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Abstract

Cowpea are a strategic food for combatting food insecurity in the face of strong population growth worldwide, as well
as for addressing the sustainability challenges in the livestock sector. Thus, this study examined the physicochemical
and functional properties as well as the bioactive compounds of three local cowpea cultivar flours (white, red and black).
Regarding the proximal composition, the cowpea flours exhibited a neutral pH (between 7.37 - 7.58) and contained
higher amounts of protein (> 21.55 %), crude fiber (> 18.58 %), carbohydrate (> 36.14 %) with lower fat content (< 1.5
%). White and black cowpea flours displayed higher moisture content than the indicated limit (10 %). Regarding
minerals, white and black cowpea flours showed higher potassium, phosphorus, and calcium contents compared to red
cowpea flour which also did not contain microelements such as sodium, copper, manganese, zinc and iron in trace states.
Moreover, the contents of bioactive compounds such as total polyphenol and tannins were found to be low (< 0.06 %)
in these flours with a total absence of flavonoids. However, among the anti-nutritional factors, only phytate showed the
highest content (> 227 mg/100g) in these cowpea flours. Functional property assessments revealed higher WAC, WSI
and HLB values in red and black cowpea flours that varied significantly from 240.57 - 301.04 %, 33.14 - 35.58 % and
3.28 - 4.22, respectively while the bulk density ranged from 0.91 to 1.11 g.cm-3. These results suggest that these
dehydrated cowpea flours are promising ingredients for designing nutritionally enhanced foods with low-fat index.
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1. Introduction

The cowpea (Vigna unguilata (L.) Walp.) is an annual herbaceous plant that can be creeping, climbing or bushy in form
[1, 2]. Originally native to West Africa [3, 2, 4], it is one of the most important legume crops worldwide, particularly in
sub-Saharan [5, 6]. Cowpeas are a staple food in Africa, Latin America and Asia, where they contribute significantly to
food security and nutrition. They are either consumed before maturity as green beans [7, 8, 9], or after maturity as dry
cowpea [10, 7]. In Africa, dry cowpeas are a major dietary component in western, central, eastern and southern regions.
The total world production of cowpeas in 2019 was 8.9 million metric tons [11], representing 2.7-folds increase since
2000. Nigeria (40.2 %), Niger (26.8 %), and Burkina-Faso (7.3 %) contributed 74.3 % of total cowpea production. In
Cote d'Ivoire, cowpeas are cultivated in the north of the country. However, production is relatively low compared to
that of the main food crops, such as yams, cassava, maize and rice [12, 13].

Cowpeas are characterized by their low-fat content, high dietary fibre and protein contents, making them a valuable
source of plant protein, especially in low-income populations with limited access to animal protein. They also contain
high levels of essential amino acids, such as leucine, lysine, phenylalanine, isoleucine, threonine, methionine and
tryptophan [14, 15]. As well as starch and important minerals such as iron and zinc [16, 17, 18, 19]. Given the growing
global population and on the challenges of food insecurity particularly in Céte d'Ivoire, combined with sustainability
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concerns in the livestock sector, there is a pressing need to diversify vegetable protein sources. Legumes such as
cowpeas with their high nutritional value, represent a promising option for addressing protein-energy deficiencies.
They could play an important role in the diversifying diets, helping to combat hunger and malnutrition, especially in
rural areas and among low-income communities, and contributing to poverty reduction. However, most studies on
Legumes in Céte d'Ivoire have focused on varieties grown in the southeast [12, 13], leaving a gap in the knowledge
regarding those cultivated in the northern regions. Thus, to address this gap, the present study examines the nutritional
and functional composition of three cowpeas cultivars (white, red and black) grown in the department of Korhogo to
identify the most nutrient-rich varieties to inform selection program.

2. Material and Methods

2.1. Plant material

The samples of cowpeas used in this study were purchased at the central market of Korhogo, Céte d’lvoire. Three
cultivars distinguished by seed coat color (white, red and black) were selected. For each cultivar, about 1 kg of grains
with good visual quality was collected per cultivar from three market women.

