price adjustment, both the Generalized 
Linear Models (GLM) and Steam Boosting Models (GBM) were applied in a controlled demonstration. As Marciuc (2024) 
shows, the approaches based on GLM can be interpreted, thus giving understandable coefficient-based mappings of 
outage deltas and perceived severity of claims. GLM pricing adjustments in the case found linear relationships but were 
unable to address tail-risk clusters, where nonlinear augmented claims were observed. Using this analogy, Johnson 
(2025) demonstrates that GBM approaches address these non-linearities effectively and that there are thresholds 
beyond which the severity of claims increases rapidly once the outages exceed some amount of time. The findings 
suggest that GLM ensures transparency, unlike GBM, which is flexible in modifying the outage-loss relations. 

Arena and Paulina (2024) also mention the trade-off of interpretability vs. flexibility and point out that transparent 
models are more favored in regulatory settings. GLM created risk-appropriate adjustments in this example that could 
be easily explained but had an underestimation of risk in long groups of outages. The GBM, being more complex, was 
more specific in the definition of the high-risk geographies but with less specificity in the contribution of factors. The 
above results corroborate the point that model selection and regulatory acceptability should have a trade-off with a 
potential compromise between the interpretability of GLM and the predictive power of GBM. 

During its operation, the effectivity of claims triage turned out to be a significant benefit of outage forecasts 
implementation. Lee (2024) asserts that proactive settlement procedures guarantee that the time of managing claims 
is never prolonged to prevent the secondary losses from compounding. This concept demonstration indicated that 
insurers who work off the feeder-level outage signals would be able to put together adjusters in advance and accept the 
partial settlements on the spoilage claims within 48 hours. This saved direct costs and discontent among the 
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policyholders, and the estimated severity was minimized by about a fifth in the simulated cluster. The proposed exercise 
argues that the outage intelligence process in claims management contributes to the enhanced resilience to the 
sustained disruption. 

The net effect of these conceptual examples is that we stand a chance of the worth of the association amid grid stability 
measures and the acts of actuarial pricing and claims. The case mapping gives connections between the operational 
utility signals and insurance results, and model comparisons show that there are opportunities and limitations in 
actuarial adoption. Notably, proactive claims triage has demonstrated actual cost savings and service improvements, 
which is a good beginning for insurers prior to widespread pricing integration. The results show that there is a path 
whereby reliability-based insurance not only improves the actuarial correctness but also the customer performance 
after the incidents of the disastrous interruption. 

6. Discussion 

The findings point to the fact that such reliability indices as SAIDI and SAIFI can make a major contribution to the 
analysis of the insurance risk predictability. The operational reliability data as demonstrated by Li et al. (2010) could 
be utilized as proxies of the exposure to the loss, which was also supported by Idima et al. (2023), who also highlighted 
the growing role of indicators on the infrastructure level in actuarial analytics. The decrease in reliability anticipated in 
the conceptual illustrations of this study was quantitatively shown in the nature of the accelerated speediness and 
intensity of claims, which saw the likelihood of such indices as actuarial pricing contributions. These results confirm 
that utility reliability metrics avail to the insurers a virgin predictive dimension, which can interconnect operational 
indicators and financial risk implications. 

Besides the descriptive capability of the reliability indices, artificial intelligence has the capability of augmenting the 
modeling capability. Aror and Mupa (2025) state that machine learning and hybrid solutions improve the reaction to 
nonlinear and clumped risk-related relationships. Through AI-based gradient boosting models, gradient effects were 
distinguished on which threshold effects were disproportionately negative in the context of grid outage, where longer 
outages would have a negative effect on claims severity. However, the findings also point to the fact that the benefits of 
AI must be counterbalanced by a strong governance structure to remove the threat of the absence of transparency, 
overfitting, and bias (Shiraishi R & Mupa MN, 2025). Unprotected predictive strength may lead to accountability, and 
they are one of the trade-offs that the insurers cannot afford in controlled environments. 

In practice, the integration of outage predictions into the price of a premium can be regarded as one of the opportunities. 
Chandran (2024) illustrates that the new exogenous signals can be used by actuarial models without affecting 
regulatory compliance, and Asimiyu (2024) focuses on the growing needs of adaptive pricing designs in climate- and 
infrastructure-driven risk. The case simulations hypothesize that GLM models allow insurers to make adjustments to 
premiums, both by reducing and increasing them, in a transparent way, as compared to the GBM models, which are 
more active to encourage the complicated interrelationships between outage and losses. This duality implies that the 
pricing policies would be stratified so that the interpretable model is used to report to the regulators, but more liberal 
algorithms are used to tune internal risk. 

