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Abstract  

People in situation of conflict are often found to engage based on their own understanding of expected utility from the 
said conflict. Should people behave completely rational, they would cease to engage the moment there is visibility on 
one’s earnings from the conflict. However, in reality the observable patterns and trends are different given that not 
always are people engaging rationally. What makes this complex is the fact that many a times a person does not have 
the required information to be able to engage in a fair play. Distortion in communication and presence of irrationality 
contribute to the uncertainty present in a game. These are abundantly observed in multi agent interactions such as 
management of supply chains where information forms a crucial link for the success of the supply chain. This paper 
proposes a model for non-cooperative interaction between agents who are operating with incomplete information 
about their opponents. The proposed game models the belief system of the players regarding their opponent as a 
Markov chain and in doing so incorporates uncertainty in the form of entropy of information. The proposed model is 
illustrated using a single manufacturer, single supplier game. The results show that in the presence of uncertainty, 
players are willing to tradeoff a part of their winnings to accumulate as much information about the opponent as they 
seem satisfactory. This tradeoff is characterized by the fact that the players would have been worse off in the absence 
of this accumulated information.   
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1. Introduction 

Rationality and information characterize a game. With the structural assumptions of rationality and complete 
information, game theorists focused on obtaining a solution formed by various combinations of strategies available to 
the players for various types of games. The main challenge in this process arises from the fact that different players have 
different preferences and thus prefer different outcomes. Conflict of interest starts at this point as each player is looking 
to answer the question: “What decision would be the best for me?”. A player’s decision to maximize profit for oneself is 
dependent on what his opponent’s decision will be, which is where the uncertainty in the structure of games is present. 
Assuming all players play rationally, theorists developed various solution concepts to answers the above question [1]. 
Such conflicting scenarios exist not only in traditional games (chess, poker, bridge) but also in business, economics, 
politics, military or even biological situations.  

Games have been an essential tool with respect to conflicting multiple agents. One can easily draw a parallel to supply 
chains owing to the interactive optimization problems encountered in various stages of a supply chain (SC) involving 
all the agents at every stage of a SC. Even though adoption of games in the domain of operations management was slow 
initially, the first decade of the 21st century witnessed an academic flare-up in SC management applications of games 
[2].  
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Conventionally, SC management focused on problems concerning the manufacturer and supplier [3, 4], but gradually 
their focus towards optimization of products and services from the very end of the prime suppliers to customers at the 
other end where every section, broadly classified into supplier, manufacturer, distributor and customer, have their own 
facilities. Complexities only increase with increasing number of facilities that need to be managed [5]. Flow of 
information between the above mentioned four sections became equally important and crucial to business survival. For 
coordinated movement of materials down the supply chain, an effective communication has to be passed up the chain 
prior to it making SC management a necessary component of every firm to enhance their competitive advantage [3, 6]. 
Compromised performances of agents in the supply chain will affect other agents in the interconnected network subject 
to the severity of the link between these agents [7]. It is appreciable that uncertainty in the chain further increases with 
such increased complexities. In such situations, structural assumptions regarding the rationality and information in the 
supply chain can adversely affect the inherent uncertainty [6]. Games provide powerful frameworks to understand the 
interactions and decisions made by SC agents [8]. 

Various theoretical frameworks for supply chain studies have been developed. Broadly the studies can be classified into 
make or buy decisions, sourcing strategies, supplier selection decisions and negotiation and contracting interactions 
[3]. Games between supply chain agents can be studied as cooperative or non-cooperative games [9]. Non-cooperative 
games are strictly strategy-oriented detailing on what a player expects other players to do and precisely elaborating on 
the essentials of how to achieve the same. Our research draws inspiration from the scope and relevance of applying 
game theory tools to supply chains. While maintaining the focus on non-cooperative games, our study proposes a game 
model in the presence of uncertainty. This uncertainty is characterised by the impact of compromised rationality and 
incomplete information in the game structure. We measure uncertainty as the entropy of information [10], since 
information flow between agents is critical to the success of the SC network.  

