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Abstract 

This research explores the implementation of Monte Carlo and Adaptive Neuro-Fuzzy Inference System (ANFIS) 
techniques for detection threshold estimation in cognitive radio networks. Accurate detection threshold estimation is 
essential for effective spectrum sensing, minimizing false alarms, and optimizing spectrum utilization. The study first 
outlines conventional spectrum sensing methods and their limitations, particularly in dealing with noise uncertainty 
and dynamic spectral environments. Monte Carlo simulations are employed to statistically model detection scenarios 
and derive optimal threshold values, while ANFIS leverages machine learning and fuzzy logic to adaptively adjust 
thresholds in real time. A comparative analysis of both techniques is conducted, evaluating their efficiency, 
computational complexity, and adaptability in cognitive radio applications. The findings demonstrate that Monte Carlo 
offers a robust probabilistic approach suitable for static environments, while ANFIS enhances real-time adaptability, 
making it more effective for dynamic spectrum sensing. This research significantly contributes to improving cognitive 
radio performance, ensuring reliable spectrum access, and reducing interference in wireless communication networks. 

Keywords: Cognitive Radio; Detection Threshold Estimation; Monte Carlo Simulation; Adaptive Neuro-Fuzzy 
Inference System (ANFIS); Cooperative Spectrum Sensing. 

1. Introduction

The rapid growth of wireless communication technologies has led to an increasing demand for efficient spectrum 
utilization, necessitating the development of cognitive radio (CR) systems that can dynamically adapt to varying spectral 
conditions[1]. Spectrum sensing, a crucial function of CR, enables secondary users to detect and utilize unused 
frequency bands while ensuring minimal interference with primary users[2]. Accurate detection of spectrum 
availability is highly dependent on the estimation of detection thresholds, which determine whether a signal is present 
or absent. Traditional threshold estimation methods are often challenged by noise uncertainty, environmental 
variations, and dynamic interference conditions[3]. To address these challenges, advanced techniques such as Monte 
Carlo simulations and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) have been employed to enhance detection 
threshold estimation. Monte Carlo methods provide statistical insights by simulating multiple random scenarios to 
determine optimal thresholds, whereas ANFIS integrates fuzzy logic and neural networks to adaptively adjust 
thresholds based on real-time conditions[4]. The combination of these techniques offers a robust approach to improving 
spectrum sensing accuracy, reducing false alarms, and optimizing cognitive radio performance. This study explores the 
implementation of Monte Carlo and ANFIS techniques for detection threshold estimation in cognitive radio, providing 
a comprehensive evaluation of their methodologies, effectiveness, and impact on spectrum sensing efficiency[5]. 
Cognitive Radio (CR) has emerged as a promising solution to enhance spectrum utilization by allowing secondary users 
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to dynamically access underutilized frequency bands. A critical component of CR is spectrum sensing, which ensures 
that secondary users can detect the presence of primary users to avoid interference[6]. One key parameter in spectrum 
sensing is the detection threshold, which determines the ability of the CR system to accurately differentiate between 
occupied and unoccupied spectrum bands. 

1.1. Overview of Spectrum Sensing in Cognitive Radio 

Spectrum sensing is a fundamental aspect of cognitive radio that enables the efficient utilization of available spectrum 
by dynamically detecting vacant frequency bands. The primary goal of spectrum sensing is to ensure that secondary 
users (unlicensed users) can opportunistically access underutilized spectrum without causing harmful interference to 
primary users (licensed users). Several spectrum sensing techniques exist, including energy detection, matched 
filtering, and Cyclostationary feature detection. Energy detection is the most commonly used due to its low 
computational complexity and implementation simplicity. It involves measuring the received signal energy and 
comparing it with a predefined threshold to determine the presence of a primary user. However, energy detection is 
highly susceptible to noise uncertainty and requires accurate threshold estimation to maintain an optimal balance 
between false alarms and missed detections. 

Matched filtering, on the other hand, is a coherent detection technique that provides optimal detection performance 
when the primary user’s signal characteristics are known. While this method offers higher accuracy, it requires prior 
knowledge of the primary user’s signal, which may not always be available. Cyclostationary feature detection exploits 
the inherent periodicity in modulated signals to distinguish between primary user signals and noise. This method is 
highly robust against noise uncertainties but demands higher computational resources. 

