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Abstract

This study presents the physico-chemical characterization of activated carbons produced from local lignocellulosic
biomass, notably the core shells of Balanites aegyptiaca (L.) Del. (Adoua), and Hyphaene thebaica (L.) Mart. (Gorouba)
by chemical activation with orthophosphoric acid (HsPO4). Elaborated Activated Carbons (EACs) were characterized
using experimental techniques such as: X-ray Diffraction using a Shimadzu XRD-6000 diffractometer, Infra-Red (IR-TF)
using a spectrometer (Bruker Vector-22 Fourier transform spectrometer; ATR-FTIR), SEM using a Hitachi device at 20
kV and Raman spectroscopy. The results of this study show that Elaborated Activated Carbons did not detect any
detectable crystallized species on the surface; the existence of several types of pore types (micropores, mesopores and
macropores) of pores. Elaborated activated carbons have developed functional groups (carboxylic hydroxyls (O-H),
asymmetrical and symmetrical C-H, C=C alkene, C=0 carbonyl], C-O and C-C alkene, aliphatic and aromatic); cumulative
pore volumes (BJH) vary from 0.269688 to 0.560185 cm?3 g-1; CAEs are capable of adsorbing molecules of micropore,
mesopore and macropore sizes.
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1. Introduction

As one of the extraction methods of choice, adsorption is the most widely used technique due to its efficiency, ease of
implementation and affordable investment cost [1,2, 3]. However, this method requires the choice of an adsorbent with
good characteristics (high adsorption capacity, availability, low cost, etc.) [4,5]. Microporous adsorbents are widely used
for the extraction of chemical species from aqueous or gaseous phases, thanks to their excellent adsorption capacity
[2,5-6]. This capacity is linked to the high specific surface area and porosity development of these adsorbents [7-9]. The
use of activated carbon (AC) as an adsorbent is of interest in the treatment of industrial wastewater [10,11]. Activated
carbon is essentially a carbonaceous material with a porous structure. This structure is generally obtained after high-
temperature carbonization oflignocellulosic biomass. Various types of AC exist, with specific surface areas ranging from
100 to 2,500 m2 g1 [12,13]. Despite the availability of biomass in the sub-region, African countries continue to import
activated carbons (ACs) in large quantities for a variety of applications, including industrial wastewater treatment and
ore processing. This is why it seems necessary to develop and characterize ACs from local lignocellulosic biomasses, in
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particular the core shells of Balanites aegyptiaca (L.) Del. (Adoua), and Hyphaene thebaica (L.) Mart. (Gorouba) by
chemical activation. The selected biomasses come from wild trees that are widespread in Niger and produce seasonal
fruits consumed by the population. The pits of these fruits end up in the municipal landfill as urban waste. They
constitute abundant agri-food waste that is more or less difficult to biodegrade in tropical countries. The use of these
cores in this work has a dual advantage: on the one hand, to produce activated carbons, and on the other, to add value
to the waste. Elaborated activated carbons (CAEs) were characterized using experimental techniques such as XRD, IR,
SEM and Raman spectroscopy.

2. Materials and methods

2.1. X-Ray Diffraction (XRD)

XRD is a surface analysis technique used to determine the nature of crystalline species present on the surface of
materials. For activated carbon samples, analysis was carried out using a Shimadzu XRD-6000 diffractometer equipped
with a copper anode Ka radiation (A = 0. 15418 nm; 40 kV and 30 Ma kV. These analyses were carried out at the State
Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, People's Republic of China.

2.2, Fourier Transform Infrared Spectroscopy (FT-IR)

FT-IR is based on the absorption of infrared radiation by the material being analyzed. By detecting the characteristic
vibrations of chemical bonds, it enables qualitative analysis of the chemical functions present in CA. The spectrum of CA
was recorded at room temperature in total reflection mode using a spectrometer (Bruker Vector-22 Fourier transform
spectrometer; ATR-FTIR) in the wave number range 400 to 4000 cm L. These analyses were carried out at the State Key
Laborotary of Chemical Ressource Engineering of Beijing University of Chemical Technology in the People's Republic of
China.

