

eISSN: 2581-9615 CODEN (USA): WJARAI Cross Ref DOI: 10.30574/wjarr Journal homepage: https://wjarr.com/



# (Review Article)

# Physics factor on human growth and development

Adrian Cetra Handita <sup>1,\*</sup>, Andre Amin Supatra <sup>1</sup> and Andra Rizqiawan <sup>2</sup>

<sup>1</sup> Bachelor of Dental Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia. <sup>2</sup> Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.

World Journal of Advanced Research and Reviews, 2025, 25(02), 356-367

Publication history: Received on 24 December 2024; revised on 01 February 2025; accepted on 04 February 2025

Article DOI: https://doi.org/10.30574/wjarr.2025.25.2.0349

#### Abstract

**Background:** Growth and development are maintained primarily by genetic, hormonal, energy, environmental, and nutritional factors. Environmental factors become one of the important factors in influencing human growth and development. One of the environmental factors is the physical environment, which consists of climate/weather, sanitation, geographical conditions and others.

**Purpose:** Knowing the various components of physical environment factors that can affect human growth and development.

**Methods:** Literature review was conducted using secondary data from databases such as PubMed, Google Scholar, and ScienceDirect. The inclusion criteria focused on studies published between 2014-2024 that explored the phsyccs factor on human growth and development.

Result: 8 journals met the inclusion criteria and included in this review.

**Conclusion:** Growth is a change that is quantitative by increasing the number, size, organs, and individuals. One of the most influential factors on the rate of human growth and development is environmental factors. One of the environmental factors is the physical environment, which consists of climate/weather, sanitation, air pollution, geographical conditions, and others. In subtropical climates, spring has the highest growth rate and daylight exposure is also known to have a positive effect on human growth, then in sanitary conditions, clean sanitary conditions support the quality of nutrients which are important for human growth and development. In geographical conditions, the rate of human growth and development in highland populations tends to be slower. In addition, differences in human growth and development in differences in resource distribution in each geographic state, etc. Meanwhile, air pollution has a role in inhibiting human growth in the fetal period, especially maternal smoking which affects the fetal genome

Keywords: Physic Factor; Growth and Development; Physical Environment; Air pollution

## 1. Introduction

Growth is a change that is quantitative by increasing the number, size, organs, and individuals. Humans are not only getting bigger physically, but also increasing the size and structure of the organs of the body and the brain. In addition, development is a process of increasing quantitative and qualitative characteristics. Development has the meaning of increasing ability and is the result of a maturity process [10].

<sup>\*</sup> Corresponding author: Adrian Cetra Handita

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

Growth and development are maintained primarily by genetic, hormonal, energy, environmental and nutritional factors. Environmental factors become one of the important factors in influencing human growth and development. One of the environmental factors is the physical environment, which consists of climate/weather, sanitation, geographical conditions, radiation and so on. Some of these components relate to one another in determining their influence on human growth and development [6].

The factors in the physical environment that are important to health include harmful substances, such as air pollution or proximity to toxic sites, access to various health-related resources, such as healthy or unhealthy foods, recreational resources, medical care and also community design and the "built environment" (e.g., land use mix, street connectivity, transportation systems) [11].

The environment can affect health through physical exposure, such as air pollution (OECD, 2012). A large body of work has documented the effects of exposure to particulate matter (solid particles and liquid droplets found in the air) on cardiovascular and respiratory mortality and morbidity. Research has identified specific physiological mechanisms by which these exposures affect inflammatory, autonomic, and vascular processes [2].

Agent, host, and environmental factors interrelate in a variety of complex ways to produce disease. Different diseases require different balances and interactions of these three components. Development of appropriate, practical, and effective public health measures to control or prevent disease usually requires assessment of all three components and their interactions. Agent originally referred to an infectious microorganism or pathogen: a virus, bacterium, parasite, or other microbe. While the epidemiologic triad serves as a useful model for many diseases, it has proven inadequate for cardiovascular disease, cancer, and other diseases that appear to have multiple contributing causes without a single necessary one. Host refers to the human who can get the disease. Environment refers to extrinsic factors that affect the agent and the opportunity for exposure. Environmental factors include physical factors such as geology and climate, biologic factors such as insects that transmit the agent, and socioeconomic factors such as crowding, sanitation, and the availability of health services. [3,13]

## 2. Material and methods

This article review was conducted by searching for information and data from international journal sources with criteria published in the last 10 years or after 2014. Searching for data sources used journals uploaded via Pubmed, Google Scholar, and ScienceDirect. The journal used contains the subject matter of "Physic Factor on Growth and Development" with physic factor on growth and development, sanitation on growth and development, geographic states on growth and development, weather and season on growth and development, air pollution on growth and development as the keywords. From several journals collected, a summary of the journal is made in the form of a table which includes the name of the researcher, year of publication of the journal, journal title, objective, research method, and research results.