Several spectrum sensing techniques exist, including energy detection, matched filtering, and Cyclostationary feature 
detection. Energy detection is the most commonly used due to its low computational complexity and implementation 
simplicity. It involves measuring the received signal energy and comparing it with a predefined threshold to determine 
the presence of a primary user. The test statistic for energy detection is given by[7] 

𝑇 = ∑ |𝑦(𝑛)|2

𝑁

𝑛=1

… … … … … … … … . (1.1) 

Where 𝑦(𝑛) is the received signal and 𝑁 is the number of samples.  

Matched filtering, on the other hand, is a coherent detection technique that provides optimal detection performance 
when the primary user’s signal characteristics are known. The decision statistic is given by[7] 

𝑇 = ∑ 𝑦(𝑛)ℎ(𝑛) … … … … … … … . (1.2)

𝑁

𝑛=1

 

where ℎ(𝑛) is the matched filter impulse response. 

Cyclostationary feature detection exploits the inherent periodicity in modulated signals to distinguish between primary 
user signals and noise. The spectral correlation function used in this technique is given by[8] 

𝑆𝑥(𝑓, 𝛼) = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑥 ∗ (𝑡 + 𝑎)𝑑𝑡           (1.3)              

To enhance detection reliability and minimize sensing errors, cooperative spectrum sensing has been introduced, where 
multiple CR nodes collaborate to improve sensing accuracy. By sharing sensing information, cooperative sensing 
mitigates the effects of multipath fading and shadowing, leading to a more robust spectrum sensing framework.  
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Figure 1 Architecture of Centralized vs. Distributed Cognitive Radio Network 

Detection threshold estimation plays a crucial role in minimizing false alarms and missed detections, ultimately 
improving the efficiency of CR networks. Traditional methods of estimating detection thresholds often struggle with 
noise uncertainty and environmental variations, necessitating more advanced techniques such as the Monte Carlo 
simulation and Adaptive Neuro-Fuzzy Inference System (ANFIS). These techniques offer robust approaches for 
estimating optimal detection thresholds by leveraging probabilistic modeling and machine learning capabilities. 

This review article explores the implementation of Monte Carlo and ANFIS techniques for detection threshold 
estimation in cognitive radio. It provides an in-depth analysis of their methodologies, compares their effectiveness, and 
discusses their impact on spectrum sensing performance. The findings aim to contribute to the development of more 
reliable and adaptive spectrum sensing mechanisms in cognitive radio networks. 

1.2. Importance of Detection Threshold Estimation 

Detection threshold estimation is crucial in cognitive radio networks as it directly influences the accuracy and efficiency 
of spectrum sensing. The detection threshold serves as the decision boundary that distinguishes between the presence 
and absence of a primary user signal[9]. An improperly set threshold can lead to two significant issues: false alarms and 
missed detections. A high detection threshold increases the likelihood of missed detections, where the secondary user 
fails to recognize an active primary user and inadvertently causes interference. On the other hand, a low detection 
threshold results in an increased false alarm rate, where the secondary user incorrectly identifies an empty spectrum 
as occupied, leading to inefficient spectrum utilization. To optimize the detection threshold, techniques such as Monte 
Carlo simulations and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) are employed. Monte Carlo simulations provide 
a statistical approach by running multiple iterations of spectrum sensing scenarios to derive an optimal threshold value. 
ANFIS, on the other hand, integrates fuzzy logic and neural networks to adaptively determine the best detection 
threshold based on dynamic environmental conditions[4]. Accurate detection threshold estimation enhances spectrum 
efficiency, minimizes interference, and ensures reliable communication in cognitive radio networks. By implementing 
advanced threshold estimation techniques, cognitive radios can operate more effectively, making intelligent decisions 
about spectrum access while maintaining compliance with regulatory constraints[10]. Detection threshold estimation 
plays a crucial role in minimizing false alarms and missed detections, ultimately improving the efficiency of CR 
networks. Traditional methods of estimating detection thresholds often struggle with noise uncertainty and 
environmental variations, necessitating more advanced techniques such as the Monte Carlo simulation and Adaptive 
Neuro-Fuzzy Inference System (ANFIS)[4]. These techniques offer robust approaches for estimating optimal detection 
thresholds by leveraging probabilistic modeling and machine learning capabilities. This review article explores the 
implementation of Monte Carlo and ANFIS techniques for detection threshold estimation in cognitive radio. It provides 
an in-depth analysis of their methodologies, compares their effectiveness, and discusses their impact on spectrum 



World Journal of Advanced Research and Reviews, 2025, 27(03), 491–511 

494 

sensing performance. The findings aim to contribute to the development of more reliable and adaptive spectrum sensing 
mechanisms in cognitive radio networks. 

