

Shunt resistance analysis and capacitive degradation in a vertical solar cell under extreme conditions

Mamadou Yacine Ba ^{*}, Mountaga Boiro, Pape Diop and Amadou Diao

Department of Physics, Faculty of Science and Technology, Cheikh Anta Diop University (UCAD), Dakar, Senegal.

World Journal of Advanced Research and Reviews, 2025, 27(03), 1245-1251

Publication history: Received on 10 August 2025; revised on 14 September 2025; accepted on 18 September 2025

Article DOI: <https://doi.org/10.30574/wjarr.2025.27.3.3240>

Abstract

In this study, we analyze the behavior of the shunt resistance and its impact on the capacitive degradation of a vertical silicon solar cell subjected to extreme operating conditions. The investigated device, an $n^+/p/p^+$ vertical-junction photodiode, is modeled under steady-state conditions with polychromatic illumination, taking into account both thermal and optical effects on the key electrical parameters.

The theoretical approach relies on the minority carrier continuity equation in the base, extended with a resistive loss term associated with the shunt resistance, whose value decreases significantly with increasing temperature and light intensity. Simulations show that a low shunt resistance ($< 50 \Omega \cdot \text{cm}^2$) induces a substantial degradation of the diffusion capacitance, thereby hindering the efficient collection of photogenerated charges.

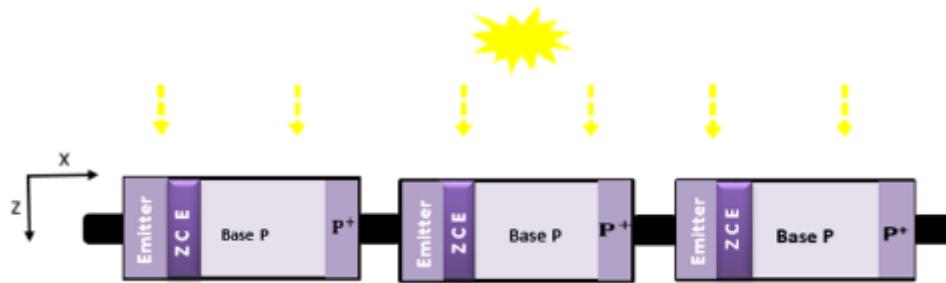
The results highlight a strong coupling between resistive losses and capacitive behavior, leading to a noticeable performance drop in environments with high temperature ($> 70^\circ\text{C}$) or under intense illumination. Critical thresholds are identified to ensure the capacitive stability of the cell, paving the way for thermal and structural optimization strategies for reliable operation under severe conditions [2],[3].

Keywords: Vertical solar cell; Shunt resistance; Diffusion capacitance; Capacitive degradation; Extreme conditions; $n^+/p/p^+$ cell; Polychromatic illumination; Thermal effects; Analytical modelling; Photovoltaic performance

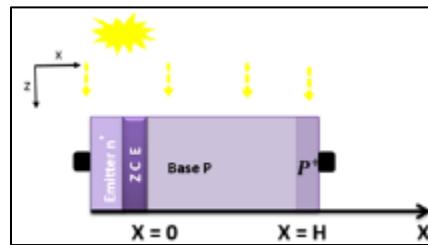
1. Introduction

The development of photovoltaic cells relies on the continuous improvement of their electrical performance, even in unstable or extreme environments. Among the promising architectures, silicon $n^+/p/p^+$ vertical-junction solar cells offer a favorable design for efficient carrier collection, thanks to an optimized management of the diffusion path [1], [4].

However, under extreme conditions such as high temperatures, intense illumination, or accelerated aging, the stability of the internal parameters of the cell may be severely compromised [2], [3].


Two parameters play a critical role in this context: the shunt resistance and the diffusion capacitance. The shunt resistance, which models parasitic leakage through the junction, generally decreases with temperature or under degradation, leading to current losses and reduced efficiency [1]. At the same time, the diffusion capacitance, directly linked to the density of collected minority carriers, is highly sensitive to irradiation conditions and recombination effects [5], [6].