## 3. Results and discussion

## 3.1. Result of Article Review

Table 1 Journal Summary Used for Article Review

| No. | Author                     |     |    | Title                                                                                                                                                             | Objective                                                                                                                                                                               | Method                                                                                                                                                                                                | Result                                                                                                                                                                                                                                                                                                                         |
|-----|----------------------------|-----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. | Author<br>Ngure,<br>(2014) | et. | al | Title<br>Water,<br>Sanitation, and<br>Hygiene<br>(WASH),<br>environmental<br>enteropathy,<br>nutrition, and<br>early child<br>development:<br>making the<br>links | This paper<br>represents the<br>argument that<br>poor hygiene,<br>resulting in<br>microbial<br>ingestion, is a<br>risk factor for<br>poor ECD. The<br>writers review<br>evidence on the | This paper uses<br>the method of<br>literature review<br>which aims to<br>collect and<br>summarize<br>findings from<br>research that has<br>been done before.<br>The data source is<br>in the form of | Many risk factors for<br>developmental deficits have<br>been elucidated, and the<br>potential role of hygiene must<br>be considered in this context.<br>This paper identified<br>inadequate cognitive<br>stimulation, stunting, iodine<br>deficiency, and iron-deficiency<br>anemia as key risks that<br>prevent children from |
|     |                            |     |    |                                                                                                                                                                   | links between<br>clean water,                                                                                                                                                           | national journal<br>articles from the                                                                                                                                                                 | achieving their developmental potential. Other risk factors                                                                                                                                                                                                                                                                    |

