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Abstract 

This paper aims to explore how machine learning (ML) can be used to forecast water quality tailored for recreational 
use by identifying contamination levels in water. The project investigates the physical and chemical properties of water 
that can be used to forecast bacterial contamination, with the goal of identifying the predominant water features 
influencing bacterial contamination forecast. Multiple classification models were developed and evaluated including 
Random Forest, Logistic Regression, k-Nearest Neighbors (KNN), and XGBoost. I additionally utilized SHAP (SHapley 
Additive ex Planations) and SHAP analysis to provide a detailed explanation of the model’s performance. Based on the 
Fecal Coliform levels, the impact on the model’s performance was the strongest, with both the Conductivity and 
Biodegradable Oxygen Demand (BOD) coming after and being of the same level. This aligns the findings with the general 
notions of environmental science. The limitations of the research include regional basis and applicability of the model 
to recreational water use. The developments of the research can help incorporate larger datasets with coverage of larger 
regions and try to predict drinking water safety to help improve the model’s accessibility.  

Keywords: Water Quality; Recreational Water; Coliform Bacteria; Chemical and Physical Properties; Machine 
Learning; Feature Importance Analysis; Shap Analysis 

1. Introduction

Water quality remains a major concern regarding public health, environmental stability, and the economies worldwide 
[1, 3]. In the hierarchy of human needs, clean water comes first, whether for drinking, irrigation, industrial processes, 
or for recreation. Fecal bacteria have remained majorly problematic to recreational water safety; they include 
Escherichia coli (E. coli) and enterococci, which can cause gastrointestinal illnesses, skin infections, and respiratory 
ailments [9]. According to the CDC in the United States, millions of cases of recreational water illnesses occur globally 
every year on account of contact with polluted water, which constitutes a major public health concern [6]. Drinking 
water contaminated with pollutants or pathogens may cause diseases that threaten human life or disability from these 
diseases; for example, cholera, typhoid, and dysentery [8]. On the contrary, such water acts as a sinister polluter, 
damaging the environment by way of interactions between aquatic species and impairing biodiversity within the 
ecosystems [4]. Well-being water is not just a health issue; it is also an environmental issue for sustainability [5]. 

Water quality is a critical matter for India because it has a large population which is still growing [2]. While many works 
attempt to determine the general aspect of water-quality analysis, another aspect comprises the levels of fecal bacteria 
and whether that water is safe for recreational purposes [7]. The significance of this research lies in the contamination 
of Indian rivers and groundwater not only by industrial wastes, agricultural runoffs, and sewage wastes but also by the 
discharge of human wastes in the environment where sanitation facilities are not available [1]. In India, rivers and 
groundwater sources are contaminated by industrial discharges, agricultural inputs, and sewage wastes [10]. Among 
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them, the Ganges being the most culturally and spiritually significant river in India is maybe the most polluted and hence 
posing a great risk to communities and ecosystems [3]. Rural water users mainly depend on groundwater sources that 
may be contaminated with bacteria, besides arsenic, fluoride, and nitrates—this only amplifies the water quality crisis 
[9]. This is wherein begins the water quality crisis [8]. 

If ever one hopes to counteract all the more pressing challenges on water quality faced by the people in India, it has to 
be a quickest achievement of active community water management, good infrastructure, and pollution control 
mechanisms [4]. Initiatives by the governments are in process, wherein water will be piped to every house (e.g., many 
large-scale projects currently on construction such as the Jal Jeevan Mission), but the bigger solution of safe water is yet 
to be implemented, more so for recreational purposes [2]. There is a need for public awareness, continuous monitoring, 
and the use of predictive tools that could warn of unsafe fecal bacteria levels before people are exposed to much risk 
[6]. In this regard, urbanization and climate change will escalate water stress in India and will need more attention [5]. 

A study by Rong Xiao et al. (2013) investigated the presence and ecological risk of six heavy metals-cadmium, chromium, 
copper, nickel, lead, and zinc-in sediment samples from two river systems in the Pearl River Delta-the Shiqiao River 
(urban) and the Shawan River (rural). Researchers collected both surface and core sediment samples to analyze 
horizontal and vertical pollution distribution. They also analyzed factors like organic matter, grain size, and salinity to 
figure out how these factors influenced the accumulation of these six metals. The study aimed to find out pollution 
sources, evaluate toxicity levels, and derive high-risk areas requiring remediation with the data. The results from this 
study displayed that all of the studied metals exceeded the background values, with cadmium being the most common 
pollutant in both of the rivers. Urban river sediments exhibited a widespread non-point source pollution from industrial 
activity, whilst the rural rivers displayed localized high-risk zombies primarily from agricultural and little industrial 
runoff. Vertical profiles pointed to more stable deposition in the rural river and disturbance in the urban one, most likely 
from dredging. Toxicity assessments proved moderate to high ecological risks, with chromium and nickel adding heavily 
to toxicity, and the ecological risk index values showed “hot areas” needing attention in both river systems. 