Theories have always played an important role for understanding organisational operations and have contributed to 
the economy. In section 1.1 we discuss the literature on rationality and information relevant to our study to understand 
the basic theoretical underpinnings of our proposed model following which section 2 elaborates on the development of 
the model. Application of the proposed model on a manufacturer – supplier game is illustrated in section 3, while the 
results and discussions are covered in section 4.   

1.1. Information, Rationality, and Equilibrium  

Conflicts are visible across all domains of decision-making heightened by asymmetric information and irrational 
behaviours. Consider the regional conflict between Israel and -Palestine. During the first half of 21st century, arguments 
were focused on removal of Israeli occupation from the West Bank and stopping Palestinian terrorism [11]. When 
studied as a game, this conflict can result in two different games, differentiated by the payoffs for the same available 
strategies but varying behavior of Palestinians. The presence of two possible games arises only when Israel does not 
have information regarding the nature of Palestine. One game as a result of a radical behavior and the other attributed 
to a moderate behavior while assuming the Israelis continue to play with a moderate behavior in both the games. This 
change in nature of Palestinians changes the game from a Non-Prisoner’s Dilemma under radical behavior to a 
Prisoner’s Dilemma under a moderate behavior [11]. Such changes in the nature affecting the game structure are not 
just restricted to political conflicts but also business wars, economic conflicts and varied scenarios including social 
conflict scenarios such as the Battle of Sexes game. The fundamental Battle of Sexes game is well explained in Luce & 
Raiffa (1957) [12 p. 90-91]. When the same logic of incomplete information is applied to a Battle of Sexes game, two 
alternate games with different payoffs as a result of the nature of the players (whether interested or uninterested in the 
opponent) can also be formed. Similar type of alternate games can arise when any agent has incomplete information 
regarding other agents in the supply chain network of operations. 

Incomplete information regarding the opponent, gives rise to alternate games where the payoffs for the same strategy 
differ based on the nature of the players [11]. A player must act upon a strategy only when he is satisfied with the 
available information of his opponent [13]. The above statements might falsely lead one to believe that more 
information is beneficial in a game scenario. Kitti and Mallozi [14] throw light on the impact of more information on 
various equilibrium solutions. On the other hand, Atkinson et. al. (2016) [15] added the concept of waiting time while 
studying information in games. When relying on information before engaging with the target, the waiting time becomes 
critical. Players tend to incur costs if any action is taken based on wrong/incomplete information or by waiting too long 
in the hopes of gaining knowledge of the opponent’s game. Engaging a target based on misinformation can result in 
collateral damage, loss of informers and may even result in misjudging the actions of the opponents.  

In the case of complete information games, a measure of the cost of uncertainty associated with a player trying to trick 
the opponent can be considered in the game structure [8]. However, uncertainty in case of incomplete information is 
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inherent in the structure since players are unaware of their opponent’s nature. Thus, we can say that uncertainty exists 
in identifying the nature of the player and then in the basic structure of the game when the players engage in the game. 

There are perhaps few issues in the theory of games that have generated as much discourse as that of rationality. The 
assumption, that players play rationally, is what engenders this most profound irony [16]. As early as 1955, Herbert A. 
Simon [17] had formulated a formal concept of rationality which entailed that a rational man should have knowledge, 
not necessarily complete but clear and voluminous enough, of the germane features of his environment. Also, that a 
rational man should possess a carefully designed stable system of preferences and the capacity to calculate which of the 
accessible courses of action will give him the highest attainability on his preference scale [17]. This approach organically 
led to applications of rational choice analysis to social issues quite beside the production and distribution of material 
goods [18].  

Amongst various solution concepts developed by theorists over the years, Nash’s theory of Non Cooperative games [19, 
20] became a major breakthrough in studying rational choice analysis in general competitive scenarios and the 
importance of rationality as a parallel to attain equilibrium solution came into light. While the Nash solution was popular 
for developing traditional solutions, theorists have argued how Nash equilibrium is neither a necessary nor a sufficient 
property [21, 22] as a criterion to identify the optimal strategy for the players in a game. This draws from the 
understanding that rationality in itself is a disputed concept in the theory of decision making.  