1.3. Spectrum Sensing Techniques  

Spectrum sensing plays a crucial role in cognitive radio communications, as it must be conducted before granting 
unlicensed users the ability to utilize available licensed spectrum. The fundamental aspects of spectrum sensing are 
two-fold: first, to guarantee that cognitive radio or secondary users do not interfere with primary users, and second, to 
help cognitive radio or secondary users discover and take advantage of spectrum gaps to ensure the necessary quality 
of service [11]. This spectrum sensing operation involves a binary hypothesis-testing scenario. The objective of 
spectrum sensing is to determine which of the two hypotheses is true: 

• H0: x(t) = n(t)   (1.4) 
• H1: x(t) = s(t) + n(t)   (1.5) 

where, H0denotes the absence of the primary user, H1denotes the presence of the primary user, x(t) is the received 
signal at the cognitive radio, s(t) is the transmitted signal from the primary transmitter and n(t) is the Additive White 
Gaussian Noise (AWGN). The determination of the two hypotheses is called spectrum sensing. 

Typically, spectrum sensing methods are divided into two main categories: non-cooperative and cooperative. 
Nevertheless, when considering signal detection, sensing techniques can be categorized into four general types [12]. 
The initial two main categories consist of coherent and non-coherent detection methods. Coherent detection 
necessitates prior knowledge of the primary users' signals, which will be used to compare against the received signal to 
achieve coherent detection of the primary signal. Conversely, non-coherent detection does not require prior knowledge 
of the primary users' signals for detection. The final two main categories are determined by the bandwidth of the 
spectrum being observed and include narrowband and wideband detection methods. The classification of sensing 
techniques is shown in Figure 2.4. 

 

Figure 2 Classification of Spectrum Sensing Techniques [12] 

Parameter Definition for Spectrum Sensing 

• H0: hypothesis that PU is absent and only noise present  
• H1: hypothesis that PU is present plus noise present  
• Y[n]: the received signal  
• W[n]: the received noise energy  
• X[n]: received energy of primary user  
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• P_md: probability of missed detection 
• P_d: probability of detection  
• P_fa: probability of false alarm  
• T_i: test statistic  
• Λ: threshold setting 

The spectrum sensing issue can be mathematically represented as a Binary Hypothesis Testing (BHT) problem 
characterized by the two aforementioned hypotheses[12] 

𝐻0: 𝑦[𝑛] = 𝑤[𝑛]𝑛 = 1,2, … , 𝑁 … … . (1.6) 

𝐻1: 𝑦[𝑛] = 𝑥[𝑛] + 𝑤[𝑛]𝑛 = 1,2, … , 𝑁 (1.7) 

Where H0 is a null hypothesis which states that the received signal y[n] corresponds to noise samples w[n] only; 
meaning no PU signal in the sensed spectrum band. 

H1 indicates the contrary; that a licensed user is present, making the received signal 

𝑦[𝑛] = 𝑥[𝑛] + 𝑤[𝑛] … … … … … … … (1.8) 

In an ideal scenario, spectrum detection would involve hypothesis H1 indicating the presence of the primary user (PU) 
and hypothesis H0 suggesting its absence. However, due to errors in spectrum sensing and the random nature of 
spectrum usage in real-world situations, we need to introduce some new terms to address the challenges posed by 
incorrect detections. These terms include missed detection (md) and false alarms (fa). With these definitions in place, 
the effectiveness of any spectrum algorithms can be represented by means of two probabilities.[12]: 

Probability of missed detection given by 

𝑃𝑚𝑑 = 𝑃(𝐻0|𝐻1) … … … … … … … … . . (1.9) 

or complimentarily, the probability of detection 

𝑃𝑑 = 𝑃(𝐻0|𝐻1) = 1 − 𝑃𝑚𝑑 … … … … (1.10) 