Another study by Zhang et al. (2023), pinpointed spatiotemporal trends in water quality over 117 monitoring sites in 
Zhenjiang China, using five years of surface water data. The researchers analyzed ten water quality indicators, some 
including ammonia nitrogen, biological oxygen demand, and dissolved oxygen. They used statistical and trend models 
to identify pollution drivers. Findings displayed clear spatial and seasonal patterns, urban areas experienced worse 
pollution during dry seasons due to lower amounts of dilution and increased amounts of discharge. Important 
influencing factors consisted of land use types, topographic slope, and economic activity. The limitations in the research 
included the simplicity of the statistical and trend models used, which restricted the depth of insight into more complex 
pollutant interactions. The authors of the paper made the importance of needing tailored management based on 
regional land use and water flow conditions clear. 

Reza et al. (2021) discussed AutoML use to predict water quality according to a number of physicochemical parameters. 
To reduce manual model tuning, they aimed to compare AutoML-generated models versus expert-designed ones. 
Working with a refined data set containing water quality indicator variables, they applied both approaches to model 
classification levels of water quality. Cleaning and structuring the data was one of the challenges arising out of 
inconsistencies and missing values.  Despite these challenges, AutoML models had an edge in some respect over the 
expert-tuned ones in terms of accuracy and speed, achieving an average classification accuracy of 91.3% and an F1-
score of 0.89. However, another limitation cited by the study was the lack of generalizability of the present study because 
of the relatively small size and geographic scope of the analyzed data set. Their conclusion indicates that potentially, 
AutoML offers a workable solution with scalability in promoting and supporting water quality monitoring and decision-
making systems in areas with low technical expertise or scarcity of resources. 

Ahmed et al (2019) worked on supervised machine learning models to predict the Water Quality Index and to classify 
water quality classes using few features. The dataset was based on water samples from Rawal watershed. It contained 
four parameters that were easy to measure and were temperature, turbidity, pH, and total dissolved solids. They 
experimented with a collection of regression and classification algorithms, including gradient boosting, polynomial 
regression, and multilayer perceptron (MLP). The gradient-boosting algorithm provided the best WQI prediction with 
the lowest value of mean absolute error (roughly 1.96), while its counterpart, the MLP classifier, gave the maximum 
level of classification accuracy, that is, nearly 85%, for WQC. A severe problem was in handling noisy/incomplete data, 
addressed through preprocessing and feature selection to ensure model reliability. The study found that with or without 
limited input data, water assessment can be done by machine learning in an accurate and efficient manner, thereby 
rendering traditional means of lab-base methods obsolete. 
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Building on these prior studies about water quality, the primary objective of this research is to evaluate whether the 
physical and chemical properties of water can be used to predict water quality through supervised learning techniques. 
The goal is to estimate how accurately ML models can replicate or even enhance traditional water quality test methods 
by using environmental data. While much of the previous literature has focused on general water quality assessment, 
this study is more specifically concerned with recreational water safety, distinguishing whether water is suitable for 
body-contact activities such as swimming or only for non-body-contact uses like boating or irrigation. This investigation 
also tries to understand which elements of a physical or chemical nature contribute to model predictions and thus the 
most important factors in classifying water quality. The research’s use of mixed methods and combining supervised and 
exploratory learning, introduces a data-driven approach to understanding water quality, with applications for better 
decision-making, improved monitoring, and early warning signals in both urban and more remote rural locales, 
particularly in regions like India that continue to struggle with water quality assessment. 

1.1. Dataset 

The dataset used here provides a collection of 619 water quality observations from various sources of water bodies in 
India: lakes, ponds, wetlands, and tanks (Baskar, 2022). It contains observations on important physical and chemical 
parameters needed to determine the quality of water. While the specific place of extraction is not given on the dataset 
for larger bodies of water like wetlands and lakes, it is meant to depict measurement in different regions of India which 
makes it convenient for comparison with rural and urban areas. The sources of data are environmental condition 
monitoring organizations or field studies in the different areas. 

