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Abstract

Many questions about the order of approximation and their order of convergence of various classes of functions by
linear operators, in particular singular integrals. Approximations of functions by singular integrals have numerous
applications in various fields of mathematics. Approximations of functions by singular integrals are studied intensively
along with other issues in theory of functions. In their papers PL Butzer and RG Mamedov study convergence order of

singular integrals in generating functions at separate characteristic points and metric in the space LP onbounded and
unbounded domains. Important theorems on asymptotic value of approximation of functions by singular integrals are
obtained in these papers. In this paper, we study the approximation properties of the Mellin singular integral in terms
of the mean oscillation of a locally summable function.
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1. Introduction

The study of singular integral operators has long been a central topic in harmonic analysis, approximation theory, and
the theory of integral equations. Among these operators, Mellin singular integrals occupy a special place due to their
close connection with problems on the half-axis and their applications in mathematical physics, probability theory, and
number theory. The Mellin transform framework provides a natural tool for analyzing functions defined on allowing
convolution-type operations to be treated as multiplicative convolutions, which are particularly well-suited for
problems exhibiting scale invariance.

Approximation of singular integrals by discrete or regularized analogues has been the focus of extensive research, as
exact evaluation is often impossible in practical applications. In many cases, understanding the asymptotic behavior of
these approximations plays a crucial role in quantifying the accuracy and convergence rate of numerical and analytical
methods. Recent advances have focused on the asymptotics of Mellin-type singular integral operators when applied to
classes of summable functions, revealing deep connections between the local behavior of the kernel and the global
convergence of the operator.

2. Some definitions and designations

Let R=(—o0,+®), R, =(0,+o).If E=Ror E=R_, then L
summable on the set E. L(X) = L(X;dX) is the set of all functions summable on the set of X < R relative linear

1oc (E) denotes the set of all functions locally
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X
Lebesgue measure 0dX.In what follows, L( R+ ; —j we will denote the set of all functions f summable with respect to

X

X
measure — on the set R .
X

X
Let 0<7 <1 xeR,, I(X;7) = {p eR, i xr<p< —}, f € L,,.(R,).Letus introduce the following notations
T

. dp
fl(x:r)' 2||n |J. (P)

. _ 1 xzr 7t dp
oM (f,1(x.7)) =gl j HOER NS

the quantity Q" (f, 1(X; 7)) the average Mellin oscillation of the function f on the interval 1(X;7).

Let us also introduce the following metric characteristic (see [6])

my' (x;8) =sup{Q" (f,1(x;7)):|In7| <5} xeR,, 5 €R,.

Itis easy to see that the function m?" (X; O) takes only non-negative values and is monotonically increasing in argument

0 €(0,+ ).

Letbe ¢(r) a non-negative, monotonically increasing (0,+00) function. Let MO(/)M (X, ) denote the class of all functions
f € L,.(R,) such that

loc

m¢' (xo; 1) = O(e(r)), r > 0.

Let K € L(RJr;%jand
X

F dx
!K(x)7=

1

1
If we denote K_(X) =— K[X‘E J, & >0, then we have
&

R dx 1%, ( -)dx ¢ du
J'Kg(x)—=—IK(X5J—:IK(U)—=1
° X €9 X 9 u

A function of this type K, (X)is called a Fejér-type Mellin kernel.

Let us consider the Melin singular integral with a Fejér-type kernel.
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17 (X 2 dt
®g(f;x)=—jf 2|t | =,
ey \t t
where f € L, .(R,) issuch thatthe integral exists almost everywhere in R, . By changing the variable, it can be shown
that
1

qbg(f;x):%jf(u)K G] ‘L—“:jf(u’i

,jK(u)‘t—”.

1

In particular, if K(U) ==X , |, (U), where X is the characteristic function of the set E , then it can be shown that
2 |[1;g]

for this kernel

D, (f;x)= fl(x;e,g),Where xeR,, &>0.

3. Theorem 1.1.

Let f el (R,), be K a Fejér-type kernel, k(7) := sup{|K(t)| : |In t| >7}47>0,kel(R,), %X €R,,e>0.
Then the inequality holds true

‘CDE(f %) - fI(XO;e,ﬁ)‘ < c(k)(m?ﬂ (%16) + [KOM)' (p:4et)dt +
0

t

+I (t"’ jk(x)d X |dt + j f(°’ jk(x)dx dt |, (1.1)

where C(K) is a positive constant depending only on the function K .

Proof.Let X, =€ (y, €R), @ (f;y,) =D, (f;e)=d_ (f;X,).Then we have

@ (f;%,) _1 jK*(y(’—_tjf*(t)dt,g >0,
g - &

where K *(u) := K(e™), f *(t) = f(e™"). Moreover, it is easy to see that

1 Yoté&

jf (Mdt = fo, ..

1(xg;e° )

Taking into account the previous reasoning, we get that

CI)g(f;xo)—f EU [ ] dt.(1.2)
&

7O~ fogm
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Due to the fact that K(7) = sup{|K * (y)| : |y| > 7}, 7 € (0,4<0), from (2.2) we have

< %j@ k( yOT_tD‘ P (0 - o

Where X, =€ (X, €R,,y, € R).

