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Abstract 

Many questions about the order of approximation and their order of convergence of various classes of functions by 
linear operators, in particular singular integrals. Approximations of functions by singular integrals have numerous 
applications in various fields of mathematics. Approximations of functions by singular integrals are studied intensively 
along with other issues in theory of functions. In their papers PL Butzer and RG Mamedov study convergence order of 

singular integrals in generating functions at separate characteristic points and metric in the space 
p

L   on bounded and 
unbounded domains. Important theorems on asymptotic value of approximation of functions by singular integrals are 
obtained in these papers. In this paper, we study the approximation properties of the Mellin singular integral in terms 
of the mean oscillation of a locally summable function. 
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1. Introduction

The study of singular integral operators has long been a central topic in harmonic analysis, approximation theory, and 
the theory of integral equations. Among these operators, Mellin singular integrals occupy a special place due to their 
close connection with problems on the half-axis and their applications in mathematical physics, probability theory, and 
number theory. The Mellin transform framework provides a natural tool for analyzing functions defined on  allowing 
convolution-type operations to be treated as multiplicative convolutions, which are particularly well-suited for 
problems exhibiting scale invariance. 

Approximation of singular integrals by discrete or regularized analogues has been the focus of extensive research, as 
exact evaluation is often impossible in practical applications. In many cases, understanding the asymptotic behavior of 
these approximations plays a crucial role in quantifying the accuracy and convergence rate of numerical and analytical 
methods. Recent advances have focused on the asymptotics of Mellin-type singular integral operators when applied to 
classes of summable functions, revealing deep connections between the local behavior of the kernel and the global 
convergence of the operator. 

2. Some definitions and designations

Let ),0(),,( +=+−= +RR . If RE = or += RE , then )(ELloc denotes the set of all functions locally 

summable on the set E . );()( dxXLXL = is the set of all functions summable on the set of RX  relative linear 
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the quantity ));(,( xIf
M

 the average Mellin oscillation of the function f on the interval );( xI . 

Let us also introduce the following metric characteristic (see [6]) 

++ = RRxxIfxm
MM

f  ,},ln:));(,(sup{:);( . 

It is easy to see that the function );( xm
M

f
takes only non-negative values and is monotonically increasing in argument 

),0( + . 

Let be )(r a non-negative, monotonically increasing ),0( + function. Let )( 0xMO
M

 denote the class of all functions 

)( + RLf loc such that 

0)),(();( 0 = rrOrxm
M

f  . 
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A function of this type )(xK  is called a Fejér-type Mellin kernel. 

Let us consider the Melin singular integral with a Fejér-type kernel. 
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where )( + RLf loc is such that the integral exists almost everywhere in +R . By changing the variable, it can be shown 

that 
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In particular, if )(
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= , where EX is the characteristic function of the set E , then it can be shown that 

for this kernel 
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exI
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3. Theorem 1 .1.  

Let )( + RLf loc , be K a Fejér-type kernel, 0},ln:)(sup{:)( =  ttKk , 0,),( 0  ++ RxRLk . 

Then the inequality holds true 
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where )(kc is a positive constant depending only on the function k . 
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Taking into account the previous reasoning, we get that 
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Due to the fact that ),0(},:)(*sup{)( +=  yyKk , from (2.2) we have 
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From the definition it is clear that is )(k a monotonically decreasing ),0( + function.  
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We will evaluate each of the terms on the right side of the relation (1.3). 
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 Now let's consider the terms ni2 . If 1−n , then we have 
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 From here, by virtue of Theorem 1.1, we obtain 
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If 1−=n , then 02 =ni . 

Finally, let us consider the case 1−n . Then we have 
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By virtue of the relations (1. 10 ) - ( 1 . 13 ) we obtain 
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It can be shown that if )(x a non-negative monotonically increasing function on an interval is true ),0( + , then the 

following inequalities are true: 

0,)4()(22)2()2(
0

1
 



−=

+  dxxxkk
n

nnn
; (1. 8) 

 
−

−=

4

1

0

2

)(2)2(2 dxxkk
n

nn
; (1 .9) 

0,)4()(22)2()2(

2

10

1
 



=

+
 dxxxkk

n

nnn
; (1 .10) 



World Journal of Advanced Research and Reviews, 2025, 27(03), 1054-1060 

1059 

Moreover, if )(x a non-negative monotonically decreasing function on an interval is true ),0( + , then the inequality 

is true 
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 Using inequalities (1.15) -( 1.18) from inequality (1.14) we obtain that 
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Changing the order of integration in the integrals of inequality (1.12), after some elementary transformations we obtain 
inequality (1.1). The theorem is proved. 

4. Theorem 1.2 

Let  be a non-negative, monotonically increasing ),0( + function, K and k the same as in the previous theorem, and 
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5. Conclusion 

In this paper, we have investigated the asymptotic behavior of approximation Mellin singular integral operators in the 
class of summable functions. By analyzing the limiting process as the regularization parameter tends to zero, we have 
derived explicit expressions describing the asymptotic value of these operators. The obtained results not only generalize 
known theorems on singular integral approximations but also provide a more refined understanding of their 
convergence properties. 

Our findings demonstrate that the asymptotic value depends essentially on the local behavior of the kernel near the 
singularity and on the summability properties of the underlying function. This insight allows for a more precise error 
estimation in practical approximation schemes and strengthens the theoretical foundation for the use of Mellin 
operators in applied problems. 
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