2.2. Methods

2.2.1. Bean seed flours production

For each cowpea variety, 500 g of seeds were rinsed first with tap water, then with distilled water. The cleaned seeds
were dried in a ventilated oven at 45 °C for 24 hours, ground using an analytical mill, and sieved through a 100 pm mesh
screen. The resulting flours, white cowpea flour (WCF), red cowpea flour (RCF), and black cowpea flour (BCF) were
stored in plastic containers at room temperature (25 °C) until use.

2.2.2. pH determination

The pH of cowpea flours was measured immediately on the homogenate at room temperature (25 °C) using a
potentiometric technique according to the Official Methods of [20].

2.2.3. Proximate analysis

The proximate composition of the dry cowpea flours from each cultivar was determined according to the procedures of
the Association of Official Analytical Chemists (AOAC, 2005). Protein content was determined using the Kjeldahl method
with a conversion factor of 6.25. Lipid content was measured by gravimetry method using Soxhlet extraction with n-
Hexane as the solvent. Moisture content was determined by gravimetry after drying samples in a vacuum oven at 105°C
to constant weigh. Crude fibre was quantified by digesting and incinerating the sample residue in a muffle furnace at
550°C for 6 hours. Ash content was determined by gravimetry after incineration of the samples at 550°C for 6h.
Carbohydrate content was calculated by difference using the following equation:

Carbohydrate (%) = 100 - (moisture (%) + protein (%) + lipid (%) + ash (%) + crude fibre (%)).

2.2.4. Determination of mineral Content

Mineral analyses focused on phosphorus (P), potassium (K), calcium (Ca), nitrogen (N), magnesium (Mg), copper (Cu),
zinc (Zn), boron (B), iron (Fe) and manganese (Mn). The analyses were performed using an ICAP 61E Plasma
spectrometer (Thermo Jarrel Ash Corporation, country). Raw samples were digested in a perchloric nitric acid solution
(3:1 mixture of 65% nitric acid and 72% perchloric acid). Mineral concentration was then determined by inductively
coupled plasma emission spectrometry.

2.2.5. Determination of bioactive compounds

Extraction process

The extraction of bioactive compounds from white, red and black cowpea flours was carried out according to the method
described by [21]. A sample of 4 g of flour was dissolved in 2 mL of n-hexane and 4 mL of methanol/water solution
(60:40, v/v). After vortex stirring, the suspension was centrifuged at 5000 rpm for 3 min, and the pellet was re-extracted
according to the same procedure. The resulting supernatants were combined, washed with 4 mL of n-hexane to remove
residual oil and concentrated using a rotary evaporator.
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Total polyphenols

Total polyphenols content was determined using the Folin-Ciocalteu reagent method described by [22] with
modification. Briefly, 2.5 mL of the diluted Folin-Ciocalteu reagent (1/10) was added to 5 ml phenolic extract. After
stirring, the mixture was left to stand in the dark for 3 min, followed by the addition of 1.5 ml of 20 % Na2COs3 to the
mixture. The mixture was then shaken and incubated in dark at room temperature (25 °C) for 30 minutes. Absorbance
was measured at 725 nm using a spectrophotometer (Shimadzu, Japan). Gallic acid was used as a standard, and the
results were expressed in milligrams of equivalent gallic acid per 100g of dry matter (mg GAE/100g DM).

Total flavonoid

The flavonoid content was determined using the aluminium trichloride (AlCl3) calorimetric method proposed by [23].
A standard curve of C quercetin (10-80 pg/mL) was used, and the results were expressed as milligrams of quercetin
equivalents per 100 grams of dry matter (mg QE/100 g DM).

Tannins

Tannin content was determined by the method of [24]. One mL extract was mixed with 5 mL of Folin-Dennis reagent in
an alkaline medium. Absorbance of the mixture was read at 760 nm, and the tannin content was determined using a
calibration curve prepared with tannic acid concentrations.