The data has many columns where each column represents a minimum and maximum amount of a water quality 
indicator. For instance, water pH (acid/base), temperature, dissolved oxygen (oxygen gas in liquid), turbidity (clarity of 
water), biological oxygen demand (the measure of the amount of dissolved oxygen used by micro-organisms), 
conductivity, nutrients such as nitrate, nitrite, bacteria such as fecal coliforms and total coliforms (each attribute with 
minimum and maximum values). Each of these characteristics of the water bodies will measure the sustainability of 
water for ecosystem and human use and therefore are all valuable inputs to predictive modelling. 

2. Methodology 

2.1. Input Feature and Output Target 

The input features considered for this study encompass a number of chemical and biological water-quality parameters. 
These parameters include Temperature (Min and Max in °C), Dissolved Oxygen (Min and Max in mg/L), pH (Min and 
Max), Conductivity (Min and Max in mhos/cm), BOD (Min and Max in mg/L), Nitrate + Nitrite Nitrogen (Min and Max in 
mg/L) The output target features are Fecal Coliform and Total Coliform counts (Min and Max in MPN/100ml). These 
were chosen because of their relevance to assessing the water bodies' health and their potential influence on the water 
quality classification. As for the output, it is a categorical variable of water quality classes for body contact that were 
induced from the California State Water Resources Control Board and classified as discrete categories, such as “safe for 
body contact” for less than 200 coliform bacteria colonies per 100 mL water and “unsafe for body contact” for more 
than 200 coliform bacteria colonies per 100 mL water [11]. The model is aimed at predicting this water quality class 
from the input features so that it can be used to classify and monitor water conditions across several sites. 

2.2. Data Pre Processing  

First, missing/null values were detected and treated, usually by removal, depending on the nature and severity of the 
missing data.  0.484% of values were missing/null from the min and max Temperature C columns, 0.323% of values 
were missing/null from the min and max Conductivity (mhos/cm) columns, and 0.161% of values were missing/null 
from the min and max Fecal Coliform (MPN/100ml) and the min and maxTotal Coliform (MPN/100ml) columns.  

Afterward, 55 anomalous data points (extreme) were detected by the Isolation Forest [14] and removed to lessen their 
possible influence on the training process. Occasional outliers found in the (all have minimum and maximum value 
columns) BOD, Fecal Coliform, Total Coliform, Conductivity, and Nitrate and Nitrite columns were present due to 
extreme readings caused by environmental noise, sensor errors, or rare local events. The Isolation Forest was trained 
in all the features relevant to the data set to get an underpinning distribution of normal observations. One can find the 
data records that are easier to isolate by recursively splitting the datasets. It assigns every instance an anomaly score 
and removes those that were quite distant from the observed standard behavior. This filtering thus guaranteed that the 
remaining data mostly represented common trends in water quality. So, common trends will probably prevent any 
misleading patterns from coming up in training and enable a much more reliable prediction stage. 



World Journal of Advanced Research and Reviews, 2025, 27(03), 922–930 

925 

For the target variable of bacterial counts or water quality, the values were binned into discrete categories (e.g., “safe”, 
“not safe”) through the use of certain threshold guidelines by the California State Water Resources Control Board. They 
state that the fecal coliform concentration should not exceed a log mean of 200 per 100 ml for body to water contact 
activities. With these steps, the dataset came out clean, consistent, and robust enough for both supervised and 
unsupervised learning. 

2.3. Models and Evaluation Metrics  

To evaluate the predictive performance of multiple supervised learning algorithms for water quality classification using 
physicochemical parameters such as temperature, pH, turbidity, and total dissolved solids, five models were considered: 
Logistic Regression [15], k-Nearest Neighbors (kNN) [16], Random Forest [17], and XGBoost [18]. Logistic Regression 
was selected for its simplicity and interpretability, kNN for its non-parametric, neighborhood-based decision process, 
Decision Tree for its explicit rule-based structure, Random Forest as an ensemble of decorrelated decision trees to 
improve generalization, and XGBoost as a gradient boosting method leveraging sequential error correction for high 
predictive accuracy. 