Simply put, the concept of rationality assumes that every subject is spurred on by the maximisation of one’s own reward. 
The consistency of an individual’s decision-making in the presence of different sets of available actions is the proper 
way to measure an individual’s “rationality” without considering his likes and dislikes [23]. The theory of games rely 
heavily on the assumption of rationality and the theory of rational choice can be found as a unit in many a model of game 
theory. Many solution concepts that have been developed possess both qualities of rationality and equilibrium. Such 
solutions are applicable only in an idealistic setup of a game which gets easily disturbed as soon as the structure of the 
game accommodates variability in the form of number of players or payoffs. Rationality and equilibrium then cannot be 
achieved simultaneously [24].  

A number of authors have weighed and debated the importance of rationality over equilibrium and vice-versa. It is not 
necessary that agents will always consider the opponents objectives in fact they may damage them if necessary. The 
possibility of such a scenario is highly influenced from the tit for tat behavior, i.e. people end up treating others how 
they are being treated. In the process some players don’t hesitate to hurt their opponents while forgoing their own 
wellbeing if necessary [25]. There have been other authors as well who have doubted the applicability of rationality 
stating that it may be difficult to accomplish in reality [26, 27]. The most pressing issue arises from the fact that lab 
experiments indicate that players time and again fail to conform to the basic assumption of rationality in game theory 
[28, 29]. In addition, rational analysis (and not just in the form of assumption) has often failed to be consistent with 
reality. Even through simple introspection, complete rationality seems faulty and implausible [16, 30]. Many authors 
have taken a departure from the conventional theory of rationality and re - defined rationality to propose approaches 
that explain the real behaviours of players [31, 32, 33].  

One such cautious way to study rationality is the concept of bounded rationality acknowledging that rationality also 
fails. Bounded rationality is an easier approach to incorporating rationality as it allows players to decide based on their 
satisfaction level instead of forcing one to find the optimal value. If players operate from a level of satisfaction, then 
there exists no need to display rationality to arrive at a Nash equilibrium. Conlisk (1996) [34] furthers the discussion 
on bounded rationality highlighting the popularity of bounded rationality in the presence of already established models 
of complete rationality. His work highlights that (i) there is enough evidence in the field of Psychology and economics 
on the importance of bounded rationality, (ii) the models developed on the premise of bounded rationality have been 
successful in demonstrating economic behaviour beyond just theory, (iii) traditional methodologies in economics 
favours bounded as well as unbounded rationality and (iv) respecting the fundamental concept of limited resource and 
hence expending the same in an efficient manner. Human cognition in this case can be considered to be such a resource. 
Given these principles, bounded rationality has found applications over the years across various disciplines [35, 36, 37, 
38]. 

Another approach to rationality is rationalizability. Both Bernheim [22] and Pearce [39] introduced rationalizability in 
their work highlighting the need of common knowledge for rationalizable outcomes. Rationalizability is noted as the 
consequence to two premises based on which strategic situations can be interpreted. First, players view opponents’ 
strategies as uncertain events; Second, all agents abide by individual rationality and this fact is common knowledge. The 
second premise requires a player’s assessment to be consistent with all the knowledge that the player has about the 
game. Thus, the player must not only be aware of the opponent’s choices but also be able to attach a positive value to 
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the predicted play of the opponent. Further, the player should also have some belief regarding the opponent’s 
assessment of the player’s action which would result in a best response from the opponent as well. Since this is common 
knowledge for all the players, this can be extended indefinitely. This implied that to display rational behaviour 
rationalizability was an important criterion but not Nash equilibrium. Further, if players are cautious and not only 
rational, it would result in stringer rationalizability. Thus, attempts to exploit the information structure – be it 
introducing bounds on the payoffs or predict a specific outcome must be attempted when analyzing a game.  