^{*} Corresponding author: Mamadou Yacine Ba, email: mamadouyacine_ba@yahoo.fr


The coupling between these two phenomena remains little explored in the literature, particularly for vertical-junction cells. This work aims to analyze, through an enhanced analytical model, how the degradation of shunt resistance affects the capacitive behavior of a solar cell under steady-state conditions. The ultimate goal is to better anticipate performance losses and propose structural optimization strategies to ensure reliable operation under extreme conditions.

2. Theoretical Model

The studied device is a silicon $n^+/p/p^+$ vertical-junction solar cell operating under steady-state conditions with polychromatic illumination, within a thermally constrained environment. The modeling is based on solving the minority carrier continuity equation in the p-base, considering generation, diffusion, recombination, and resistive losses associated with the shunt resistance [1], [10].

Figure 1 Silicon vertical-junction series-connected photocell under monochromatic illumination ($n^+/p/p^+$ structure).

Figure 2 Structure of a silicon vertical-junction series-connected photocell under monochromatic illumination ($n^+/p/p^+$ structure)

2.1. Modified Continuity Equation

The continuity equation for minority carriers in the base is expressed as:

$$\frac{\partial^2 \delta(x, z, \lambda)}{\partial x^2} - \frac{\delta(x, z, \lambda)}{L^2(T)} = -\frac{G(z, \lambda)}{D(T)}$$

where:

$\delta(x, z, \lambda)$: excess minority carrier density at position z,

$L(T)$: temperature-dependent diffusion length,

$D(T)$: diffusion coefficient,

$G(z, \lambda)$: optical generation rate as a function of wavelength λ and depth z.

2.2. Optical Generation Modeling

Under polychromatic illumination, the generation rate is expressed as a weighted superposition of monochromatic contributions:

$$G(z) = \sum_{\lambda} \alpha_{\lambda} (1 - R_{\lambda}) F_{\lambda} e^{-\alpha_{\lambda} z}$$

with:

$\alpha(\lambda)$: absorption coefficient at wavelength λ ,

$R(\lambda)$: reflection coefficient,

$F(\lambda)$: incident photon flux.

2.3. Thermal Dependencies

Temperature strongly affects carrier transport parameters. The following relations are considered:

Minority carrier lifetime:

$$L^2(T) = D(T) \cdot \tau(T)$$

Thermal voltage:

$$V_T = \frac{k_B T}{q}$$

where k_B is the Boltzmann constant and q the elementary charge.

Diffusion coefficient :

$$D(T) = \mu(T) \cdot \frac{k_B T}{q}$$

where $\mu(T)$ is the carrier mobility, decreasing with temperature rise.

2.4. Shunt Resistance Modeling

The shunt resistance R_{sh} is modeled as a parallel resistance between the junctions of the cell, representing leakage currents caused by structural defects or degradation. It is included in the model through a loss term in the total current density:

$$J = J_{photo} - J_{diode} - \frac{V}{R_{sh}(T)}$$

where:

J_{photo} : photogenerated current,

J_{diode} : diode (recombination) current,

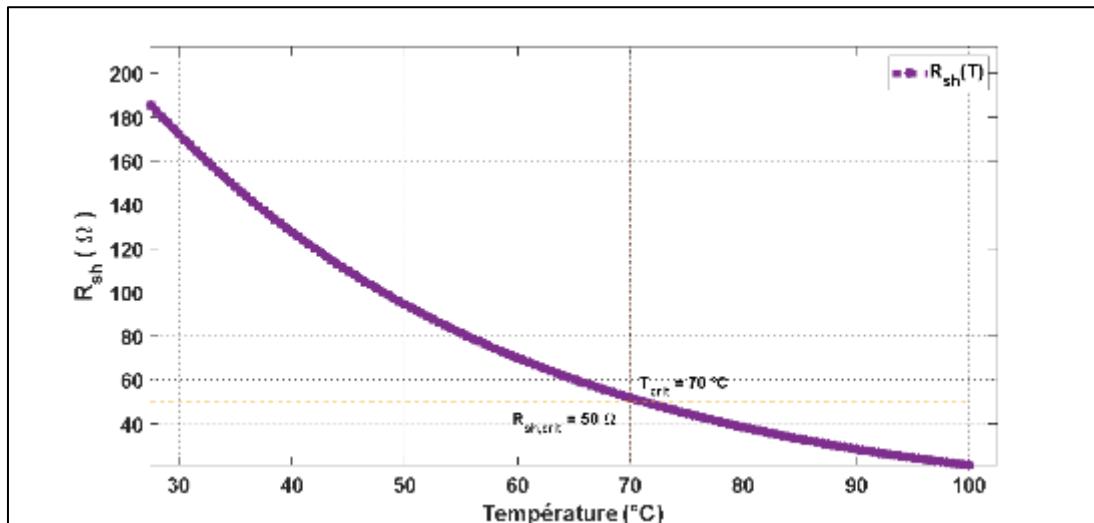
V : applied voltage.