And probability of false alarm 

P_fa=P(H_0│H_1 )……………………..(1.11) 

In practice, it is preferable to have high Pd and low Pfa values, though some compromises are necessary. There are two 
approaches to spectrum sensing 

• Non-cooperative Spectrum Sensing Method   
• Cooperative Spectrum Sensing Method   

In the non-cooperative spectrum sensing method, a single cognitive radio device or secondary user performs local 
spectrum sensing. Each secondary user will monitor the spectrum channel to determine whether a primary user is 
present or absent. Because this sensing technique does not involve sharing results or decision-making processes, its 
energy consumption is significantly lower compared to cooperative spectrum sensing, which requires considerable 
energy due to extensive communication. However, the accuracy of detection in this method is lower than that of the 
cooperative method. This is primarily due to the adverse effects of poor channel conditions on the results of single-user 
spectrum sensing [13]. In contrast to non-cooperative spectrum sensing techniques, where a single cognitive radio 
assesses the spectrum to collect data, the cooperative spectrum sensing approach typically entails two or more cognitive 
radios collaborating.[14]. In this spectrum sensing approach, each cognitive radio or secondary user conducts local 
spectrum sensing on their own and then reaches a conclusion. After that, all cognitive users will send their decisions to 
a centralized receiver or Master Node (MN). The centralized receiver will aggregate these decisions and come to a final 
conclusion regarding the presence or absence of the primary user within the monitored frequency band. 
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Figure 3 Classification of Cooperative Sensing [11] 

1.4. Role of Monte Carlo and ANFIS Techniques in Spectrum Sensing 

Monte Carlo and ANFIS techniques play a crucial role in enhancing the accuracy and adaptability of spectrum sensing 
in cognitive radio networks. Monte Carlo simulation is a statistical approach that relies on repeated random sampling 
to compute results, making it highly effective for estimating detection thresholds under varying environmental 
conditions[15]. By running multiple iterations of spectrum sensing scenarios, Monte Carlo simulations provide insights 
into the probabilistic distribution of signal detection, allowing for the derivation of optimal threshold values. ANFIS, on 
the other hand, combines the capabilities of fuzzy logic and artificial neural networks to create an adaptive model that 
learns from input data. In spectrum sensing, ANFIS can dynamically adjust detection thresholds based on real-time 
conditions, improving the accuracy and robustness of the sensing process[15]. The integration of fuzzy logic enables 
ANFIS to handle uncertainties and noise in the radio environment, while the neural network component allows for 
pattern recognition and continuous learning. By leveraging Monte Carlo simulations and ANFIS, cognitive radios can 
achieve more precise and adaptive spectrum sensing, reducing false alarms and missed detections. These techniques 
contribute to the overall efficiency of cognitive radio networks by ensuring that secondary users can reliably detect 
available spectrum opportunities without causing interference to primary users. 

2. Research methodology 

The system considerations for the non-cooperative and cooperative spectrum sensing techniques comprise 
combination of different elements working together to produce a cognitive radio network. 

2.1. Cognitive Radio System  

The cognitive radio system consists of three main components: spectrum sensing, spectrum predicting, and spectrum 
management modules. This study primarily centers on the functions of spectrum sensing and spectrum predicting 
within cognitive radio. As illustrated in Figure 4 , the block diagram represents a cognitive radio system. The operational 
components of the cognitive radio system include a Primary User generator, a transmission channel for signal 
propagation, a spectrum sensing subsystem, a Secondary User Generator, and a spectrum management or allocation 
subsystem. 
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Figure 4 Cognitive Radio Systems 

The cognitive radio's spectrum sensing module utilizes an energy detection algorithm. The system process of the energy 
detector is illustrated in the block diagram presented in Figure 5. In this block diagram, the key functional subsystems 
comprise a prefilter for the incoming signal, along with a squarer and an integrator, which together provide the 
magnitude of the detected energy signal. 

 

Figure 5 Block Diagram of the Energy Detector 

The energy detector was employed to accomplish the following objectives 

• Sampling through an Analog to Digital Converter (ADC) and applying filtering techniques  
• Calculating the covariance or magnitude squared of the energy signal, also known as power spectral density.  
• Evaluating this energy output against a test statistic represented by a threshold to determine the existence of a 

Primary User signal.  