2.3. Scanning Electron Microscopy (SEM)

SEM is used to describe the morphology of Elaborated Activated Carbon. In these studies, observations were made using
a 20 kV Hitachi instrument. These analyses were carried out at the State Key Laborotary of Chemical Ressource
Engineering of Beijing University of Chemical Technology in the People's Republic of China.

2.4. Raman microscopy

This technique complements XRD. It is a method for observing and characterizing the molecular composition and
external structure of a material. In these studies, Raman spectra were recorded at room temperature with a Microscopic
Confocal spectrometer (Jobin Yvon Horiba HR800), using an Ar+ laser as the excitation source at a wavelength of 532
nm. These analyses were carried out at the State Key Laborotary of Chemical Ressource Engineering of Beijing
University of Chemical Technology in the People's Republic of China.

2.5. Determining the porosity of CAEs

The surface and volume distributions of CAEs are determined by the Density Functional Theory (DFT) and BJH methods
[13].

3. Results

3.1. X-ray diffraction analysis

Figure 1 shows diffractograms of activated carbons made from Balanites aegyptiaca (L.) Del activated with 30 % and 40
% ortho-phosphoric acid.
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Figure 1 Diffractograms of CAEs

3.2. Analysis by infrared spectroscopy

The infrared (IR) spectra of activated carbons made from Balanites aegyptiaca (L.) Del activated with 30 % and 40 %
ortho-phosphoric acid are shown in Figures 2 and 3.
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Figure 2 Infrared spectrum of CA-30 %
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Figure 3 Infrared spectrum of CA-40 %

Analysis of the infrared spectrum of activated carbons has enabled us to identify the main signals [15-17] (Table 1).

Table 1 CAE functional groupings

Wave number (cm-1) Vibration frequency assignment
Type | CA-30% CA-40 %

Peaks | 3438 3444 Carboxylated hydroxyls (O-H)
Signals | 2923-2853 2918 Assymmetrical and symmetrical C-H
Bands | 2800and1735 | 2862 and 1731 | C=C groups

Signals | 1701 1702 C=0 groups

Potato | 1493 and 1321 | - C-0O groups

Peak 1164.05 1189.46 C-C (alkene, aliphatic and aromatic)

3.3. Scanning electron microscopy analysis

In order to visualize the external morphology of CAEs, scanning electron microscopy was performed on 40 % Balanites
aegyptiaca CA in order to see the effect of activation. Figure 4 shows the CAE images.
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Figure 4 SEM images of CAEs

3.4. DFT pore volume distributions

Figure 5 shows the isotherms of the CAE volume distributions and the CAC.

—
-
=
%]
ol L e B CA-BA-HPO-25%
g "= _H_,-" *— CA-BA-H PO -40%
B 0.3
2 . = F —&— CAC
) ol Soz ¥ —¥— CA-HT-H PO -I5%
= g £ Pt
E [ ] 8. #— CA-HT-H PO -4
g I E . ===
U 0.7 4 & n.nJ
3
E 3 0 3 30 40 S50 B0 7o A0 0
= Lurgaus du pors (4)
(=
=T
=2
=
2
=
=R T L T X T T T 5 T L T
o <00 agh [2=1] 20 1aog 1209 1440
Largewr de pore (A)

Figure 5 Volume distributions of CAEs and CA-C

Figures 6, 7, 8,9 and 10 show the derivatives of the volume distributions of the CAEs and the CAC.
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Figure 6 CA-BA-H3P04-25 % volume derivative
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Figure 7 Volume derivative of CA-BA-HsP04-40%
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Figure 9 CA-HT-HsP04-25% volume derivative
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Figure 10 CA-HT-H3P04-40 % volume derivative
The results of the volume distributions using the DFT method are shown in Table 2.

Table 2 Distribution of pore volumes using the DFT method

Ref. Pore volume (cm? g1) Total pore volume (cm? g1)
Samples <14.83A <1366.77A
CA-BA-H3P04-25% 0.46474 0.56392

CA-BA-H3P04-40% 0.32408 0.74954

CA-C 0.27685 0.38510

CA-HT-H3P04-25% 0.19820 0.25251

CA-HT-H3P04-40% 0.33989 0.41774

3.4.1. Cumulative pore volumes BJH

The cumulative pore volumes according to the BJH method are shown in Table 3.