Given the stringent assumptions of the Nash solution concept, one has to search for more flexible solution approaches 
that account for imperfect behaviour [40]. Imperfect behaviour in simultaneous games can be explained through risk 
seeking behaviour of the players. It accounts for the costs associated with such a risk in the absence of any lucrative 
advantage [39].  Similar to such imperfections, Sengupta and Panandikar (2023) [10] have modelled cost of uncertainty 
into the payoff structure of simultaneous games, to show that players are willing to take the risk and deviate from strict 
rational behaviour if it increases the uncertainty for the opponent.  

Our study, focuses on the concept of bounded rationality and rationalizability in contrast to strict rationality and draws 
relevance from these concepts to explain the results of the model. In the absence of complete information, 
rationalizability will indicate that a player must be equally cautious as he is rational, since he is unaware of his 
opponent’s behaviour, which reduces the predictability. If we assume the player to operate from a space of bounded 
rationality, player is aware of the limited resources available to self and thus cannot afford a search for his optimal 
strategy indefinitely. Hence, such decision-makers have to find a tradeoff between the utility he will obtain from his 
strategy and the resource cost of actually locating the optimal strategy [41]. This is the premise for the proposed model 
of our study. 

2. Proposed Game under Incomplete Information   

Consider a dating game (as a corollary to the Battle of Sexes (BoS) game as introduced in section 1) under the complete 
information scenario. The main aim of the couple (players) is to be together at a chosen event, irrespective of their 
individual event preferences.  However, the objective may change the moment any one of the given players have 
incomplete information. In this scenario incomplete information implies that a given player is unaware of the 
willingness of the opponent to be together.  This will give rise to different set of payoffs – one if the partner is willing to 
be together more than individual’s event preference and another if the partner is unwilling to be together given the 
individual event preferences.  

 

Figure 1 BoS game structure in the presence of incomplete information 

Figure 1 depicts this incomplete information scenario for a dating game between player I and player II. Player I has 
incomplete information regarding player II’s type and interest in player I. Player II has complete information regarding 
player I’s interest in player II. Assume that the two events to be chosen from are a comedy show and a movie in the 
theatre. Player I’s preference is a comedy show while that of Player II is movie in the theatre. Incomplete information 
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regarding the type of the player II escalates the dilemma for player I as it gives rise to alternate games, each with the 
strategy space of {Comedy Show, Movie}. Game 1 in figure 1 refers to the scenario when player II is interested (type I) 
in player I similar to the base model of a BoS game. Game 2 refers to the scenario when player II is not interested (type 
II) in player I. In this illustration we have assumed only two alternate types of Player II resulting in two alternate games 
with different payoff structure.  

BoS game was used to introduce the concept of alternate games under incomplete information. In the remainder of the 
study, we continue to refer to 2 person games. In our proposed model we assume player II has complete information 
about player I and player I has incomplete information regarding the type of player II. ‘Type’ of the player is defined as 
the nature of the player allowing for its applicability across all types of games. Each type corresponds to a game with a 
different payoff structure. Hence, the number of alternate games will be equal to the number of types of player II. In our 
proposed model, we clearly state the role of information and entropy in the structure of the game.  

2.1. Game Structure 

We propose a game structure for two person bi-matrix games under incomplete information. We account for the 
inherent uncertainty owing to the presence of alternate games in the form of entropy of information.  

Players collect information regarding the opponent without communicating with them directly, with the hope of 
reducing the uncertainty present in the game. All information is collected prior to engaging in the game. No information 
will be collected once the players engage in the game. There will be cost associated with the accumulation of 
information. This cost of information will be dependent on the uncertainty present in the information and will be 
measured as entropy of information. The authors measure the uncertainty present in the information in terms of 
Shannon entropy [42]. Entropy is accounted for at two different levels, once before engaging in the game and the second 
time during the game. During the game we include the entropy of information as defined by Sengupta and Panandikar 
(2023) [10] in their model. Player I needs to account for the cost associated with entropy before engaging in the game 
and during the game, while player II is concerned with the impact of the cost of entropy incurred during the game only.  