The application implications extend even further to claims triage. The connection between outage signal-monitored 
proactive settlement protocols and a decrease in the costs of claims and customer dissatisfaction was demonstrated by 
Lee (2024). The conceptual evidence showed some 20 percent triage efficiency in outage when outage-linked triage was 
applied by showing that there were efficiencies in which reliability-based analytics would be attractive to insurers, 
perhaps even prior to complete rollout into prices. Moreover, the organization of reinsurance, as implied by 
catastrophe-related data streams, implies, as proposed by Biagini et al. (2008) and Noviyanti et al. (2017), that 
catastrophe predictions can improve the calibration of reinsurance treaties. By reducing the uncertainty surrounding 
correlated outage events, the insurers will be in a position to negotiate more closely to the operating reality. 

Reliability-informed pricing is still adopted, but it is policy- and regulation-related. According to Thomas (2024), the 
economic cost of outages to households and businesses is growing, and thus, there is a necessity to concentrate on the 
innovative methods of insurance in the given area. Nevertheless, the regulators will require transparency and fairness 
in the use of outage data since Daisy (2025) cautions in her article regarding price-setting mechanisms driven by AI. 
Finally, it is possible to make some analogies to Matenga et al. (2025), who wrote about the application of AI to the field 
of mechatronics and energy. Based on their results, early governance frameworks, stakeholder engagement, and 
fairness audits are essential to establish trust in decision-making by AI. Similarly, the insurers will have to ensure that 
the reliability-based models are not only technically correct but also socially and regulatory acceptable. 
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7. Limitations 

Even though the study confirms the theoretical utility of developing the links between the indicators of grid reliability 
and insurance premiums and loss management, one must admit that several limitations are observed. The first one is 
the problem of data quality and confidentiality. According to Xie and Zhang (2025), insurance claims datasets are often 
anonymized or aggregated to protect the policyholders, reducing granularity and possibly any meaningful outage-loss 
interactions. Similarly, the indices of reliability are often provided only at the feeder or utility district level that may not 
translate well at the insurance geography and further add to the risk of misclassifying. 

Second, there is a chance that the results cannot be applied to geographies. In fact, the age of infrastructures, vegetation 
concentration, and regulatory frameworks vary across geographical areas, and, as reported by Attoh et al. (2022), this 
has an impact on outage processes and insurance loss dynamics. What works well in a particular control or climatic 
condition is therefore likely to require correction in another one. Finally, it is necessary to mention machine learning 
adversarial risks. According to Daisy (2025), ML models can be manipulated or unintentionally biased, in particular, 
when used in price or operational triage. This is to show that there is the need to entrench robust governance, biased 
audits, and adversarial resilience within actuarial-utility models before the mass adoption. 

8. Conclusion and Future Work 

This paper has proposed a hypothetical relationship between the measures of grid reliability and the operations of the 
insurer, and predictors of outages may establish an influence on the cost of premiums and the manner of a first-triage 
claim. The framework would enable the prediction of correlated outage losses to be predicted better since it would 
translate the predicted SAIDI and SAIFI deltas into the actuarial inputs to enable the insurers to predict the losses after 
the correlated outages. The first contribution is to show that applying a hybrid actuarial-ML approach, the goal is not 
only to be interpretable but also to be predictive and to make sure that insurers act in accordance with the regulatory 
limits and are able to explain the intricate interplay of outages and losses. This value of being interpretable and flexible 
is confirmed by Johnson (2025), and the results in this situation facilitate sustaining the principle as applied in the 
insurance of catastrophe risks. 

The revelation of paramount importance is that outage-based indices that are correlated with claims give a predictive 
layer of insurance companies. This eases the efficiency of the operations through the triage operations and 
preconditions the more dynamic risk-adjusted pricing models. Nonetheless, as with any new practice, it will be 
conditioned by the open dialogue with the regulators and equal treatment of implementation in order to avoid the need 
to disfavor some geographies or demographics. 

There are several areas of future research that can be identified in the future. The article by Arena and Paulina (2024) 
focuses on the opportunities of the IoT sensors to provide outage-to-claims in real-time, which can improve the quality 
and timely reaction to the operations. The prospects of the digital transformation of the insurance that Musemwa et al. 
(2025) and Shiraishi R & Mupa MN (2025) pursue may also be considered through the prism of the prospects of the 
reliability-related analytics becoming an element of a more significant modernization agenda. Additionally, Pareek 
(2025) and Venkatasubbu et al. (2023) assert that additional foundational collaborations between the science of 
actuaries and utility analytics are needed, which is of utmost importance to the insurers to keep abreast of evolving 
infrastructure challenges and climate risks. Coexistence of these directions results in an increased level of integration 
of the catastrophe risk management approach, which can be technologically facilitated. 
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