D (f;x,)— f|(x0;e*) dt,

From the definition it is clear that is K(7) a monotonically decreasing (0,+<0) function.

Next, we get that

dt <

@, (Fix,) - f

1(x:e7 )| —

=1 Yo —
£ e,
¥0:2" £)\B(yg:2" £)

=1 |yo t|J
< Z =
- & 2" £<yOJ‘t<2n+lg [ ¢
2| . 1 (1Yo~
fB(yO;erlc)_ fB(yO;g)‘ I N ;k( 08 ]dt_

+ 2
= Y+ Dy . (1.3)

dt +

O R,

N=—o0 N=—o0
We will evaluate each of the terms on the right side of the relation (1.3).

If n=0,%1,..., then we have

A \ )
L, <—k@") | ‘f ()= Fo, o [dt <
€ 2"g<‘x—t‘£2"+15
n+2 n 1 * * =
<27k ).m I ‘f U R T

B(yo:2"¢)
— 2n+2 . k(2n) -QM (f , | (Xo;e,zwlg)) < 2n+2 . k(zn) i m?/l (X0;2n+l€) . ( 1 4)
Now let's consider the terms i, . If N > —1, then we have

*

B(¥o:2"¢)

*

B(Yoie)|

i, <1k — f
&

2 k@)
1(xq;e”

— f .
5 )

From here, by virtue of Theorem 1.1, we obtain
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20 m (%t
iy, s2””.k(2”).é(m?"(xo;2"”g)+ I #dt} (1.5)

&

If n=-1, then i,, =0.

Finally, let us consider the case N < —1. Then we have

*

£

B(Yo:s) fB(yO;ZHHé‘)

i, < Zk(EM2ms.
&

_on+l,

_ on+l n. -
=2 k(2") ‘fuxo;e”) 1(xo:e

)

B a2 2 e my! (Xo;t)
<2 k(2 )~E[m¢"(xo;5)+ j %dt . (1.6)

&

By virtue of the relations (1. 10 ) - (1. 13 ) we obtain

‘CI)g(f;XO)— fl(xo;e,g)‘ﬁ 22n+2 k(2" -mM (x,;2" ) +

)
+% D12 k(") my (%y;€) +

N=-—w

_ & M 1
+i22“+2.k(2”). I Mdt+

In 2 N=—o0 2n+1€

+ i22“*2 k(2" -m (x;2" ) +
In243

1 & 7 eemy (xg5t)
F =322 k(2" [ 2t (1 7
na2 2 k@) j t (1.7)

It can be shown that if ¢(X) a non-negative monotonically increasing function on an interval is true (0,+20), then the

following inequalities are true:
Sk(2")-p(2" ) 2" <2 j k(X)p(4ex)dx, & > 0; (1.8)
N=—o0 0

1

-2 4
> 2" k(2" < 2.jk(x)dx; (1.9)
n=-oo 0

SK(@")-0(26)-2" < 2- [K(X)p(4er)dx, & > 0; (1.10)
n=0 1

2
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Moreover, if {(X) a non-negative monotonically decreasing function on an interval is true (0,+00) , then the inequality
is true

1

-2 4
> k(2" p(2"e) 2" <2 -jk(x)y/(zgx)dx, £>0.(1.11)

N=—o0 0

Using inequalities (1.15) -( 1.18) from inequality (1.14) we obtain that

‘CDE(f;XO)— f

1(Xg;e7%)

< c(k){m'}" (X:€) + ]Sk(x)m'f"I (Xo:4ex)dx +

k(x)[ ] Mdt}dx+?k(x)[4j€xwdtjdx (112)

&

2
1

8 4
Where C(K) = ——-max- 2, I k(x)dx .
In 2 0
Changing the order of integration in the integrals of inequality (1.12), after some elementary transformations we obtain

inequality (1.1). The theorem is proved.

4, Theorem 1.2

Let @ be anon-negative, monotonically increasing (O,+oo) function, K and K the same as in the previous theorem, and
the following conditions are satisfied

1) j@dt =0(p(g)), € >0;

2) Tk(x)¢(4gx)dx =0(p(g)), €>0;

3 T@ ]Ek(x)dx dt = 0(p(¢)), £ > 0.

4s
Thenif X, € R, and f € MO("?A (X,) » then the inequality is true
@, (f;%)—d; (X)) <c-|| f]-p(e), £ >0,

My -
— my (Xp;1) . . . .
where ” f || '=SuUpy————:t>0¢,andis ¢ > 0a constant depending only on the function K .

o(t)
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5. Conclusion

In this paper, we have investigated the asymptotic behavior of approximation Mellin singular integral operators in the
class of summable functions. By analyzing the limiting process as the regularization parameter tends to zero, we have
derived explicit expressions describing the asymptotic value of these operators. The obtained results not only generalize
known theorems on singular integral approximations but also provide a more refined understanding of their
convergence properties.

Our findings demonstrate that the asymptotic value depends essentially on the local behavior of the kernel near the
singularity and on the summability properties of the underlying function. This insight allows for a more precise error
estimation in practical approximation schemes and strengthens the theoretical foundation for the use of Mellin
operators in applied problems.
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