Antioxidant activity (DPPH)

The antioxidant activity was determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging method
described by [25], with modifications. Briefly, 200 ul of extract was mixed with 3.8 ml of 70% methanolic DPPH solution.
After incubation in the dark for 30 min, absorbance was measured at 517 nm using a spectrophotometer (Ultraspec
200, Pharmacia Biotech Piscataway, NJ) against a methanol blank. The control consisted of 200 pl of acetone/water
(80:20, v/v) mixed with 3.8 mL of DPPH solution.

2.2.6. Anti-nutritional factors

Phytates

Phytate content was determined according to the method described [26]). Briefly, 0.25 g of flour was extracted with
12.5 mL of hydrochloric acid (3 %) and incubated in a water bath at 30 °C for 45 min. After incubation, the mixture was
centrifuged at 4000 rpm for 10 minutes. To the supernatant solution, 4 mL of FeCl3:6H20 were added, and the
absorbance of the resulting mixture was read at 822 nm using a spectrophotometer.

Oxalate

Oxalate content was determined by the potassium permanganate (KMnO4) titration method described by [20]. One (1)
gram of flour was dissolved in 75 mL of 15 N sulfuric acid. The mixture was homogenized for one hour and filtered
through Whatman filter paper. An aliquot of 1.25 mL was titrated with 0.005 M of potassium permanganate solution

2.2.7. Determination of functional properties

Flours Bulk density

Bulk density was determined using the procedure of [27]. Fifty grams (50 g) of cowpea flour were placed into a 100 ml
graduated measuring cylinder and tapped gently until a constant volume was obtained. Bulk density (g/cm3) was
calculated using the following equation:

Bulk density (g/cm3) = weight of flour (g) / volume (cm3) of flour.

Water absorption capacity, water solubility, Index, the oil absorption capacity

The water absorption capacity (WAC), water solubility (WSI) Index and the oil absorption capacity (OAC) were
determined according to the method described by [28]. One gram of cowpea flour was dispersed in 10 ml distilled water
or refined palm oil in a pre-weighed 20 ml centrifuge tube. The slurry was agitated for 2 min, allowed to stand at room
temperature (25 °C) for 30 min, and then centrifuged at 500 rpm for 20 min. The WAC and OAC were expressed as a
percentage (%) of the initial flour weight. The WSI was obtained by drying the supernatant after centrifugation and
expressing the soluble solids as a percentage of the original flour weight.
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Hydrophilic-lipophilic ratio

The hydrophilic-lipophilic ratio (HLR) was calculated using the equation proposed by [29], which consist of dividing
water absorption capacity by the oil absorption capacity.

HLR = Water Absorption Capacity (WAC) / Oil Absorption Capacity (OAC)

3. Results and discussion

3.1. pH

The pH values of white, red, and black dry cowpea flours are presented in Table 1. The results showed that, although
slightly lower in white cowpea flours (7.37) compared to black (7.50) and red cowpea flours (7.58), pH values were not
significantly different (p > 0.05). These results corroborate the findings of [30], who also observed a neutral pH in
legumes. Similarly, several studies reported that a neutral pH is a common characteristic of legumes [31]. Moreover, pH
level plays a crucial role in determining the functional properties of cowpea flours, as it influences the charge of amino
acid side groups in proteins. A pH range of 7.37-7.58, which is slightly alkaline and close to neutral, could enhance the
functional properties of cowpea flours, particularly their capacity to absorb water, their solubility, emulsifying power,
foaming ability, and gelling ability [32].

3.2. Proximate composition

Table 1 showed the proximate composition of the flours from white, red and black dried cowpeas. The moisture content
varied significantly from 8.45 + 1.34 to 16.10 + 4.10 %. Red cowpea flour showed the lowest value (8.45 + 1.34 %),
followed by black cowpea flour (13.71 + 4.15 %), while the white cowpea flour showed the highest value (16.10 + 4.10
%). Moisture content among other intrinsic compositions play an important role in the stability of a flour product, as it
directly affects s food products shelf-life [33, 34]. In general, it should be below 10 % for better storage stability of food
products. Thus, the high moisture content of white and black cowpea flours (210 %) observed in this study suggest
insufficient drying, which could reduce their shelf life. By contrast, the low moisture content of red cowpea flour (<10
%) suggested better storage potential, as it can limit physicochemical changes, microbial growth, and enzymatic activity
[35, 33].