For model optimization, hyperparameter tuning was conducted using grid search in conjunction with 5-fold stratified 
cross-validation repeated 50 times to ensure robust and low-variance performance estimates. For Random Forest, the 
parameter grid included n_estimators ∈ {100, 500}, min_samples_split ∈ {10, 20, …, 100}, and max_features ranging 
from 1 to (total_features − 1), with class_weight fixed to ‘balanced’.  For XGBoost, the search space included eta ∈ {0.001, 
0.01, 0.05, 0.1, 0.2}, subsample and colsample_bynode ∈ {0.6, 0.7, 0.8, 0.9, 1.0}, and n_estimators ∈ {50, 100, 200}, with 
eval_metric fixed to logloss and use_label_encoder=False. Logistic Regression, kNN, and Decision Tree were also tuned 
using grid search over their respective key hyperparameters. All models were evaluated during tuning using 
f1_weighted to account for minor label imbalance while capturing per-class performance. 

The repeated stratified cross-validation process produced per-label and overall (weighted) precision, recall, and F1-
scores, reported as mean ± 95% confidence interval (CI) across all folds and repeats, providing a statistical measure of 
performance stability. After selecting the best hyperparameters for each model, final performance on unseen test data 
was assessed using bootstrap resampling of the test set with 1000 iterations. For each bootstrap sample, predictions 
were generated, and per-class and weighted precision, recall, and F1-scores were computed to derive distributions and 
95% CIs, enabling uncertainty quantification and bias detection across labels. Comparing CV-derived metrics with 
bootstrap-derived test metrics allowed for an assessment of generalization capability and overfitting risk. 

2.4. Feature Importance Analysis 

In this research, the feature importance analysis holds major significance because it enables one to get an idea about 
which physical and chemical parameters of water are more significant in making an overall prediction about water 
quality. While a machine learning model can make very accurate predictions, there is always an imprint of operating as 
“black boxes," unable to provide insight into the contribution of each input variable to the final decision. By associating 
feature importance, the analysis brings out the respective parameters-the pH, turbidity, or dissolved oxygen-that 
influence the model predictions the most. Hence, the analysis brings more clarity and also helps direct policymakers, 
environmental agencies, and communities to monitor and intervene mainly on those water quality indicators that bear 
the most significance. In other words, the analysis helps ensure that our results are meaningful and actionable along 
with being predictive. 

To reach this aim, we are analyzing the results using the method most often used to interpret machine learning models. 
SHAP (SHapley Additive ex Planations) assigns a value of importance to a feature concerning the model output for a 
single prediction under consideration with a game-theoretic approach: how much has each feature "contributed" to 
either pushing a prediction higher or lower than the expected value? For instance, SHAP would tell whether high 
conductivity strongly contributes to a negative classification of water quality, or if dissolved oxygen contributes to the 
positive classification of water quality. Traditional feature importance metrics provide an explanation valid globally for 
the dataset, whereas they lack local explanations that would explain why a model made a certain prediction for an 
individual data point. That is what makes SHAP so powerful for environmental studies, because it not only tells which 
features have the biggest say but also sheds light on more subtle relationships between water quality parameters and 
prediction outcomes. 

3. Results and Discussion 

This section of the study will draw conclusions from the obtained results. Accordingly, baseline models are presented 
with main procedures that serve as contrasting bases for other models. Subsequently, hyperparameter tuning was 
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implemented, during which gains in performance and accuracy made by the respective algorithms were discussed. In 
the next step, the models were again ranked to determine which among them are dominating the others in classification 
accuracy, precision, recall, and F1-Score. Interpreting using SHAP analysis the best-performing model involved the 
contribution of the physicochemical features to the final prediction. Once a conclusion is drawn on the strength of the 
modeling technique, an actual cause to some extent can be made for water quality outcomes. 

Table 1 shows the results of the basic kNN and Logistic Regression on both the training and testing data sets. The kNN 
reports an F1-score of 74-77%, with a slight improvement in the training part of the classification and a strong 
validation setting. The test performance includes a more significant decline, especially for Class 0, where the recall is 
56%. This under-performance points to overfitting of the model, as is shown by the training viewed data. As for the 
logistic regression, it records a slightly stronger overall test performance with an F1-score of 70-73%, with a strong 
recall that outweighs defensive improvements. The decrease in the testing region as compared to as viewed on the 
training data is lesser because the Logistic regression now provides an acceptable fall. Consequently, based on the 
provided baseline, the Logistic Regression outperforms kNN as it continues to cover the classes better as reflected in 
the F1-score and recall performance. 