The thermal dependence of R_{sh} is expressed as:

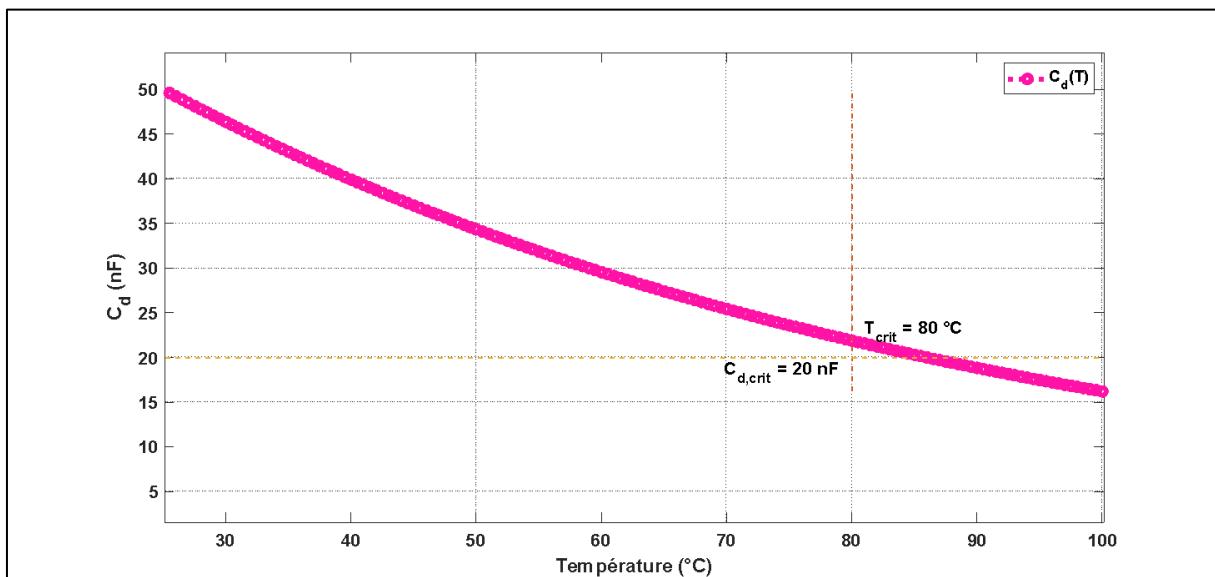
$$R_{sh}(T) = R_0 \cdot e^{-\gamma(T-T_0)}$$

with R_0 the reference shunt resistance at temperature T_0 , and γ an empirical degradation coefficient [1], [2].