Protein content differs significantly between flours. The highest value was observed with black cowpea flour (24.93 *
0.05 %), followed by white cowpea flour (24.26 + 0.05%) and red bean flour (21.55 = 0.07 %). Similar results are
reported by [36] Reyes et al. (2010) and [37] on common cowpea flour. In addition, the protein content of the studied
cowpea flours was above 20%, suggesting that they may be potential sources of protein with the ability to compensate
for protein deficiencies in certain foods [38, 39]. They could likewise be used to supplement low-protein staple foods.

Lipid contents were low, ranging from 1.04 + 0.01 to 1.54 + 0.01 %. Similar results have been reported by [37] in
common cowpea cultivars were reported. However, the values in this study were lower than those observed by [40] in
three cowpea varieties (3.99 + 0.06 - 92.50 = 0.03 %). Such low lipid content found in this study suggests that cowpeas
are a suitable food for people with low-fat diets.

As for the crude fibre content, red cowpea flour had a significantly higher value (21.33 * 0.28%) (p < 0.05) than those
of white (18.26 * 0.68%) and black (18.53 + 0.05%) cowpea flours. These results are consistent with those reported by
[41] on different cultivars of carioca and black bean grown in Brazil (17.63 + 1.63 - 23.36 + 0.96%) and to those of [42]
(17.95+0.39 - 22.07 £ 0.02%) reported on improved dry bean varieties grown in Ethiopia. Furthermore, the high fiber
content highlights the potential of cowpeas as a rich source of dietary fiber. Indeed, dietary fibers contribute to satiety
and regulate intestinal transit. They also reduce blood cholesterol, help regulate blood sugar and weight management,
and promote digestive health and chronic disease prevention [43, 44].

Carbohydrate contents also varied of studied flours differed significantly (P < 0.05). Red cowpea flour showed the
highest content (43.49 +1.84%), compared to black (37.36 0.92) and white (36.14 + 1.31%) seed flours. Consequently,
red cowpea flour provided the highest energy value they generate (269.04 + 7.23 kcal), while white and black flours
provided 255.39 + 5.29 kcal and 260.60 * 3.84 kcal respectively

Finally, ash contents ranged from 3.70 + 0.11 to 4.21 + 0.30 %, with significant differences among flours. These values

are comparable to those reported by [41] (3.93 + 0.00 to 4.39 * 0.06%) for carioca and black bean cultivars cultivated
in Brazil. High ash contents generally reflect higher mineral content, as indicated by [45].
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Table 1 Proximate composition of white, red and black cowpea flours

Parameters WCF RCF BCF

pH 7.37£0.202 7.58 +£0.102 7.50 £ 0.152
Moisture (%) 16.10 +4.10¢ | 8.45+1.342 13.71 + 4.15¢0
Proteins (%) 24.26 +0.05> | 21.55+0.072 | 24.93+£0.05¢
Lipids (%) 1.54 +0.01b 1.04 £0.01a 1.26 £ 0.08¢
Crude fibre (%) 18.26 +0.682 | 21.33+0.28> | 18.53+0.0572
Ash (%) 3.70+£0.112 4.14+0.20°b 421+0.30°
Carbohydrate (%) | 36.14 £ 1.312 | 43.49 + 1.84b 37.36 £0.922
Energy (Kcal) 255.39+5.292 | 269.0.4 +7.232 | 260.60 + 3.842

WCF, RCF and BCF denote to white, red and black cowpea flour respectively; The values with different superscripts within each row are
significantly different (p < 0.05)