Table 3 Cumulative pore volumes using the BJH method

Ref. Cumulative pore volume
Samples (cm? g-1STP)

Adsorption | Desorption

CA-BA-H3P04-25% | 0.531322 0.046312
CA-BA-H3P04-40% | 0.560185 0.264042
CA-C 0.269688 0.172604
CA-HT-H3P04-25% | 0.278645 0.016532
CA-HT-H3P04-40% | 0.400906 0.041661
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3.4.2. Average pore diameters of CAEs and CAC.

The average pore sizes are determined using the BET and BJH methods (adsorption and desorption). The results for the
average pore diameters are shown in Table 4.

Table 4 Average pore diameter (A) using the BET and BJH methods

Ref. BET Method | BJH Method

Samples Adsorption | Adsorption | Desorption
CA-BA-H3P04-25% | 17.3617 21.331 42.400
CA-BA-H3P04-40% | 22.5136 27.023 41.993
CA-C 22.3516 37.995 69.847
CA-HT-H3P04-25% | 16.9788 20.525 52.964
CA-HT-H3P04-40% | 17.6995 21.537 46.316

3.4.3. DFT pore size distributions

Surface and volume pore distributions are determined by the DFT (Density Functional Theory) model.

3.5. Surface pore distributions

Figure 11 shows the isotherms of the surface distributions of CAEs and CA-C.
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Figures 12, 13, 14, 15, and 16 show the derivatives of the surface distributions of the CAEs and the CA-C.

Figure 11 Surface distributions of CAEs and CAC
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Figure 13 Surface derivative of CA-BA-H3P04-40 %
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Figure 16 Surface derivative of CA-HT-H3P04-40%
The results of the surface distributions are presented in Table 5.

Table 5 Distribution of pore areas using the DFT method

Ref. Pore area (m? g'1) | Total pore surface area (m? g1)
Samples >1366.77 A >14.83 A

CA-BA-H3P04-25% | 0.000 97.772

CA-BA-H3P04-40% | 8.063 332.591

CA-C 24.392 84.242

CA-HT-H3P04-25% | 0.000 58.795

CA-HT-H3P04-40% | 1.960 76.423

4. Discussion

Analysis of Figure 1 shows that the two diffractograms did not detect any crystallized species on the surface of the
activated carbons produced. These would be characteristic of an amorphous material that does not have any detectable
crystallized species on its surface [18].

Analysis of Figures 2 and 3 shows that ACEs from local biomasses have functional groups. Table 1 shows:

e Peaks attributable to carboxylic hydroxyl (0-H) groups at 3438 and 3444 cm! for CA-30 % and CA-30 %
respectively;

e Signals attributable to asymmetric and symmetric C-H (2923-2853 and 2918 cm! for CA-30% and CA-30%

respectively;

Bands attributable to C=C groups (2800 and 1735, 2862 and 1731);

Signals attributable to C=0 groups (1701 and 1702 cmb

Peaks at 1493 and 1321 cm'! attributable to C-O groups;

Peaks at 1164.05 and 1189.46 cm! attributable to C-C (alkene, aliphatic, and aromatic).
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The images in Figure 4 show that the biomass activation reaction created pores of different sizes (micropores,
mesopores, and macropores). The existence of several types of pores after chemical activation with phosphoric acid has
been observed in the literature [19].