|    |                                          |                                        | sanitation, and<br>hygiene (WASH),<br>and stunting and<br>anemia, which<br>are known risk<br>factors for child<br>developmental<br>deficits, and<br>highlight how<br>current WASH<br>interventions fail<br>to adequately<br>protect children<br>in the first 3<br>years of life. The<br>writers advocate<br>for a more<br>holistic view of<br>WASH oriented<br>to babies in the<br>first years of life<br>and for the<br>development of<br>interventions<br>targeted to this<br>age group. | year of 1955 to<br>2012. Selected<br>journals discuss<br>the making links of<br>Water, Sanitation,<br>and Hygiene<br>(WASH),<br>environmental<br>enteropathy,<br>nutrition, and<br>early child<br>development.                                                                                                                                     | include intrauterine growth<br>restriction (IUGR), malaria,<br>lead exposure, human<br>immunodeficiency virus (HIV)<br>infection, institutionalization,<br>and exposure to societal<br>violence. There is emerging<br>evidence of risks from prenatal<br>maternal malnutrition,<br>maternal stress, and families<br>affected by HIV. Evidence of<br>adverse effects of<br>environmental toxins on child<br>development has been well<br>documented, with greatest<br>attention toward lead,<br>mercury, and polychlorinated<br>biphenyls (PCBs), and more<br>limited data on other heavy<br>metals, solvents, and<br>pesticides. |
|----|------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Balasundaram<br>and Avulakunta<br>(2022) | Human Growth<br>and<br>Development     | This paper aims<br>to describe the<br>stages of growth<br>and<br>development, to<br>review the<br>factors affecting<br>growth and<br>development, to<br>outline the<br>methods for<br>growth<br>measurements<br>and standard<br>screening tools<br>for<br>developmental<br>assessment, and<br>to explain how<br>interprofessional<br>collaboration<br>and<br>communication<br>can improve<br>patient outcomes<br>when assessing a<br>patient's physical<br>development.                    | This paper uses<br>the method of<br>literature review<br>which aims to<br>collect and<br>summarize<br>findings from<br>research that has<br>been done before.<br>The data source is<br>in the form of<br>national journal<br>articles from the<br>year of 1992 to<br>2020. Selected<br>journals discuss<br>the Human<br>Growth and<br>Development. | Speaking mainly about the<br>factors affecting growth and<br>development, this paper<br>shows there are 9 factors.<br>Those are genetic factors, fetal<br>health, after birth, socio<br>economics factors, family<br>characteristics, human-made<br>environment, nutrition,<br>genetic and environmental<br>factors, and role of experience<br>during early childhood.                                                                                                                                                                                                                                                           |
| 3. | Wilsterman and<br>Cheviron (2021)        | Fetal growth,<br>high altitude,<br>and | In this review, it<br>provides new<br>insight into these                                                                                                                                                                                                                                                                                                                                                                                                                                   | Here, the paper<br>examines human<br>gestational                                                                                                                                                                                                                                                                                                   | Many maternal, placental, and<br>fetal physiological traits are<br>altered by exposure to high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Г. Г. | I             | r                 | ſ                                |                                   |
|-------|---------------|-------------------|----------------------------------|-----------------------------------|
|       | evolutionary  | questions by      | physiology at high               | altitude in humans with           |
|       | adaptation: a | summarizing the   | altitude from a                  | lowland ancestry, but evidence    |
|       | new           | current state of  | novel evolutionary               | for the contribution of any       |
|       | perspective   | the field using a | perspective that                 | specific change in these traits   |
|       | P P           | perspective       | focuses on                       | to fetal growth outcomes          |
|       |               | based on          | patterns of                      | remains limited. The simplest     |
|       |               | evolutionary      | physiological                    | explanation for fetal growth      |
|       |               |                   |                                  |                                   |
|       |               | theory. This      | plasticity, allowing             | restriction at altitude would be  |
|       |               | perspective can   | us to identify 1)                | that lower oxygen directly        |
|       |               | be broadly        | the contribution of              | limits growth of the fetus.       |
|       |               | applied to help   | specific                         | However, plasticity in the        |
|       |               | identify          | physiological                    | placenta and/or fetal             |
|       |               | physiological     | systems to fetal                 | hematology appears sufficient     |
|       |               | traits or         | growth restriction               | to achieve necessary uptake       |
|       |               | processes that    | and 2) the                       | and consumption of oxygen in      |
|       |               | are likely        | mechanisms that                  | lowlanders and highlanders        |
|       |               | contributors to   | confer protection                | alike. Altitude-dependent fetal   |
|       |               | fetal growth      | in highland-                     | growth restriction is therefore   |
|       |               | outcomes at       | adapted                          | likely linked to indirect effects |
|       |               | altitude. This    | populations. Using               | of low oxygen on gestational      |
|       |               | paper then        | this perspective,                | physiology that constrain fetal   |
|       |               | identify key      |                                  | growth trajectories. Relevant     |
|       |               | areas where new   | the paper<br>highlights two      | factors may include vascular      |
|       |               | _                 | general findings:                | stress in and around the          |
|       |               |                   |                                  |                                   |
|       |               | questions are     | first, that the                  | placenta and change in            |
|       |               | needed to         | beneficial value of              | nutrient delivery to the fetus,   |
|       |               | advance our       | plasticity in                    | but there are relatively few      |
|       |               | understanding of  | maternal                         | data quantifying these factors    |
|       |               | hypoxia-          | physiology is often              | in situ, especially during early  |
|       |               | dependent fetal   | dependent on                     | development.                      |
|       |               | growth            | factors more                     |                                   |
|       |               | restriction from  | proximate to the                 |                                   |
|       |               | an evolutionary   | fetus; and second,               |                                   |
|       |               | vantage point     | that writer's                    |                                   |
|       |               |                   | ability to                       |                                   |
|       |               |                   | understand the                   |                                   |
|       |               |                   | contributions of                 |                                   |
|       |               |                   | these proximate                  |                                   |
|       |               |                   | factors is currently             |                                   |
|       |               |                   | limited by thin                  |                                   |
|       |               |                   | data from altitude-              |                                   |
|       |               |                   |                                  |                                   |
|       |               |                   | adapted                          |                                   |
|       |               |                   | populations.                     |                                   |
|       |               |                   | Expanding the                    |                                   |
|       |               |                   | comparative scope                |                                   |
|       |               |                   | of studies on                    |                                   |
|       |               |                   | gestational                      |                                   |
|       |               |                   | physiology at high               |                                   |
|       |               |                   | altitude and                     |                                   |
|       |               |                   | integrating studies              |                                   |
|       |               |                   | of both maternal                 |                                   |
|       |               |                   | and fetal                        |                                   |
|       |               |                   | physiology are                   |                                   |
|       |               |                   | needed to clarify                |                                   |
|       |               |                   | the mechanisms                   |                                   |
|       |               |                   | by which                         |                                   |
|       |               |                   | physiological                    |                                   |
|       |               |                   |                                  |                                   |
|       |               |                   | responses to altitude contribute |                                   |
|       | 1             | 1                 | L AULUUGE CONTRIDUTE             |                                   |