In the function of spectrum prediction, a detection threshold needs to be established, which is influenced by noise levels. 
Typically, the maximum noise energy value is designated as the starting detection threshold. However, since noise is 
inherently random and there is an uncertainty region (a mixture of noise and signals) during the spectrum sensing 
phase, the detection threshold will inevitably reside within this uncertainty region. 

2.2. Non-cooperative System Development  

In a non-cooperative spectrum sensing approach, individual cognitive radio devices or secondary users perform the 
spectrum sensing locally. Each secondary user monitors the spectrum channel to determine whether a primary user is 
present or not. Since this sensing technique does not involve sharing the results of spectrum sensing or making final 
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decisions, it has a lower energy consumption compared to cooperative spectrum sensing, where users require 
significant energy due to extensive communication. Nonetheless, the detection accuracy of this method is considerably 
lower than that of the cooperative method. This is primarily due to the impact of poor channel conditions on the results 
obtained from single-user spectrum sensing. Figure 6 illustrates the flowchart for the non-cooperative spectrum sensing 
process. 

 

Figure 6 Program Flow chart for non-cooperative spectrum sensing 

2.3. Cooperative System Development  

The model for cooperative spectrum sensing necessitates a framework that incorporates the exchange of information 
and decisions among individual cognitive users alongside a central fusion decision center, as illustrated in Figure 7. A 
fundamental cognitive radio system is composed of five subsystems 

A Cognitive Radio Network with N Secondary Users, which includes a Primary User Generator, a transmission channel, 
a spectrum sensing subsystem or energy detection system, and a Secondary User Generator, among others.   

• A Fusion Center Subsystem.   
• A Voting Subsystem.   
• An Allocation or Spectrum Management Subsystem.   
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Figure 7 Cooperative Sensing Spectrum Model 

These four subsystems integrate to form an effective cooperative spectrum sensing model. The subsystem governing 
primary user behavior remains unchanged from the non-cooperative model. This is due to the fact that the cooperative 
spectrum sensing method solely varies in the number of secondary users and the approach taken to determine the 
presence of the primary user. The subsystem consists of a Bernoulli Binary Generator, a Sine Wave Generator, a 
Gaussian Noise Generator, and a Modulated Sine Wave Signal Product. 

 

Figure 8 Cooperative Spectrum Sensing Flowchart 
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Although there is one main user, the secondary users can be generalized to be more than two, extending up to N users. 
The assessment of energy and statistical analysis is facilitated through the comparison of energy thresholds. The fusion 
center is responsible for gathering all individual results from cognitive radios and counting the votes regarding the 
availability of the primary user. This functionality is crucial in the cooperative spectrum sensing model of cognitive 
radio, as it manages the cooperation among the cooperative cognitive radios. 

2.4. Determination of Detection Threshold  

Determining the correct threshold in real-time is extremely important. The approach used integrates two estimation 
techniques: Monte Carlo and ANFIS, to identify primary users through the selection of an estimated threshold. The 
threshold value for each cognitive radio was established to facilitate local sensing and detection decisions. This is 
necessary as each radio experiences varying types and intensities of interference from noise sources. The requirement 
for accurate threshold selection, along with a cooperative spectrum sensing approach, becomes essential due to the 
inherent limitations of Cognitive Radio Networks, such as 

• Noisy channels   
• Fading effects or fluctuating signal strength at the receiver in contrast to that at the transmitter   
• Diverse operational environments for radios   

These elements together render a single threshold value ineffective for sensing within a Cooperative Cognitive Radio 
model utilizing an Energy Detector as the sensing methodology. To address this limitation, the threshold is determined 
based on the knowledge of received signal energies and their probability distribution in real-time while the cognitive 
radio is in operation. 