3.3. Mineral content

Macro and micro element composition of white, red and black dried cowpea flours was analyzed, and the results are
presented in Table 2. Significant differences were observed among cultivars (P < 0.05). For macro elements, potassium
ranged from 0.29 * 0.00 (RCF) to 112.61 + 0.00 mg/100g (BCF); phosphorus, from 8.45 + 0.00 (RCF) to 16.10 + 0.00
mg/100g (WCF); calcium, from 0.13 + 0.00 (RCF) to 45.59 + 0.00 mg/100g (WCF); magnesium, from 0.02 + 0.00 (BCF)
to 18.95 mg/100g (RCF) and sodium from 0.00 (RCF) to 2.77 + 0.00 mg/100g (WCF). Overall, WCF exhibited the highest
content of macro elements, while RCF had the lowest content. Regarding trace elements, copper, manganese, zinc, and
iron were quantified. Only iron was detected in the RCF at a level of 0.01 + 0.00 mg/100g, whereas the other two flours
contained all four trace elements. BCF showed higher concentrations of iron (9.24 + 0.00 mg/100g) and manganese
(3.03 £ 0.00 mg/100g), while WCF had higher levels of copper (0.64 + 0.00 mg/100g) and zinc (3.06 * 0.00 mg/100g).
These observed differences in macro and trace elements among bean cultivars can be attributed to the botanical and
genetic background of the plant and the soil characteristics [46, 47].

Table 2 Mineral composition of white, red and black cowpea flours

Parameters (mg/100g) | WBF RBF BBF
Potassium (K) 100.48 £ 0.00° | 0.29 £0.002 | 112.61+0,00¢
Phosphorus (P) 16.10 +4.10¢ | 8.45+1.342 | 13.71 £ 4.15Y
Calcium (Ca) 45.59+0,00c | 0,13+0,002 | 45.41+0.00P
Magnesium (Mg) 13.29 £ 0,00> | 18,95+0,00¢ | 0.02 £ 0.002
Sodium (Na) 2.77+ 0,00¢ 0.002 2.24 + 0,000
Iron (Fe) 5.78 + 0,00b 0.01 £0,002 | 9.24 £ 0.00¢
Copper (Cu) 0.64 + 0.00¢ 0.002 0.57 + 0.00°
Manganese (Mn) 1.62 £ 0.00® 0.002 3.03 £ 0.00¢
Zinc (Zn) 3.06 +0.00¢c 0.002 2.74 £ 0.00>

WCF, RCF and BCF denote to white, red and black cowpea flours respectively; The values with different superscripts within each row are

significantly different (p < 0.05).

3.4. Phenolic compounds

Table 3 presents the phenolic compounds of white, red and black cowpea flours. The total polyphenol contents were
very low and varied significantly, ranging from 0.03 * 0.00 to 0.06 + 0.00 mg GAE/100g in white and black cowpea
flours, respectively. However, flavonoids were not detected in any of the studied varieties.

1047



World Journal of Advanced Research and Reviews, 2025, 27(03), 1043-1053

The tannin contents were very low across all samples. These results suggest that the consumption of these cowpea
varieties does not pose anti-nutritional problems, as highlighted by [48]. Indeed, tannins are complex polyphenolic
compounds, widely distributed in certain cereals, legumes, and forages, with a strong affinity for proteins. Due to these
properties, tannins can interfere with digestion by binding to dietary proteins or inactivating digestive enzymes,
particularly those involved in protein digestion. Therefore, the low tannin content in the studied flours may improve
nutritional value by enhancing nutrient bioavailability and overall digestibility of the seeds [49].