|    |                                              |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | to fetal growth<br>outcomes. The<br>relevance of these<br>questions to<br>clinical,<br>agricultural, and<br>basic research<br>combined with the<br>breadth of the<br>unknown highlight<br>gestational<br>physiology at high<br>altitude as an<br>exciting niche for<br>continued work.                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4. | De Leonibus, <i>et.</i><br><i>al.</i> (2016) | Effect of<br>summer<br>daylight<br>exposure and<br>genetic<br>background on<br>growth in<br>growth<br>hormone-<br>deficient<br>children | The aims of the<br>present study<br>were (A) to<br>assess whether<br>living at different<br>latitudes with<br>different<br>numbers of<br>summer daylight<br>hours impacted<br>on annual HV in<br>children with<br>GHD treated with<br>r-hGH, (B) to<br>investigate the<br>possible<br>interaction<br>between summer<br>daylight and<br>growth-related<br>genetic markers<br>on HV12 and (C)<br>to use the<br>difference in<br>gene expression<br>profile<br>associations to<br>identify<br>pathways and<br>hence<br>mechanisms<br>associated with<br>this interaction. | Allauxologicaldatawereexpressedasmedianandinterquartilerangesranges[median(Q1,Q3)].UncorrectedUncorrectedP-valueso0.05wereconsideredstatisticallysignificant.Statistical analysiswaswasperformedusingtheStatistical PackageforforSocial Scienceprogram, version20.0 software forWindows(SPSS,Chicago, IL, USA).DifferencesDifferencesincontinuousvariablesvariableswereexaminedforunpaired samplesbybythe Kruskal-Wallistest,whereasdifferencesdifferencesincategoricalvariablesvariableswereassessedbyFisher's exact test.Correlationsbetween variableswere assessed byPearson'scorrelationcoefficient. Partialleastsquaresregression (PLSR)wasappliedto | The response to growth<br>hormone in humans is<br>dependent on phenotypic,<br>genetic and environmental<br>factors. The present study in<br>children with growth hormone<br>deficiency (GHD) collected<br>worldwide characterized<br>gene-environment<br>interactions on growth<br>response to recombinant<br>human growth hormone (r-<br>hGH). Growth responses in<br>children are linked to latitude,<br>and the writers found that a<br>correlate of latitude, summer<br>daylight exposure (SDE), was a<br>key environmental factor<br>related to growth response to<br>r-hGH. In turn growth<br>response was determined by<br>an interaction between both<br>SDE and genes known to affect<br>growth response to r-hGH. In<br>addition, analysis of associated<br>networks of gene expression<br>implicated a role for circadian<br>clock pathways and<br>specifically the developmental<br>transcription factor NANOG.<br>This work provides the first<br>observation of gene-<br>environment interactions in<br>children treated with r-hGH. |

|    |                          |                                                                                                               |                                                                                                                                                                                                      | overcome<br>multicollinearity<br>between<br>variables.18 By<br>using PLSR, the<br>'variable<br>important for<br>projection'<br>coefficients were<br>computed and a<br>value of o0.8 was<br>considered to be<br>small and not<br>contributing<br>significantly to the<br>prediction<br>model.19 To<br>examine which<br>variables had a<br>major impact on<br>the prediction of<br>HV, independent<br>variables were<br>used, including<br>latitude and<br>summer daylight,<br>GH peak, r-hGH<br>dose, BW SDS,<br>baseline BMI SDS,<br>distance to TH<br>SDS, age and<br>gender; HV was<br>used as the<br>dependent<br>variable. |                                                                                                                                                                                                                                                                                                                                                                                     |
|----|--------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5. | Malina, et. al<br>(2018) | Geographic<br>variation in the<br>growth status<br>of indigenous<br>school children<br>and youth in<br>Mexico | To analyze<br>variation in the<br>growth status of<br>indigenous<br>children and<br>youth attending<br>bilingual schools,<br>escuelas<br>albergues, for the<br>indigenous<br>population in<br>México | The children and<br>youth attended<br>escuelas albergues<br>in 1,009 localities<br>in 21 Mexican<br>states in 2012.<br>Heights and<br>weights of 31,448<br>boys and 27,306<br>girls 6–18 years of<br>age were<br>measured by<br>trained staff at<br>each school; the<br>BMI was<br>calculated. The<br>students were<br>divided into five<br>geographic<br>regions for<br>analysis: North,<br>Central, South-Gulf, South-Pacific,                                                                                                                                                                                               | The geographic gradient in<br>heights of indigenous children<br>and youth was consistent with<br>a north-to-south pattern noted<br>among indigenous adults in<br>studies spanning 1898<br>through 2013. Variation in<br>height among children and<br>youth likely reflected ethnic-<br>specific and geographic<br>variation interacting with<br>economic and nutritional<br>factors |