2.5. Monte Carlo Analysis 

 

Figure 9 Flowchart of Monte-Carlo Estimation 

The Monte Carlo analysis applied in threshold estimation acts as a statistical method for determining the ideal threshold 
for energy detection, using SNR as a variable in the estimation process. Figure 9 presents a flow chart illustrating the 
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Monte Carlo Algorithm. The Monte Carlo estimator takes in a random variable, with two potential candidates in the 
cognitive radio model: the signal to noise ratio (SNR) or degree of freedom (DOF), both of which influence the PDF curve 
of the Primary User signal, as depicted in the uncertainty graph of PDF versus energy. The output consists of the 
calculated probabilities of detection and false alarms. Conducting a Monte Carlo analysis requires utilizing a substantial 
number of samples during the simulations to obtain a reliable estimate, ensuring a large dataset for analysis. In 
summary, the greater the volume of data, the closer the results will be to an optimal value. 

It is important to note that as the number of data points increases, this will lead to longer simulation run times, and 
typically, the standard processors found in our laptops are too slow for conducting these data-intensive computations. 
The Monte Carlo model is embedded within a portion of the Cognitive Radio model, as will be demonstrated in the script 
examples found in Appendix A2. Given that the Monte Carlo analysis is designed to select an appropriate threshold value 
for effective detection, the algorithm for the Monte Carlo section operates within the sensing component of the model. 
It functions by recalculating the SNR for each iteration of the Cognitive Radio model and employs the newly calculated 
SNR to capture the variations in radio characteristics encountered by the Primary User signal. This information is 
subsequently utilized to determine an appropriate threshold based on the observed SNR in the transmission channel. 

2.6. ANFIS Analysis 

The ANFIS analysis conducted aims to calculate the probabilities expressed by the probability distribution function 
(PDF) that describes Pd, Pm, and Pfa. A flowchart illustrating the algorithm utilized is shown in Figure 3.9. These PDFs 
will act as outputs, while the known inputs consist of the SNR and the signal energy. The specified ranges for the inputs 
and outputs were determined based on insights gained from conducting several simulations and iterations in the 
previously completed Monte Carlo analysis. According to existing literature, a SNR value around 15dB has been used in 
experimental studies utilizing a Matlab/Simulink system for cognitive radio applications; hence, we chose a starting 
SNR range of 10 to 15dB. This value was deemed appropriate for this study and is a suitable range for the “universe of 
discourse” concerning the SNR input variable. The universe of discourse for a fuzzy variable denotes the realistic range 
of values that variable can assume. Given that energy cannot be negative, we selected an energy range from 0 to 100, 
which effectively represents the energy values observed during the Monte Carlo simulation. This approach to defining 
variable values is a distinctive aspect of fuzzy analysis, and establishing representative values is crucial for obtaining 
accurate fuzzy estimates. 

2.6.1. Fuzzy Variables  

The variables used in the fuzzy decision engine are 

• Inputs: SNR and Energy  
• Output: PDF  

2.6.2. Universe of Discourse  

The range of values for the selected variables has been determined based on established understanding of their value 
space. The specified ranges are as follows:   

• SNR will range from 10 to 15dB.   
• Energy will vary between 0 and 130dB.   
• Probabilities will naturally lie between 0 and 1. 

2.6.3. Linguistic Terms  

The values of these variables will now be assigned linguistic terms that define their level of belonging within the 
specified ranges. These linguistic terms are referred to as fuzzy sets, and in this context, they are expressed as:   

• Very Low (VL) or Low (L)   
• Medium (M)   
• Very High (VH) or High (H)   
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Figure 10 Flowchart for ANFIS Algorithm 

3. Results and discussions 

3.1. Introduction  

The results of the various experimental analyses carried out in this work include the results of various Monte Carlo and 
Adaptive Neural Fuzzy Inference Systems simulations obtained from the developed spectrum sensing models, the 
comparative analyses on the performance of the techniques were highlighted and the results of the experimental 
validation for the detection threshold using the commercially acquired hardware energy detector were presented. 
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3.2. Monte Carlo Experiments and Analyses  

250 iterations of the Monte Carlo were made in this experiment. The parameter values used for the plot of Figure 4.1 
are for 3 different points within the total Monte Carlo iterations. The results for only three simulations is here shown 
because of the computational power involved in plotting more and also for clarity sake in rendering the uncertainty 
region to be analyzed. The three samples used for the plots shown in Figure 11 are at 80,160 and 240 extracted from 
the total of 250 iterations. The uncertainty regions are represented by approximate triangles called delta1, delta2 and 
delta3. 