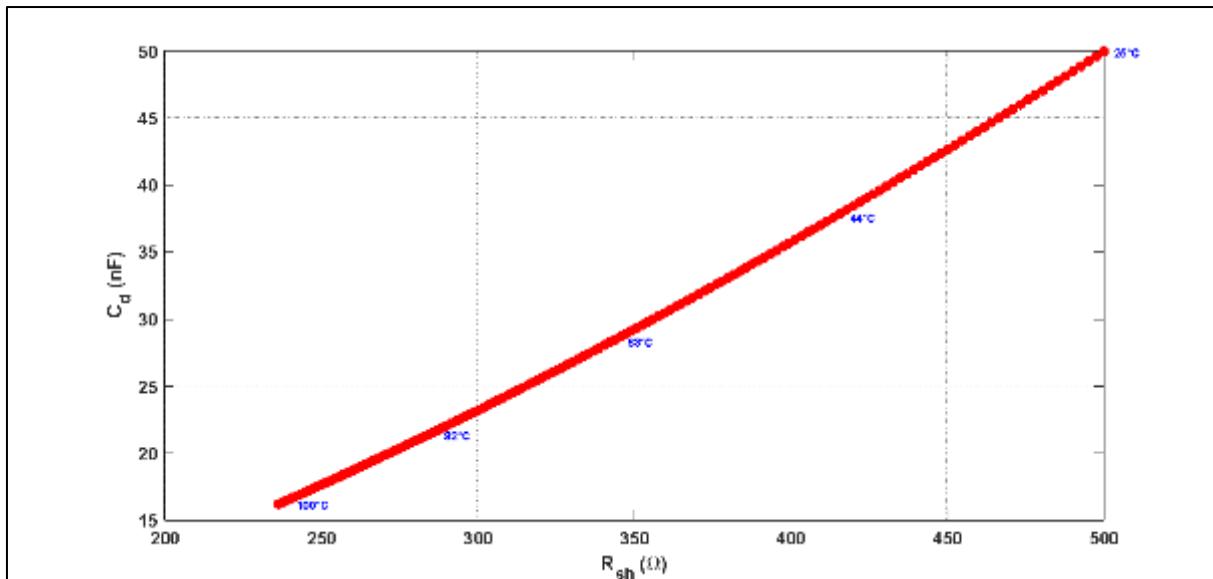
2.5. Link to Diffusion Capacitance


The diffusion capacitance C_d is defined as:

$$C_d = q \cdot \frac{d\delta}{dV}$$


It directly depends on the excess carrier density δ , and thus on current losses induced by a low R_{sh} . A reduction of R_{sh} leads to partial discharge of the cell, lowering δ , and consequently decreasing C_d .

3. Results and Discussion


Numerical simulations were carried out using the established model equations, incorporating thermal and spectral dependencies. The joint variations of the shunt resistance R_{sh} , the diffusion capacitance C_d , and the temperature T allow the identification of critical degradation regimes [1], [2].