|    | 1                                 |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          | and South-<br>Southeast. Growth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    |                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          | status was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    |                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          | compared to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    |                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          | United States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    |                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          | reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    |                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          | percentiles (P).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    |                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6. | Momberg, <i>et. al.</i><br>(2020) | Water,<br>Sanitation, and<br>Hygiene<br>(WASH) factors<br>associated with<br>growth<br>between birth<br>and 1 year of<br>age in children<br>in Soweto,<br>South Africa:<br>result from the<br>Sowety Baby<br>WASH study | This study aims<br>to provide<br>evidence linking<br>WASH and<br>nutritional status<br>in infants, to<br>brigs evidence<br>regarding the<br>associations<br>between WASH<br>and nutritional<br>status in children<br>in South Africa, to<br>highlight the<br>importance of<br>access to<br>sanitation at<br>household as | This study drew<br>cross-sectional<br>data from a<br>longitudinal<br>cohort study and<br>used hierarchical<br>regression<br>analyses to assess<br>associations<br>between WASH<br>factors: water<br>index, sanitation,<br>hygiene index, and<br>growth: height-<br>forage (HAZ),<br>weight-for-age<br>(WAZ), weight-<br>for-height (WHZ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The evidence suggests that the<br>biggest impact relating to<br>water is likely to affect WAZ<br>around 12 months while the<br>Table 6 greatest impact of<br>hygiene is around 1 month<br>postpartum and is likely to<br>affect HAZ and WAZ. Access to<br>safely managed sanitation<br>facilities is critical throughout<br>the first year and impacts HAZ,<br>WAZ, and WHZ. Interventions<br>intending to address issues<br>surrounding WASH in early<br>childhood and nutritional<br>status would therefore benefit<br>from taking this timing into<br>account and recognising |
|    |                                   |                                                                                                                                                                                                                         | household as<br>well as<br>community<br>levels, and to<br>begin the process<br>of developing<br>indices related to<br>WASH and<br>nutritional status<br>in children in<br>South Africa                                                                                                                                   | for-height (WHZ)<br>at 1, 6, and 12<br>months<br>postpartum<br>among infants a<br>priori born<br>healthy in Soweto,<br>Johannesburg.<br>Household access<br>to sanitation<br>facilities that were<br>not safely<br>managed was<br>associated with a<br>decrease in HAZ<br>scores at 1 month<br>( $\beta$ <sup>1</sup> / <sub>4</sub> 2.24) and 6<br>months ( $\beta$ <sup>1</sup> / <sub>4</sub><br>0.96); a decrease<br>in WAZ at 1 month<br>( $\beta$ <sup>1</sup> / <sub>4</sub> 1.21), 6<br>months ( $\beta$ <sup>1</sup> / <sub>4</sub> 1.57),<br>and 12 months ( $\beta$<br><sup>1</sup> / <sub>4</sub> 1.92); and<br>finally, with WHZ<br>scores at 12<br>months ( $\beta$ <sup>1</sup> / <sub>4</sub> 1.94).<br>Counterintuitively,<br>poorer scores on<br>the hygiene index<br>were associated<br>with an increase at<br>1 month for both<br>HAZ ( $\beta$ <sup>1</sup> / <sub>4</sub> 0.53) | account and recognising<br>specific timepoints in early<br>childhood, and associated<br>WASH factors for intervention.<br>WASH is an important factor<br>influencing infant growth, and<br>improvements to both<br>household and community<br>level sanitation may be<br>required in order to achieve<br>targets in terms of minimising<br>undernutrition                                                                                                                                                                                                                        |