 

Figure 11 Chi-square Plot Showing Uncertainty Region as Triangles 

Each of the points of the triangle is described using a coordinate triple i.e. (x, y, and z)  

• Delta1: peak (13.4,37.15,0.01508),left(13.4,23.43,0.00095),right(13.4,51.42,0.00059)  
• Delta2: peak(17.86,38.8,0.01115),left(17.86,27.85,0.0006334),right(17.86,52.93,0.0003958)  
• Delta3: peak(23.94,44.53,0.003317),left(23.94,37.76,0.000996),right(23.94,52.89,0.0003998)  

The areas are now computed for each of the triangles using the parameters highlighted  

• Delta1 area: ½ *27.99*0.01449=0.202  
• Delta 2 area: ½ *25.08*0.01075=0.1348  
• Delta 3 area: 1/2 *15.13*0.00292=0.022 

Reduction in uncertainty is given by 

%𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
𝑎𝑟𝑒𝑎 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑎𝑟𝑒𝑎
∗ 100 … (3.1) 

• delta1 and delta 2: (0.202-0.1348)/0.202 *100 =33.27%  
• delta2 and delta 3: (0.1348-0.022)/0.1348 *100 =83.7%  
• delta1 and delta 3: (0.202-0.022)/0.202 *100 =89.1%  

A look at the values obtained for the areas of the uncertainty triangles shows that there is a remarkable reduction in the 
uncertainty region as SNR increases; which is a very significant result considering the fact that a good SNR value 
enhances the detection capability of the energy detector. 
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The results shown in Figures 4.3-4.7 show some of the deductions already referred to above 

 

Figure 12 Pmd vs. Energy Plot 

From a single iteration of the Monte Carlo model, an array of values is obtained for the Pd, Pm, Pfa. The average of these 
values is computed and this value is subsequently mapped to the energy axis of the PDF vs. Energy plot to obtain an 
optimal threshold value. For an average probability of Missed detection of about 0.395 computed by the Monte Carlo 
model, have an equivalent energy threshold value of about 51dB/Watt from the plot above. Looking at the equivalent 
plot as shown in Figure 12, the PDF value can be traced at 0.395 on the first set of plots to obtain a close result to what 
is obtained here. Subsequent simulations done showed that a large Pd value and a small Pfa value to meaning that a 
good detection threshold is feasible. 

 

Figure 13 Pmd and Pfa vs. Energy Plot 

Figure 13 show the result from plotting probabilities of false alarm and missed detection against SNR and energy. This 
plot is used to obtain a threshold on the energy axis corresponding to an optimal value of either probability of false 
alarm or probability of missed detection but not both simultaneously. This is because optimization of one item means 
sacrificing optimality in the other. The method used in this work to determine the threshold also employed the 
convergence point of the two plots to decide the optimal threshold by computing the values of probabilities at the index 
at which the two plots intersect and further reading the corresponding energy value. 
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The Monte Carlo analyses show an estimated energy detection system. This estimation is dependent on the number of 
iterations made. More iterations result in a quicker convergence to the optimal value and a corresponding reduction in 
the uncertainty region which is a major objective of this work. Figure 14 to 18 are results that show the changing 
uncertainty region for 250 Monte Carlo iterations. It can be seen that as the number of iterations increase and with 
corresponding increase in SNR, the size of the uncertainty region diminishes. Further estimation studies are performed 
using ANFIS as discussed in section 3.3.7.  

 

Figure 14 PDF vs. Energy for 250 Monte Carlo Iterations 

 

Figure 15 Pm and Pf vs. Energy for 250 Monte Carlo Iterations 
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3.3. Threshold Estimation using Monte Carlo (MC) Statistical analysis 

 

Figure 16 50 Monte Carlo Iterations 

 

 

Figure 17 100 Monte Carlo Iterations 
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Figure 18 250 Monte Carlo Iterations 

Different iterations were made in the Monte Carlo experiment to study the convergence rate to an optimal energy 
threshold value and the magnitude of deviation between the starting seed threshold and the final computed optimal 
value. In particular, the Monte Carlo simulation were iterated for 50,100,150,200,500 and 1000 times for the 
optimization of the detection threshold and all results obtained are logged and displayed for analyses. The increasing 
number of iterations made is necessary because the Monte Carlo technique which simulates random or chance 
occurrence of events will perform better with a large sample space. Larger number of iterations bringing correct 
convergence to a single optimal value. 