Table 1 Evaluation metrics of baseline models  

Model Train/Test Label Precision  Recall F1 Samples 

KNN Train 0 74% 75% 74% 182 

1 78% 76% 77% 207 

Test 0 72% 56% 63% 55 

1 56% 72% 63% 43 

Logistic Regression Train 0 78% 80% 79% 182 

1 82% 81% 81% 207 

Test 0 79% 67% 73% 55 

1 65% 77% 70% 43 

The Random Forest (RF) model after adjustments achieved strong performance across both training and testing when 
utilizing its optimized parameters; nevertheless, minimal overfitting was observed. With regards to the recall, Label 0 
(safe for recreational purposes) reached a value of 82.88% and its precision 83.37%, while Label 1 (unsafe for 
recreational purposes) had a superior F1 score of 84.97% and its precision and recall as 85.18% and 85.08% 
respectively. In contrast, the values presented in the testing dataset were of F1 score and therefore slightly lower. Upon 
closer inspection, it seems that the performance values for RF are of good quality. With minor refinement, the model 
could achieve both the desired precision and the recall. is introduced, and both precision and recall seem to be clearly 
defined, the model would work best with the precision and recall to be set, it would be best if tests were run with the 
given parameters in terms of what shape the data should test on. 

The random forest model was outperformed by the XGBoost in the majority of tests. The XGBoost model has a better 
generalization and test performance. For training, it has an F1 score of 83.07% ± 0.52 for Label 0 and 85.07% ± 0.45 for 
Label 1 values that are near the random forest models but with more confidence. However, the Label 0 and 85.07% ± 
0.45 for Label 1 and the significant region around them is more the result of the random forest. For the testing set, the 
XGBoost model has Label 0 and Label 1 having an F1 score and both labels having one with 87.42% ±0.20 and 83.09%, 
respectively. This shows that XGBoost was more successful in using the data to its full potential and correctly flagging 
bad water conditions, which is vital for public health and recreational activities. XGBoost actually outperforms both 
models, especially when the F1 score for Label 1 is considered. 
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Table 2 Evaluation metrics of tuned models  

Model Train/Test Label Precision (%)  Recall 

(%) 

F1  

(%) 

Samples 

Random Forest 

'max_features': 2, 

 'min_samples_split': 10, 

 'n_estimators': 500 

CV Train 0 83.37 +/- 0.72 82.88 +/- 0.76 82.92 +/- 0.54 182 

1 85.18 +/- 0.57 85.08 +/- 0.75 84.97 +/- 0.49 207 

Test 0 85.14 +/- 0.30 83.79 +/- 0.32 84.33 +/- 0.23 55 

1 79.61 +/- 0.39 81.19 +/- 0.38 80.19 +/- 0.3 43 

Xgboost 

'colsample_bynode': 0.8,  

'eta': 0.2,  

'n_estimators':50, 
'subsample': 0.7 

CV Train 0 83.33 +/- 0.67 83.24 +/- 0.80 83.07 +/-0.52 182  

1 85.50 +/- 0.59 84.99 +/- 0.72 85.07 +/- 0.45 207 

Test 0 85.93 +/- 0.29 89.19 +/- 0.27 87.42 +/- 0.2 55 

1 85.42 +/- 0.35 81.25 +/- 0.38 83.09 +/- 0.27 43 

According to table 2, the model that performed best in this research was XGBoost, and it was superior to Random Forest, 
as demonstrated in the training and testing datasets. Through SHAP (SHapley Additive exPlanations) the feature 
importance analysis was leveraged not only to interpret the model’s decision-making process, but also to pinpoint out 
which water quality parameters were mostly responsible for correct predictions. SHAP further enables the 
quantification of each feature’s effect on the output, thereby providing practical insight on the influence of the water's 
physical and chemical classifications for distinguishing water safety and is therefore essential in ensuring that machine 
learning outcomes are applied correctly to environmental science. 

In order to expound on how each variable obtained from the visual models for the SHAP’s visualization, SHAP’s analysis 
in Figure 1 and 2 reveal to us that the predictive module has a very strong relation with the level of oxygen dissolved 
and BOD. These variables have a more important positive meaning than others. This means that the output from the 
model is aided with higher levels of the DO, whereas the higher levels of BOD have a positive harm. With high levels of 
BOD, it explains that the environment is rather unhealthy. On the other hand, higher levels of DO are really great for the 
aquatic world. As for the model, it pays no attention to things like Conductivity and ph, which means that the SHAP 
values are very close to 0, which do not assist the model in any way. Temperature and Nitrates are showing as 
moderately significant, but at the same time they will have a positive effect on the output. The models can be seen to 
have a gloomier relationship with respect to the relationships of the variables, which means they could differ in the 
functional relationships and depend on the context. The analysis shows that the model seems to be connecting the basic 
biological major keys so that its output is more refined than the singular variables. 