A step wise explanation of the structure of the game along with assumptions has been given to understand the 
mathematical development of our proposed model.  

• The total number of alternate games will be equal to the total number of varied types of player II. The actual type of 
Player II is denoted by 𝜏 (𝜏 = 1,2, ⋯ 𝑘). 

• There is a probability associated with each of the type of Player II, i.e. (𝑃(𝜏 = 𝑡) = 𝑝𝑡 , 𝑡 = 1,2 ⋯ 𝑘). Eventually, player 
II will play any one of the 𝑘 probable games basis his nature which player I is unaware of.    

• Player I is unaware of the type of player II. However, player I has a belief system about the type of his opponent that 
is built on the basis of the information he collects. He then plays his game, based on this belief system. The belief 
system of the player I is denoted by 𝛽, and is given by a set of probabilities associated with the 𝑘 games of the 
opponent.  

• Impact of uncertainty on player I: Player I accounts for uncertainty at two levels, once before engaging in the game 
and secondly during the game.  
o Before engaging in the game: Player I is relying on his belief system regarding player II. Before engaging in the 

game, he has the freedom to collect information regarding the type of player II. The collected information helps 
to reaffirm his belief regarding his opponent. In the process, he either gets reassured or he changes his belief. 
Continuing the process, player I updates his belief system after every set of evidence collected, with the hope 
of being able to predict which of the 𝑘 games player II would finally engage in. Uncertainty in this phase is 
characterized by player I’s belief of player II’s type given by the set of probabilities  (𝑃(𝛽 = 𝑏) = 𝑝𝑏, ∀𝑏 =
1,2, ⋯ 𝑘). Player I engages in the game only after he has decided to stop collecting information regarding the 
type of player I. The final decision to engage at any time point is dependent on the updated belief system. The 
updated belief system relies on the latest available information. However, resources used to collect evidences 
incur cost. Therefore, cost of information is accumulated over all the rounds of collecting information, till player 
I decides to terminate collecting information and engage in the game.    

o During the game: During the game, uncertainty is associated with the strategies available to player II for a given 
game. This uncertainty impacts the payoff of player I only after player I has stopped collecting information 
regarding opponent’s type and decides to engage with player II in a given game (𝛽 = 𝑏) as identified by his 
belief system. Here, the information is characterized by the probability of the 𝑗𝑡ℎ strategy of the 𝑏𝑡ℎ game of 

player II i.e (𝑃(𝑌 = 𝑦𝑗)
𝛽=𝑏

= 𝑦𝑗𝑏).  
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• Impact of uncertainty on player II: Player II has complete knowledge regarding Player I, i.e., Player I’s type is known. 
and hence information is collected only regarding the strategy space of player I. Value of information is characterised 
by the 𝑖𝑡ℎ strategy of player I’s game (𝑃(𝑋 = 𝑥𝑖) = 𝑥𝑖).  

2.2. Engage in the Game 

Since cost of collecting information keeps accumulating, while player I keeps updating his belief system, a check on the 
process of collecting information becomes extremely important. Hence our model incorporates the process to identify 
when player I should stop collecting information and engage in the game.  

• To avoid any loss, a player will collect information as long as his resources are sufficient and he is gaining 
monetary benefit from the whole transaction.  

• If resources are abundant, a player would terminate collecting information if he reaches a saturation of his 
belief system with respect to the type of the opponent.  

A rational player, would stop accumulating information and engage in the game as soon as the player realizes that his 
(her) resources are depleting to a level of monetary loss.  Accumulation of excess information can earn losses for player 
I if the cost is not kept under control. However, this is the trade-off that a player, playing within his boundaries of 
rationality, is ready to accept in his payoff hoping to play the game with a more informed decision. So, the decision to 
stop accumulating information is now entirely dependent on the saturation of his belief system.  