3.4. Presentation of Results from Monte Carlo and ANFIS Estimation Experiments 

Plots from the Monte Carlo and ANFIS Experiments are shown in Figures 19-24. Using similar experimental parameters 
for reason of visualization and setting a good basis for comparison. The parameters used for the experiments include 
the same threshold value for individual cognitive radio sensing, the same number of iterations and same set of input 
energy values sensed by secondary users. 

 

Figure 19 Monte Carlo and Fuzzy Results for 50 Iterations on CR1 
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Figure 20 Monte Carlo and Fuzzy Results for 50 Iterations on CR2 

 

Figure 21 Monte Carlo and Fuzzy Results for 100 Iterations on CR1 

 

 

Figure 22 Monte Carlo and Fuzzy Results for 100 Iterations on CR2 
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Figure 23 Monte Carlo and Fuzzy Results for 150 Iterations on CR1 

 

 

Figure 24 Monte Carlo and Fuzzy Results for 150 Iterations on CR2 

Observing the results from the Monte Carlo and ANFIS experiments show a very close concurrence in the detection 
output threshold value obtained. The basis for the comparison rests on the selection of similar parameters for both 
experiments. It is also of note that both estimation methods employ the model directly in their analysis. Table 4.1 shows 
some relevant parameters used in the experiments. The start threshold parameter is carefully selected to have a value 
approximately equal to the signal to noise ratio value used for the simulation. This is because using this value is a good 
estimate of the energy to be sensed. This experiment uses two variants of the start threshold value; firstly, a fixed 
threshold value is used and later the same experiment is performed with a randomly generated threshold. 
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Table 1 Performance Comparison between Monte Carlo and Fuzzy Logic 

Experiment 
type 

No. of 
Iterations 

Seed 
threshold/SNR 

Estimated 
threshold 

% 
Estimation 

Elapsed 
time(s) 

Monte Carlo 50 25 15.0 60.0 333.649 

Monte Carlo 100 25 11.5 46.0 626.445 

Monte Carlo 150 25 13.0 52.0 945.2198 

Monte Carlo 200 25 12.0 48.0 1284.56 

ANFIS 50 25 14.5 58.0 587.9206 

ANFIS 100 25 14.0 56.0 1171.0 

ANFIS 150 25 13.7 54.5 1807.1 

ANFIS 200 25 15.0 60.0 2360.99 

 

3.5. Comparative Analysis of Monte Carlo and ANFIS Estimation Results  

Comparative analysis of results from Monte Carlo and ANFIS simulations showed that the estimated threshold in all 
iterations remained within the observed uncertainty region. Comparison includes 

• Monte Carlo simulations showed a dependence on the number of iterations used unlike the ANFIS simulations 
which do not depend on the number of iterations.  

• The computation time for the Monte Carlo analysis as compared to ANFIS was shorter. This can be explained by the 
type of fuzzy inference engine used which is adaptive and requires continuous recalculations.  

• Monte Carlo analysis is suitable in non-cooperative cognitive sensing where static allocation is being used. This is 
so as user diversity is not an issue in the static case. On the hand ANFIS will work better in cooperative spectrum 
sensing scheme as against non-cooperative.  

• The role of ANFIS is found to be more useful in cooperative sensing as against non-cooperative spectrum sensing. 
Especially as it is used to overcome the presence of noise power uncertainty which is the major drawback in 
cooperative spectrum sensing. 

4. Conclusion 

The implementation of Monte Carlo and ANFIS techniques for detection threshold estimation in cognitive radio 
networks provides an effective solution for improving spectrum sensing accuracy. Monte Carlo simulations offer 
reliable statistical insights, especially in static environments, while ANFIS enhances adaptive threshold estimation in 
dynamic and uncertain conditions. The comparative analysis highlights that ANFIS is particularly beneficial in 
cooperative spectrum sensing, where real-time adaptability is crucial. Overall, the integration of these advanced 
techniques enhances cognitive radio performance, minimizes detection errors, and optimizes spectrum utilization. 
Future research could explore hybrid models combining both approaches to further improve detection accuracy and 
computational efficiency.  
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