|    |                                         |                                                                         |                                                                                                                                                                                                                                                                                                  | and WAZ (β ¼<br>0.44). Provision of<br>safely managed<br>sanitation at<br>household and<br>community levels<br>may be required<br>before<br>improvements in<br>growth-related<br>outcomes are<br>obtained                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----|-----------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7. | Buris and<br>Baccarelli<br>(2017)       | Air pollution<br>and in utero<br>programming<br>of poor fetal<br>growth | This paper aims<br>to find out how<br>air pollution<br>affects on poor<br>fetal growth<br>reviewed from<br>the in utero<br>programming<br>scope.                                                                                                                                                 | This paper uses<br>the method of<br>literature review<br>which aims to<br>collect and<br>summarize<br>findings from<br>research that has<br>been done before.<br>The data source is<br>in the form of<br>national journal<br>articles from the<br>year of 1990 to<br>2016. Selected<br>journals will<br>discuss the effect<br>of air pollution on<br>poor fetal growth<br>reviewed from the<br>in utero<br>programming<br>scope. | Maternal cigarette smoking in<br>pregnancy represents one of<br>the most preventable causes of<br>poor fetal growth. Air<br>pollution, which contains<br>many of the same compounds<br>found in cigarette smoke<br>including fine particulate<br>matter smaller than five<br>microns in diameter (PM2.5),<br>has been shown to increase the<br>risk of many of the same<br>conditions caused by smoking<br>including lung cancer and<br>cardiovascular disease.<br>Further, air pollution exposure<br>in pregnancy is associated<br>with lower birth weight for<br>gestational age. How air<br>pollution affects fetal growth is<br>incompletely understood, but<br>new insights into how the fetal<br>epigenome responds to<br>cigarette smoke may provide<br>clues as to how air pollution<br>may affect the developing<br>fetus. |
| 8. | Goldizen, Sly,<br>and Knibbs<br>(2016). | Respiratory<br>effects of air<br>pollution on<br>children               | This paper aims<br>to discuss air<br>toxicants impact<br>on children's<br>respiratory<br>health, routes of<br>exposure with an<br>emphasis on<br>unique pathways<br>relevant to young<br>children,<br>methods of<br>exposure<br>assessment and<br>their limitations<br>and the adverse<br>health | This State of the<br>Art examines<br>published data on<br>the effects of<br>indoor and<br>ambient air<br>pollution on the<br>prenatal and<br>childhood<br>respiratory<br>system,<br>determines the<br>current gaps in our<br>knowledge and<br>presents a way<br>forward for future<br>research. We<br>provide an                                                                                                                 | While there are considerable<br>data linking early life exposure<br>to air pollution to both short-<br>and long-term adverse health<br>effects, important knowledge<br>gaps still exist. A substantial<br>component of the global<br>burden of disease is<br>attributable either directly or<br>indirectly to air pollution<br>exposure. Ambient air quality<br>can be improved through<br>regulation and technology to<br>reduce vehicle and industrial<br>emissions. Indoor air<br>pollution, especially from<br>biomass and solid fuel<br>burning, should be considered                                                                                                                                                                                                                                                          |

|  | consequences of<br>exposures. | overview of air<br>toxicants<br>commonly present<br>in air pollution,<br>indoor and<br>outdoor sources of<br>air pollution and<br>the pathways of<br>exposure.<br>However, it is<br>outside the scope<br>of this article to<br>review the<br>respiratory effects<br>of environmental<br>tobacco smoke<br>exposure in<br>children as they<br>have been<br>reviewed<br>extensively | early life is required to<br>encourage policy makers to<br>reduce such exposures and |
|--|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|  |                               | extensively<br>elsewhere.                                                                                                                                                                                                                                                                                                                                                        |                                                                                      |

#### 3.1.1. Weather and Season

According to the study conducted by Balasundaram and Avulakunta in 2022 [1], in a year there is a period where growth and development becomes three times faster than a normal growth and development speed. This period is synchronized with the weather and the fastest development speed occurs in autumn. In other tropical season continents, such as Indonesia, the sunny season is faster than the rainy season. This condition occurs because there is an assumption that availability of food is lower during the rainy season so that it becomes a factor slowing down human growth and development during the rainy season in tropical countries.

On a research conducted by Balasundaram and Avulakunta [1] as well, in Peru, it shows that high body gesture doesn't always defined as reproductive advantage. In industrial countries, woman that has a high posture will likely has a successful reproduction than a smaller woman. Nevertheless, in a rough environment on Peruvian Andes, smaller women have more potency to create a surviving offspring.

A study conducted by Leonibus *et. al.* [5] also said that growth and development rate is different between a sunny season and dark season. Leonibus *et. al.* [5] also said that daylight exposure affects the growth and development rate on becoming faster, but they do not say that this is because of the availability of food. Their study focuses on the hormonal changes causes by the daylight exposures that later fasten the growth and development rate. Differences in melatonin secretion due to variation in day length were proposed to explain the variation in height inhibiting sexual and skeletal maturation. The link between day length and melatonin secretion resides in the eye, a light-sensitive organ whose function is to maintain circadian and seasonal rhythms, as facilitated by retinal communication via neural tracts with the pineal gland. A circadian clock has been found to be primarily mediated by melanopsin-containing retinal ganglion cells, which are intrinsically blue-light sensitive. A number of studies have also provided support for a link between seasonal changes in daylight and physiological alterations, including human growth, with the existence of a seasonal variability in growth patterns in normal children. Growth appears to speed up during times of greatest daylight exposure and slow down during periods of darkness

#### 3.1.2. Sanitation

According to the study done by Ngure *et. al.* [14], sanitation is linked with the condition of nutrition in some countries and it's effect on human growth and development. Adequate and healthy sanitized nutrition during pregnancy and the first 2 years of life is necessary for normal brain development, which lays the foundation for future cognitive and social ability, school success, and productivity. Undernutrition affects brain development directly, and also affects physical growth, motor development, and physical activity, which may, in turn, influence brain development through both caregiver behavior and child interaction with the environment Ngure *et. al.* [14], carried out that awful sanitation condition is responsible on 50% of maternal and underweight children. A bad sanitation condition obviously won't

produce good human growth and development, because in the process of growing, humans needs a good nutrition quality, and if its not sufficient, the growing and developing process won't be optimal.