Assumptions regarding the belief system of Player I:  

• Belief system of player I is updated every time evidence is collected. Let 𝑙 = (1,2,3, ⋯ 𝑛) be the time point at 
which evidence (information) is collected. Then, player I’s belief about player II’s type is defined as a stochastic 
process, denoted by {𝛽𝑙}. 

• Updating the belief system depends only on the current set of collected evidence.  
• Probability of updating the belief at any given stage is independent of when the evidence is collected. 

Assumption 1 implies that collecting information is a discrete time process. Now, consider 𝛽𝑙 as defined above, then the 
state space denoted by 𝑆 is a finite state space defined by the type of the player i.e. 𝑆 = {1,2, ⋯ 𝑙}. The proposed game 
structure combined with assumption 2, emphasizes that the belief system at 𝑛𝑡ℎ stage is updated to reaffirm the belief 
at 𝑛 − 1𝑡ℎ stage. Hence change in player I’s belief regarding Player II’s type, from 𝛽𝑛−1 to 𝛽𝑛, depends only on his belief 
at 𝑛 − 1𝑡ℎ  stage, thus 𝛽𝑙  also satisfies the markov property. Thus {𝛽𝑙} can be interpreted as a discrete markov chain 
(Isaacson & Madsen, 1976, pp. 12-14).  

Assumption 2 and 3 combined assure that probability of updating belief from type 𝑖 to type 𝑗 is independent of when 
we update the belief, i.e.,  

𝑃[𝛽𝑛 = 𝑗 ∖ 𝛽𝑛−1 = 𝑖] = 𝑃[𝛽𝑛+𝑙 = 𝑗 ∖ 𝛽𝑛+𝑙−1 = 𝑖] 

Thus, to map the saturation of the player I’s belief regarding player II, a transition matrix 𝑃1 is defined, such that 𝑝𝑖𝑗
1 is 

the probability that player I’s belief regarding the type of player II will change from type 𝑖 to type 𝑗 on collecting the first 
set of evidence. Hence, 𝑃𝑛 gives the probability that player I’s belief regarding the type of player II will change from type 
𝑖 to type 𝑗 after collecting 𝑛𝑡ℎ set of evidence.  

Definition 1 (Saturation of Belief System): Mathematically, Saturation of Belief System is defined as the state when the 
conditional probability obtained at any future stage is equal to the conditional probabilities obtained at 𝑛𝑡ℎ stage for all 
states of the belief system. 

In other words, the transition matrix 𝑃𝑛+𝑚 should be equal to 𝑃𝑛 ∀ 𝑚 = 1,2, ⋯. Hence, we can say that the belief system 
is saturated if 𝑃𝑛 ≅ 𝑃𝑛+1. Thus, at 𝑛 + 1 stage player I terminates collecting information and decides to engage in the 
game. 

Therefore, we can say that player II’s type is characterized by the set of probabilities given by { 𝛽𝑙} at any given stage 
after player I has sourced the required information. We can say that the uncertainty at a given time point 𝑙 will be a 
function of the updated probabilities of  {𝛽𝑙} . We denote the probabilities at a given time point 𝑙  as 𝑃(𝛽𝑙 = 𝑏) =
𝑝𝑏

𝑙 , ∀ 𝑏 = 1,2 ⋯ 𝑘 𝑡𝑦𝑝𝑒𝑠. The Shannon entropy used to capture the above uncertainty in our model is given by equation 
(1). 
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𝐻𝑏
𝑙 = − ∑ 𝑝𝑏

𝑙 log2 𝑝𝑏
𝑙𝑘

𝑏=1  …………..    (1) 

The three assumptions above identify the belief system as a Discrete Markov Process. If player I’s belief system saturates 
after 𝑛 evidences of information has been collected, i.e. 𝑃𝑛−1 ≅ 𝑃𝑛,  then there will be a total of 𝑛 entropy measures 
given by the equation (1) accounting for the uncertainty in the information collected at every stage. We model the cost 
of information as a function of the Shannon entropy [10]. Equation (2) gives the cost of information related to the 
uncertainty associated with the type of player II. This cost is generated after every round of evidence is collected. Total 
accumulated cost when player I saturates his belief system after 𝑛 evidences is calculated as an aggregate of all the 
individual costs defined by equation (3).  