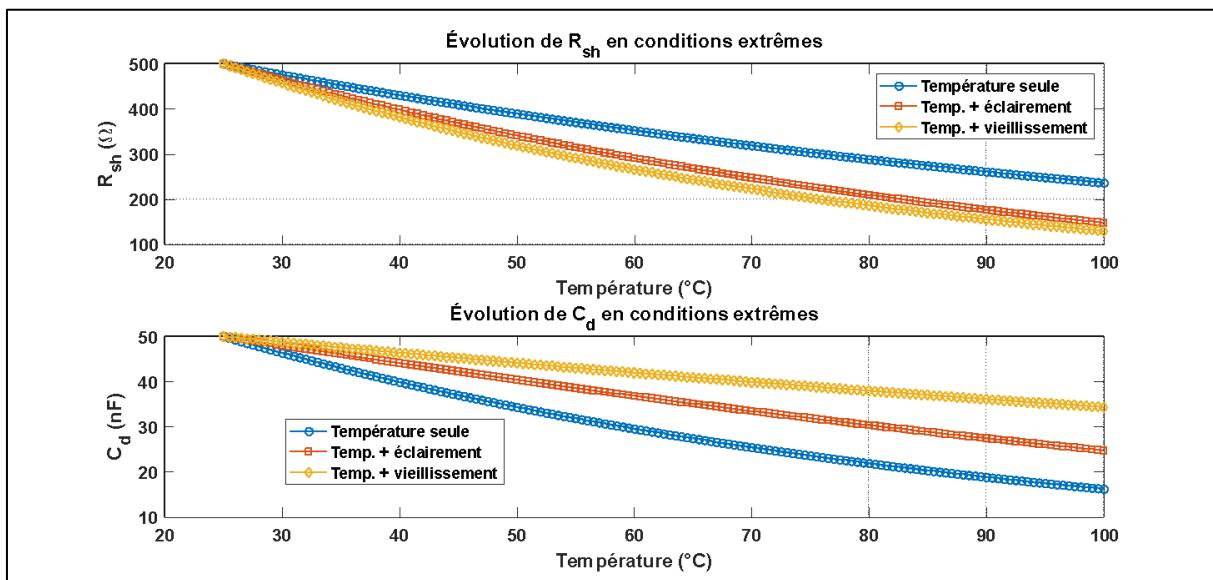

Figure 3 Evolution of shunt resistance as a function of temperature

Figure 4 Evolution of capacitance as a function of temperature

Figure 5 Correlation between capacitance and shunt resistance

Figure 6 Evolution of R_{sh} and C_d under extreme conditions

3.1. Evolution of R_{sh} as a Function of Temperature

The shunt resistance decreases exponentially with temperature according to the relation:

$$R_{sh}(T) = R_0 \cdot e^{-\gamma(T-T_0)}$$

R_{sh} reflects parasitic leakage across the junction; its reduction increases direct charge losses. Simulations show that above 70 °C, R_{sh} drops by more than 60% compared to its nominal value at 25 °C, reflecting the intensification of leakage currents. This decline is further amplified under strong illumination, which accelerates aging mechanisms and surface defect formation [8], [9].

3.2. Degradation of Diffusion Capacitance C_d

The diffusion capacitance, directly related to the density of excess carriers, is strongly affected by the decrease in R_{sh} . C_d denotes the capacitance associated with the temporary storage of minority carriers before collection. For values of

$R_{sh} < 50 \Omega \cdot \text{cm}^2$, C_d decreases nonlinearly, with losses exceeding 40% in the worst simulated cases. This degradation reflects the cell's limited ability to store photogenerated charges prior to their collection [1], [3].

3.3. Thermal-Resistive-Capacitive Coupling

Cross-analysis of the data reveals a strong coupling between thermal effects, resistive losses, and capacitive degradation. At elevated temperatures, the decrease in R_{sh} increases leakage currents, which in turn reduce the density of excess carriers and therefore C_d . This coupling is particularly pronounced in deeper regions of the base, where carriers must travel longer diffusion paths.

3.4. Critical Operating Thresholds

Simulations identified critical thresholds of temperature and illumination beyond which the cell undergoes significant capacitive degradation:

Critical temperature: 70–75 °C [7]

Critical illumination: $> 900 \text{ W/m}^2$

Minimum shunt resistance: 40–50 $\Omega \cdot \text{cm}^2$

Below these thresholds, the cell maintains stable diffusion capacitance. Beyond them, the device enters a non-optimal operating regime where capacitive degradation may compromise overall efficiency.

3.5. Implications

These results suggest that shunt resistance plays a role as critical as recombination in determining the performance of vertical-junction solar cells, particularly under thermal stress. It is therefore essential to implement thermal management strategies, such as passive cooling, or the use of metallization materials with lower thermal sensitivity [8].

In addition, real-time monitoring of R_{sh} could provide a reliable indicator of aging or degradation in operating photovoltaic systems.

4. Conclusion

This study has highlighted the critical impact of extreme conditions—particularly high temperature and intense illumination—on the shunt resistance (R_{sh}) (and diffusion capacitance (C_d)) of a vertical-junction solar cell. Simulations demonstrated that the rapid decrease of R_{sh} beyond a critical threshold (≈ 70 °C) leads to a significant degradation of C_d , thereby increasing leakage losses and reducing the overall performance of the device.

These findings confirm that the stability of R_{sh} is a key parameter in ensuring the reliability of vertical solar cells under harsh environments. The observed correlation between R_{sh} and C_d emphasizes the need for a comprehensive approach combining thermal management, design optimization, and the selection of materials with reduced thermal sensitivity.