Analysis of the results presented in Table 3 shows that:

e Adsorption: the calculated cumulative pore volumes (BJH) range from 0.269688 to 0.560185 cm3 g1 for CA-C
and CA-BA-H3P04-40 % respectively. They are then ranked as follows for CA-HT-H3P04-25% (0.278645 cm3 g
1) < CA-HT-H3P04-40% (0.400906 cm?3 g1) < CA-BA-H3P04-25% (0.531322 cm3 g1). The Vporeux,cul increases
as a function of the percentage of the activating agent for BA and HT. Thus, the best vpoeux,cul would be
obtained at 40%. The vpoeux,cul of all caes exceeds that of CA-C. All Vporeux,cul values are between 0.2 and
0.6 cm3 g1. This confirms the microporosity phenomenon observed on the samples;

e For desorption, these Vporeux,cul values range from 0.016532 to 0.264042 cm? g-! for CA-HT-H3P04-25% and
CA-BA-H3P04-40%, respectively. They then follow in the following order for CA-HT-H3P04-40% (0.041661 cm?®
g1) < CA-BA-H3P04-25% (0.046312 cm® g1) < CA-C (0.172604 cm?® g1). Apart from CA-BA-H3P04-40%, all
samples have values between 0.02 and 0.1 cm® g1, confirming the mesoporous nature of these samples. In the
case of CA-BA-H3P0s-40%, this could be due to the external surface area developed by the latter, as it is
proportional to Vporeux.

Analysis of the results presented in Table 4 shows that the average pore diameter values determined by the BET method
range from 16.9788 to 22.5136 A for CA-HT-H3P04-25% and CA-BA-H3P04-40%, respectively. This is consistent with
Seer, SL, and Vporeux. They then follow in the following order for CA-BA-H3P04-25% (17.3617 A) < CA-HT-H3P04-40%
(17.6995 A) < CA-C (22.3516 A). These show that the dmoy of CA-BA-H3P04-25%, CA-HT-H3P04-25%, and CA-HT-
H3P04-40% are less than 20 A (2 nm). Thus, they correspond to the micropore size distribution. In addition, these values
exceed 7 A. This indicates that they are supermicropores. In the case of CA-C and CA-BA-H3P04-40%, the dmoy values
are between 20 and 500 A. They are attributable to the mesopore size distribution. These further confirm the attribution
of adsorption types. These samples are capable of adsorbing molecules of micropore and mesopore sizes. Research
groups have noted that increasing the orthophosphoric acid impregnation ratio leads to a decrease in microporosity.
The calculated access pore diameters, based on the desorption branch (BJH), range from 41.400 to 69.847 A for CA-BA-
H3P04-40% and CA-C, respectively. For the other samples, they range from CA-BA-H3P04-25% (42.400 A) < CA-HT-
H3P04-40% (46.316 A) < CA-HT-H3P04-25% (52.964 A). The diameters of the access pores obtained are essentially
uniform, i.e., mesopores (20 < dmean < 500 A). The actual pore diameters calculated from the adsorption branch range
from 20.525 to 37.995 A for CA-HT-H3P04-25% and CA-C, respectively. They are followed internally by CA-BA-H3PO4-
25% (21.331 A) < CA-HT-H3P04-40% (21.537 A) < CA-BA-H3P04-40% (27.023 A). All these values are between 20 and
500 A. This confirms the mesoporous nature of the access pore diameters [13-20-22].

5. Conclusion

The objectives of this work are the physical and chemical characterization of activated carbons. These studies show
that:

o XRD diffractograms did not detect any crystallized species on the surface of the activated carbons;

e There are several types of pores (micropores, mesopores, and macropores). (SEM images);

e ACEs made from local biomass have developed functional groups such as carboxylic hydroxyl (O-H) groups,
asymmetric and symmetric C-H groups, C=C, C=0, C-0, and C-C (alkene, aliphatic, and aromatic) groups;

e The calculated cumulative pore volumes (BJH) range from 0.269688 to 0.560185 cm?3 g-1 for CA-C and CA-BA-

H3P04-40% respectively;

The Vporeux,cul increases in proportion to the percentage of activating agent for BA and HT ;

The Veoeuxcul Of all CAEs exceeds that of CA-C;

All Vporeux,cul values are between 0.2 and 0.6 cm3 g1;

This confirms the microporosity phenomenon observed in the samples;

All samples have values between 0.02 and 0.1 cm? g1, confirming the mesoporous nature of these samples;

CAEs are capable of adsorbing molecules of micropore and mesopore sizes.
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