𝐶𝑏
𝑙 = 𝜆 + 𝜇 ∗ 𝐻𝑏

𝑙   ∀ 𝑙 = 1,2, ⋯ 𝑛  ………….. (2) 

𝐶𝑏 = ∑ 𝐶𝑏
𝑙𝑛

𝑙=1  ………….. (3) 

Therefore, when player I terminates collecting information, his belief system is updated to the latest probability 
distribution given by {𝛽𝑛} and he has already accumulated a cost as given by equation (3).   

When player I engages in the game, additional cost attached to the uncertainty about the strategies of player II’s 𝑏𝑡ℎ 
game will also be a function of the Shannon entropy. During the game, player II must also account for the cost associated 
with the strategy space of player I. Assume that player I and player II have a total of m strategies to engage with. Then 
the entropy of the strategy space associated with player I and II is given by the equations (4) and (5) respectively.  

𝐻𝑥 = −𝑥𝑖 ∑ log2 𝑥𝑖
𝑚
𝑖=1 ………….. (4) 

𝐻𝑦 = −𝑦𝑗𝑏 ∑ log2 𝑦𝑗𝑏
𝑚
𝑗=1  ………….. (5) 

Player I would have already accumulated 𝐶𝑏 as the total cost before engaging in the game. The additional cost during 
the game is captured using equation (6) for player I. Equation (7) denotes the total cost for player II. 

𝐶𝑥 = 𝐶𝑏 + 𝜇 ∗ 𝐻𝑥 ………….. (6) 

𝐶𝑦 = 𝜆 + 𝜇 ∗ 𝐻𝑦 ………….. (7) 

We model the incomplete information game as a non-linear bi-matrix game that incorporates the cost of entropy in the 
model. System of equations given by (8) and (10) are the bi-matrix game models developed for player I and player II 
respectively. Obtaining the equilibrium solution to these non-linear problems simultaneously will give the optimal 
solution for both the players.  

Model: 

For player 1, 

Maximixe 𝑥𝑇𝐴𝑦𝑏 − 𝐶𝑥………….. (8)        

Subject to   

𝑒′𝑥 − 1 = 0 ………….. (9a) 
𝑥 ≥ 0 …………..      (9b) 

 

For player 2, 

Maximixe 𝑥𝑇𝐵𝑦𝑏 − 𝐶𝑦 ………….. (10) 

 Subject to  

𝑒′𝑦 − 1 = 0………….. (11a) 
𝑦 ≥ 0  ………….. (11b) 
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Once the players decide to engage in the game, player II will play any one of the probable 𝑘 games basis his actual type. 
According to player I, player II’s probability of playing the 𝑏𝑡ℎ game is given by 𝑝𝑏

𝑛. The expected payoff to player I, given 
that player II is playing his 𝑏𝑡ℎ type is given by (8). There exists 𝑘 such possibilities and the resultant payoff will depend 
on the probability of the 𝑏𝑡ℎ game as well.  

There is a possibility of any one of the 𝑘 types being played. Therefore, for a given 𝑏𝑡ℎ type, the resultant payoff obtained 
to player I can be given as 𝑝𝑏

𝑛 ∗ (𝑥𝑇𝐴𝑦𝑏) − 𝐶𝑥 . For every game, the equilibrium solution will be defined by a pair of 
strategies 𝑥0 and 𝑦0, if (𝑥0, 𝑦0) simultaneously optimizes (8) and (10). Thus, the solution to equations (12) and (13) will 
result in a local optimal solution for the specific 𝑏𝑡ℎ game.  