Concerning phytate contents, significant differences were found among flours (p < 0.05). The white cowpea had the
highest phytate content (270.66 * 0.36 mg/100g), whereas red and black cowpea flours exhibited similar phytate
contents (227.41 + 1.06 mg/100g and 226.54 + 2.06 mg/100g). Phytates are a complex class of naturally occurring
compounds that can strongly influence the functional and nutritional properties of foods by chelating dietary minerals
such as calcium, magnesium, iron, zinc, copper, and manganese, thereby reducing their bioavailability [50, 51]. These
minerals are vital for children during growth, as well as for pregnant or lactating women. In addition, phytates have also
been reported to inhibit digestive enzymes such as proteases and alpha amylases [52, 53, 54]. To overcome these effects,
[55] recommended processing techniques such as soaking, fermentation, germination, and cooking, which can
significantly reduce phytate content in the food and improve mineral bioavailability. Nevertheless, despite their anti-
nutritional effects, phytates also possess antioxidant activity, which can help reduce the risk of chronic diseases, such
as cardiovascular disease and certain cancers [56].

Oxalates are natural compounds found in many plant-based foods, including dried cowpeas. At high concentrations in
foods, they may contribute to calcium oxalate kidney stones formation. In this study, oxalate contents varied
significantly among flours. The red cowpea flour had the highest value (12.98 + 0.14 mg/100) (p < 0.05) compared to
white and black cowpea flours which have similar values (12.64 + 0.03 mg/100 and 12.48 + 0.04 mg/100, respectively).
The values observed in this study were significantly lower than those reported by [57] for white beans (Phaseolus
vulgaris L.; 547.9 mg/100 g) and sweet potatoes (Ipomoea batatas; 495.6 mg/100 g). Furthermore, oxalates contents in
foods can be reduced through food processing methods such as soaking in water prior to cooking, thereby improving
mineral absorption and reducing the risk of kidney stone formation.

The studied flours exhibited significantly different antioxidant activities (DPPH assay, p < 0.05). White-cowpea flour
exhibited the lowest antioxidant activity (39.81 * 0.36 meq/100g), followed by red cowpea flour (42.12 + 3.23
meq/100g), whereas black cowpea flour had the highest antioxidant activity (47.08 + 1.72 meq/100g), The high
antioxidant activity observed in red and black cowpea flours can be attributed to their higher phenolic compound
contents. Indeed, antioxidants improve the nutritional properties of foods by reducing oxidative stress, thereby
contributing to the prevention of chronic diseases. The incorporation of antioxidant-rich flours into food formulations
could improve product stability, extend shelf life and increase nutritional value due to their phenolic content [58, 59].
These results are in agreement with previous studies reporting that polyphenols in common beans exhibit antioxidant
properties and various biological activities [60].

Table 3 Phenolic compounds of white, red and black bean flours

Parameters WCF RCF BCF

Total phenols mg GAE/100 g 0.03+0.01- 0.05+£0.01" 0.06 +0.00¢
Flavonoids (mg QE/100g ) 0.00 0.00 0.00

Tannins (mg TAE/100 g) 0.04 £0.012 0.01£0.012 0.01+0.012
Oxalate (mg/100g) 12.64 +0.032 | 12.98 £ 0.14> | 12.48 + 0.042
Phytate (mg/100g) 270.66 £ 0.362 | 227.41 + 1.06> | 226.54 + 2.06P
Antioxidant activity (meq/100g)) | 39.81 £ 0.362 | 42.12+1.23> | 47.08 £ 1.72¢

WCF, RCF and BCF denote to white, red and black bean flours respectively; The values with different superscripts within each row are significantly
different (p < 0.05).

3.5. Functional properties

The functional properties analyzed in this study included bulk density, water absorption capacity (WAC), oil absorption
capacity (OAC), water solubility index (WSI) and hydrophilic-lipophilic balance (HLB). The results are presented in
Table 4.
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Bulk density values significantly varied among flours, ranging from 0.92 to 1.11 g.cm-3 (P > 0.05). Red cowpea flour
exhibited the highest value, while white and black cowpea flours showed similar values. These values were higher than
those reported by [40] for cowpea varieties (0.69 - 0.80 g. cm3). Bulk density values between 0.9 and 1 g/cm3, as
observed in this study, suggest that these flours are relatively heavy, occupying less space per unit of weight but
presenting challenges in transportation and packaging, as they would require more packaging material [61].