Meanwhile, a study in South Africa conducted by Momberg *et. al.* [9] found that in the current South African context, there was no association between water conditions and growth outcomes in the various models. Noteworthy, however, is the negative association between the water index and WAZ (weight-for-age) at 12 months after adjusting for infant characteristics at birth, but not after adjusting for maternal or household characteristics, which may mean that the effect might be relative to nutritional status at birth. However, this article seems to agree that water, sanitation, and hygiene (WASH) take a huge responsibility of the quality of nutrition. Momberg *et. al.* [9] stated that WASH is an important factor influencing infant growth, and improvements to both household and community level sanitation may be required in order to achieve targets in terms of minimizing undernutrition.

#### 3.1.3. Air Pollution

Buris and Baccarelli [3] viewed air pollution effect on human growth and development from the scope of human's fetal period. The main adverse effect of air pollution on human growth and development is because of the smoke and the smoking behavior from the maternal. The smoke pollution has many micro dangerous substance that has proven that it can cause lung cancer and cardiovascular diseases. Further, air pollution exposure in pregnancy is associated with lower birth weight for gestational age. Unfortunately, How air pollution affects fetal growth is incompletely understood, but new insights into how the fetal epigenome responds to cigarette smoke may provide clues as to how air pollution may affect the developing fetus.

On the same side, a study conducted by Goldizen *et. al.* [7] assumpted that air pollution through maternal can affect human growth and development during the prenatal period. Maternal air pollution, environmental tobacco smoke, and BMF exposure have been positively associated with intrauterine growth restriction, low birth weight, and premature birth. In addition, Exposure to ambient air pollution and indoor biomass fuel combustion during childhood may reduce somatic and skeletal growth. a study reported that Polish children has a height deficit of 1.5 cm in exposed preadolescent children, when compared to less exposed children residing in the same city. Ambient air pollution accounted for 3.1% of the total growth rate variability. It is biologically plausible that air pollution negatively effects childhood growth through the genotoxicity of chemical air pollutants, the effect of low birth weight or IUGR on later development, or the negative effects of lung function deficits and frequent respiratory infections. The small number of studies, inadequate controlling for socio-economic factors in some studies, and selection bias in some studies prevents an association from being confirmed.

## 3.1.4. Geographical States

Wilsterman and Cheviro [15] stated that geographic states where human lives takes a responsibility on human growth and development as well. They stated that population who lives in high altitude, such as mountains, tend to have a shorter posture than those population who live at low altitude places. This condition occurs because the oxygen saturation on high altitude places is lower than that of the low altitude places. Hypobaric hypoxia said to be the cause of restriction of fetal's growth. For the reference, hypobaric hypoxia is the state in which the partial pressure of oxygen is reduced [10]. There are indirect and direct effects between the minimum availability of oxygen and fetal growth. The direct effect is the hardness of the fetus to gain adequate oxygen to grow, whether the indirect effect leads to the response of the maternal, placenta, and fetal physiology to hypoxia that can slow down the fetal growth.

On the other side, Malina *et. al.* [8] viewed geographical states on affecting human growth and development from different scope. They see it on the state's economical condition. Their research in Mexico found out that indigenous children at North Mexico has the tallest posture, while the shortest posture belongs to South-Pacific and South-Southeast regions. The preceding likely reflected the economic, health, and nutritional conditions in the different regions of Mexico. Both the North and Central regions, for example, have reasonably well-established economies given their proximity to the US border. The status of children and youth in the South-Gulf region was generally intermediate between those in the North and Central and the South-Pacific and SouthSoutheast states, and was more variable, which may have reflected the uneven distribution of resources in Puebla and Veracruz. The apparently "affluent" state of Puebla, for example, had a high estimated rate of poverty. In contrast, body weights and BMIs of children and youth in the five regions overlapped during childhood but showed more variation during adolescence

## 4. Conclusion

Growth (growth) is a change that is quantitative by increasing the number, size, organs, and individuals. One of the most influential factors on the rate of human growth and development is environmental factors. One of the environmental

factors is the physical environment, which consists of climate/weather, sanitation, air pollution, geographical conditions, and others. In subtropical climates, spring has the highest growth rate and daylight exposure is also known to have a positive effect on human growth, then in sanitary conditions, clean sanitary conditions support the quality of nutrients which are important for human growth and development. In geographical conditions, the rate of human growth and development in highland populations tends to be slower. In addition, differences in human growth and development in different geographic states are also caused by complex factors ranging from economic differences in each geographic state, differences in resource distribution in each geographic state, etc. Meanwhile, air pollution has a role in inhibiting human growth in the fetal period, especially maternal smoking which affects the fetal genome. This study hopes to benefit the reader to be aware of physical environmental factors on human growth and development.