 

Figure 1 Mean absolute SHAP values for the water quality model 
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Figure 2 SHAP beeswarm plot illustrating the impact of feature values on the model's output 

As stated in various studies, machine learning models offer commendable accuracy in the interpretation of water 
quality. For example, Reza et al. (2021) and Ahmed et al. (2019) have a machine learning model with an average 
accuracy level of about 85%, which is also clearly visible in this particular research’s XGBoost model, which has an F1 
score of 87.42% and 83.09% for safe-to-drink and unsafe-to-drink waters, respectively. Utilizing the SHAP analysis, 
once again, offers an in-depth explanation of the impact of each feature, which also aids identification of Nitrate, DO, 
and BOD, which is known as the recent in-depth analysis of the features. Since the assessment of Nitrate, DO, and BOD 
along with the other parameters directly indicate the severity of pollution in the ever changing and multifaceted 
ecosystems, all of the methods Reza et al. (2021) and Ahmed et al. (2019) were no less beneficial. The neglect of the 
recreational water/ the contact of the water with the body that was discussed and explained is the same from the finding 
and the presented research. 

In respect to the research provided, the dataset provided was helpful, but would be more helpful if expanded. It would 
have provided more insight and accuracy had it not only been limited to a specific geographical region. Water testing 
from different geographic regions, climates, pollution sources, different land uses, and socioeconomic activity can be 
helpful in further enhancing the results. The analysis from my research is helpful, but needs seasonal statistics to show 
the effectiveness of the model.  

Rather than concentrating on recreational water quality classification as a whole, another limitation of this study is that 
they classify whether the water is safe or not for recreational water activities like swimming. Looking wider, I believe it 
can also be used to determine if water is safe for humans to drink based on the rigorously tested results. Secondly, the 
study looks at physical and chemical parameters alone and makes an assumption that they are completely responsible 
for the characteristics of water, thus overlooking the biological and hydrological parameters that in reality help in 
making water quality determination much more precise. 

In the future, the study should be looking at acquiring much larger and more comprehensive data sets for their study 
qualification, expanding their parameters to include microbial counts and hydrodynamic data. Using deep learning 
frameworks could further their cause in terms of accuracy. The study needs to go beyond recreational water study to 
capture both agricultural and potable water, and their models will be much more useful. Real-time data gathering will 
also help by making the model more accurate.   

4. Conclusion 

The main goal of this study was to predict the conditions of water safety for recreational activities such as body-contact 
swimming through the application of physical and chemical properties of water. With the use of supervised learning 
models, the primary aim of the research was to enhance the pre-existing water quality evaluations with data-driven 
methods. The study further sought to trace the contributions of each independent feature to the prediction, thereby 
using feature selection to outline the bare minimum properties for water quality and enhanced methods. Moreover, 
supervised and exploratory learning techniques were employed to understand better the regions and the expected 
pollution sources. 
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The XGBoost model showcased the highest predictive accuracy and strongest balance across training and test sets when 
compared to the other models. For both labels, the model also demonstrated robust precision, recall, and F1 scores, thus 
indicating that the model’s predictions are well generalized to the world, even while the world is changing. On the other 
hand, the Random Forest model (RF) also performed well, but it showed relatively larger performance gaps across sets. 
On balance, the Random Forest model remains reasonable when the XGBoost model’s superior metrics and consistency 
are taken into account for predicting recreational water safety. 

An evaluation of the XGBoost best performing model SHAP results was also conducted to test and gain better 
understanding regarding the particulars that have a say in the model’s prediction. The analysis revealed that Fecal 
Coliform (MPN/100ml) (Max), key to a very critical and neurological disease that may be associated with bacteria, 
stands out as the most important condition while also correlating to the recreational water safety standards and 
guidelines provided. Moreover, Conductivity and BOD (Biological Oxygen Demand) also stood significant, though less, 
and some other conditions with slightly less impact. These results show that the model is good at identifying water 
safety using biological and chemical markers.  

While these findings are promising, the study has limitations in the amount of information available in the dataset used. 
Going forward, resources should be allocated to expanding the datasets to cover other geographic areas, in addition to 
the physical and biological parameters. In addition to drinking water regulations being improved, increasing public 
safety with water systems should be achieved, and efforts should be made to increase recreational water safety as well. 
It is highly likely that public health and environmental sustainability will benefit from the improvements made to the 
new monitoring and enforcement systems, as the systems could be made in real time. 
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