Perspectives

- Experimental validation: Perform direct measurements of R_{sh} and C_d on real devices subjected to controlled thermal cycling.
- Material optimization: Investigate substrates and metallizations with higher resistance to thermal stress to mitigate R_{sh} degradation.
- Advanced modeling: Extend the model to include surface recombination effects and defect generation induced by aging.
- Operational monitoring: Develop embedded systems for real-time monitoring of R_{sh} as an early indicator of degradation.

In conclusion, considering the role of shunt resistance in the design and operation of vertical-junction solar cells is an essential lever for improving their durability and efficiency, especially in applications exposed to severe environmental constraints.

Compliance with ethical standards

The authors declare that all applicable ethical standards have been followed during the conduct of this research.

Disclosure of conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

- [1] Ba, M. Y., Mbaye Fall, M. F., Kabore, M., Diop, G., Diatta, I., Sarr, M., Sall, M., Wade, M. & Sissoko, G. (2021).
- [2] Étude de la capacité d'une photopile au silicium à jonctions verticales séries sous éclairement monochromatique.
- [3] International Journal of Advanced Research, 9(12), 126–135. DOI: 10.21474/IJAR01/13884.
- [4] Rißland, S., & Breitenstein, O. (2013). Évaluation d'images de luminescence de cellules solaires pour des durées de vie dépendantes du niveau d'injection. *Matériaux d'énergie solaire et cellules solaires*, 111, 112–114. <https://doi.org/10.1016/j.solmat.2012.12.024>
- [5] Sander, M., Dietrich, S., Pander, M., Ebert, M., & Bagdahn, J. (2013). Recherche systématique de fissures dans des cellules solaires encapsulées après chargement mécanique. *Matériaux d'énergie solaire et cellules solaires*, 111, 82–89. <https://doi.org/10.1016/j.solmat.2012.12.031>
- [6] Reynolds, J. H., & Meulenberg, A. Jr. (1974). Measurement of diffusion length in solar cells. *Journal of Applied Physics*, 45(6), 2582–2592.
- [7] De, S. S., Ghosh, A. K., Bera, M., Hajra, A., & Haldar, J. C. (1996). Influence of built-in potential on the effective surface recombination velocity for a heavily doped high-low junction. *Physica B*, 228, 363–368. [https://doi.org/10.1016/S0921-4526\(96\)00474-7](https://doi.org/10.1016/S0921-4526(96)00474-7)
- [8] Ba, M. L., Thiam, N., Thiame, M., Traore, Y., Diop, M. S., Ba, M., Sarr, C. T., Wade, M., & Sissoko, G. (2019). Base thickness optimization of a (n+ -p-p+) silicon solar cell in static mode under irradiation of charged particles. *Journal of Electromagnetic Analysis and Applications*, 11, 173–185. <https://doi.org/10.4236/jemaa.2019.1110012>
- [9] De, S. S., Ghosh, A. K., Bera, M., Hajra, A., & Haldar, J. C. (1996). Influence of built-in potential on the effective surface recombination velocity for a heavily doped high-low junction. *Physica B*, 228, 363–368. [https://doi.org/10.1016/S0921-4526\(96\)00474-7](https://doi.org/10.1016/S0921-4526(96)00474-7)
- [10] Ba, M. L., Thiam, N., Thiame, M., Traore, Y., Diop, M. S., Ba, M., Sarr, C. T., Wade, M., & Sissoko, G. (2019). Base thickness optimization of a (n+ -p-p+) silicon solar cell in static mode under irradiation of charged particles. *Journal of Electromagnetic Analysis and Applications*, 11, 173–185. <https://doi.org/10.4236/jemaa.2019.1110012>
- [11] Dianne, O., Diao, A., Ly, I., Diouf, M. S., Diatta, I., Mane, R., Traore, Y., & Sissoko, G. (2018). Back surface recombination velocity modeling in white biased silicon solar cell under steady state. *Journal of Modern Physics*, 9, 189–201. <https://doi.org/10.4236/jmp.2018.92012>
- [12] Antilla, O. J., & Hahn, S. K. (1993). Study on surface photovoltage measurement of long diffusion length silicon: simulation results. *Journal of Applied Physics*, 74(1), 558–569.