## **Compliance with ethical standards**

#### Acknowledgments

The author wishes to express gratitude to our professors and family for their support

#### Disclosure of conflict of interest

All the authors of declare that there is no any conflict of interest with this document's release

#### References

- [1] Balasundaram P and Avulakunta ID. [Internet]. Human Growth and Development; 2022 *In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing*; PMID: 33620844.
- [2] Brook RH. The role of physicians in controlling medical care costs and reducing waste. Journal of the American Medical Association. 2011;306(6):650–651.
- [3] Burris HH and Baccarelli AA.. Air pollution and in utero programming of poor fetal growth. Epigenomics. 2017, Vol. (3):213-216. doi: 10.2217/epi-2017-0008.
- [4] Centers for Disease Control and Prevention. [Internet]. Principles of Epidemiology. Centers for Disease Control and Prevention. 2012. Retrieved December 19, 2022, from https://www.cdc.gov/CSELS/DSEPD/SS1978/Lesson1/Section8.html
- [5] De Leonibus, C; Chatelain, P; Knight, C; Clayton, P; Stevens, A. Effect of summer daylight exposure and genetic background on growth in growth hormone-deficient children. The Pharmacogenomics Journal. 2015. (), -. doi:10.1038/tpj.2015.67
- [6] Ferguson, K. T., Cassells, R. C., MacAllister, J. W., & Evans, G. W. The physical environment and child development: an international review. International journal of psychology : Journal international de psychologie. 2013. 48(4), 437–468. https://doi.org/10.1080/00207594.2013.804190
- [7] Goldizen, Fiona C.; Sly, Peter D.; Knibbs, Luke D. Respiratory effects of air pollution on children. Pediatric Pulmonology. 2016, 51(1), 94–108. doi:10.1002/ppul.23262
- [8] Malina, Robert M.; Little, Bertis B.; Lanceta, Joel; Peña Reyes, Maria Eugenia; Bali Chávez, Guillermo. Geographic variation in the growth status of indigenous school children and youth in Mexico. American Journal of Physical Anthropology. 2018, (), -. doi:10.1002/ajpa.23706
- [9] Momberg, D. J.; Voth-Gaeddert, L. E.; Ngandu, B. C.; Richter, L.; May, J.; Norris, S. A.; Said-Mohamed, R. Water, sanitation, and hygiene (WASH) factors associated with growth between birth and 1 year of age in children in Soweto, South Africa: results from the Soweto Baby WASH study. Journal of Water and Health. 2020, 18(5), 798–819. doi:10.2166/wh.2020.085
- [10] Muthuraju S, Pati S. Effect of hypobaric hypoxia on cognitive functions and potential therapeutic agents. *Malays J Med Sci*, (Spec Issue). 2014, 41-5. PMID: 25941462; PMCID: PMC4405810.
- [11] Nardina, Evita & Astuti, et al. Tumbuh Kembang Anak. 2021. Kudus, Indonesia: Yayasan Kita Menulis
- [12] National Research Council (US); Institute of Medicine (US); Woolf SH, Aron L, editors. U.S. Health in International Perspective: Shorter Lives, Poorer Health. 2013. Washington (DC): National Academies Press (US);. 7, Physical and Social Environmental Factors. Available from: https://www.ncbi.nlm.nih.gov/books/NBK154491/

- [13] Nordin, Susanna & Elf, Marie. The Importance of the Physical Environment to Support Individualised Care: Theory, Measurement, Research and Practice. 2019. 10.1007/978-3-319-89899-5\_19
- [14] Ngure FM, Reid BM, Humphrey JH, Mbuya MN, Pelto G, and Stoltzfus RJ. Water, sanitation, and hygiene (WASH), environmental enteropathy, nutrition, and early child development: making the links. *Ann N Y Acad Sci.* 2014. doi: 10.1111/nyas.12330.
- [15] Wilsterman K and Cheviron ZA. Fetal growth, high altitude, and evolutionary adaptation: a new perspective. *Am J Physiol Regul Integr Comp Physiol.* 2021, Vol. 321(3):R279-R294. doi: 10.1152/ajpregu.00067.