Water absorption capacity (WAC) differed significantly different among the flours (P < 0.05). The highest value is
observed with black cowpea flour (304.01 + 15.31 %), followed by red cowpea flour (269.76 + 14.61 %) and white
cowpea flour (240.57 + 28.34 %). By contrast, no significant difference was observed with the water solubility index,
which ranged from 33.14 + 2.1% in white cowpea to 35.58 + 4.61 in red cowpea flour. The WAC results obtained in this
study were considerably higher than those reported by [62] for wheat (113.00 + 5.65 %,), oat (121.00 * 3.64 %), corn
(169.67 + 5.09 %) and barley flours (132.15 = 2.78%). Indeed, the high water absorption capacity of cowpea flours
studied may be attributed to their protein content, as protein bind water through hydrophilic retention interactions.
This property is particularly valuable for the food industry, where water retention contributes to textural improvement
and yield. In addition, these flours could be incorporated into bakery products to improve dough handling and their
mechanical properties [63].

Unlike WAC, oil absorption capacity (OAC) did not vary significantly (p > 0.05) among white (81.17 = 11.16%), red
(69.31 £ 3.57%) and black (71.87 = 0.74%) cowpea flours. However, these values were lower than those obtained by
[62] for wheat (108.00 + 5.00%), oats (102.00 £ 6.12%), corn (101.00 * 3.03%) and barley (126.00 + 4.08%).

Differences in oil absorption capacity among the studied flours may be attributed to variations in protein content,
particularly the composition of hydrophobic amino acids side chain and the protein structure [64, 65].

The Hydrophilic-lipophilic balance (HLB) is an essential factor in food formulation, especially for emulsions,
encapsulations and other dispensing systems. It reflects the ratio between hydrophilic and lipophilic components in a
formulation, which influences stability, texture, bioavailability, and organoleptic properties [66, 67]. In this study, HLB
values varied significantly from 3.28 * 0.17 % (for white cowpea flour) to 4.22 + 0.16% (for black cowpea flour) (P >
0.05). These values, falling between 3 and 4, suggest a higher affinity for water than oil, suggesting that the studied
flours are suitable for formulations requiring high water absorption capacity, such as baked and extruded products.

Table 4 Functional properties of white, red and black cowpea flours

Parameters WCF RCF BCF

Bulk density (g.cm3) | 0,92 £ 0,002 1,11 +0,00® 0,91 £ 0,002
WAC (%) 240.57 £28.342 | 269.76 + 14.61" | 304.01 + 15.31¢
WSI (%) 33.14 £ 2.112 35.58 £ 4.612 35.02 £1.732
0AC (%) 81,17 £+ 11,162 69,31 + 3,572 71,87 £ 0,742
HLR 3.28+0.172 3.86 £0.17P 4.22+0.17°b

WCF, RCF and BCF denote to white, red and black bean flours respectively; The values with different superscripts within each row are significantly
different (p < 0.05).

4., Conclusion

This study revealed significant variations in the composition as well as the physicochemical, nutritional, and functional
properties of cowpea flours. White, red and black cowpea flours were found to be rich in protein and crude fiber but
poor in lipids. In addition, they exhibited antioxidant activity and contained moderate levels of carbohydrates. In
addition, these cowpea varieties were characterized by high levels of phytate and oxalates, but low levels of flavonoids,
tannins, and total phenols. Moreover, these flours were rich in potassium, phosphorus and calcium. However, white and
red cowpea flours particularly presented higher levels of magnesium. In terms of microelements, the flours of white and
black seeds demonstrated significant levels of iron, copper, manganese, and zinc, whereas the red cowpea flour was
comparatively poorer in these elements. As for the functional properties, the flours displayed high water and oil
absorption capacity, solubility index, and HLB values. These attributes make cowpea flours produced suitable for food
formulations aimed at enhancing nutritional quality, particularly enriching protein and dietary fiber contents while
maintaining fat content and glycemic index low. However, the high phytate and oxalate levels, which may reduce mineral
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bioavailability, could be corrected by simple and appropriate processing methods such as soaking, fermentation or
cooking.
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