𝑥𝑇0𝐴𝑦𝑏
0 − 𝐶𝑥 = max

𝑥
{𝑥𝑇𝐴𝑦𝑏 − 𝐶𝑥 |    𝑒′𝑥 − 1 = 0, 𝑥 ≥ 0} ………….. (12) 

𝑥𝑇0𝐵𝑦𝑏
0 − 𝐶𝑦 = max

𝑦
{𝑥𝑇𝐵𝑦𝑏 − 𝐶𝑦 |    𝑒′𝑦 − 1 = 0, 𝑥 ≥ 0} ………….. (13) 

There will be a total of 𝑘 optimal solutions. To capture player I’s total earnings, expected payoff across all the 𝑘 games 
need to be calculated.  

The proposed game structure under incomplete information games has been illustrated using a single manufacturer – 
supplier relationship in the following section. The illustration helps us understand how much a player would be willing 
to trade off the profit against the cost of information. 

3. Application of the Proposed Game under Incomplete Information   

In section 2, we have identified player I to have incomplete information regarding player II. However, player I has a 
belief system regarding player II and this belief system has been modelled as a Markov Chain to obtain the probability 
distribution of the opponent. We first explain the process to identify the probabilities related to the belief system of 
player I and then apply the same on a single manufacturer – single supplier scenario.  

𝑃𝑛 was defined as the probability that player I’s belief regarding the type of player II will change from type 𝑖 to type 𝑗 
after collecting 𝑛𝑡ℎ  set of evidence. This probability is given in terms of a probability transition matrix. Assume a 
scenario given by the transition probability 𝑃1 represented in table 1. It accounts for the belief that player I has after 
collecting the first set of evidence regarding player II. The values in the table should be read as the probability that 
player II will change from type i to type j as per player I’s belief, basis the evidence collected.  

Table 1 Transition Probability matrix 𝑷𝟏 

𝑃1 = 

 
jth type 

  
Type 1 Type 2 

ith type  Type 1 0.65 0.35 

Type 2 0.85 0.15 

 

After collecting the first set of evidence, the probability structure will be as given by 𝑃1. After collecting the second set 
of evidence, updated belief would be given by 𝑃2 = 𝑃1 × 𝑃1. Thus, the belief system is updated as a markov process at 
every stage. The belief after the 𝑛𝑡ℎ  set of evidence can be given as 𝑃𝑛 = 𝑃1 multiplied by itself 𝑛 times. 

This accumulation is stopped once the saturation of belief system is attained that is 𝑃𝑛 ≅ 𝑃𝑛+1. For the given values of 
𝑃1 in table 1, saturation is obtained at 𝑃8 correct to 4 decimal places as shown in table 2. This implies that 8 sets of 
evidence regarding the type of the player was obtained to reach saturation. And at every step the belief system was 
updated. The final probability structure in this case is given by 𝑃8. The initial belief structure given by the transition 
probability matrix 𝑃1  weighed heavily on type 1 hence, the saturation structure also resulted in higher probability 
towards type I. Different starting scenarios will result in different saturated belief system. We have chosen 𝑃1as given 
by table 1 as the scenario to elaborate on for our study.  
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Table 2 Step wise update of player I’s belief system 

 
j 

Transition step Pn 
 

Type 1 Type 2 

P2 i Type 1 0.72 0.28 

Type 2 0.68 0.32 

P3 i Type 1 0.706 0.294 

Type 2 0.714 0.286 

P4 i Type 1 0.7088 0.2912 

Type 2 0.7072 0.2928 

P5 i Type 1 0.70824 0.29176 

Type 2 0.70856 0.29144 

P6 i Type 1 0.70835 0.29165 

Type 2 0.70829 0.29171 

P7 i Type 1 0.70833 0.29167 

Type 2 0.70834 0.29166 

P8 i Type 1 0.70833 0.29167 

Type 2 0.70833 0.29167 

P9 i Type 1 0.70833 0.29167 

Type 2 0.70833 0.29167 

At this stage player I updates his belief system using the saturated matrix 𝑃8  and then engages in that game. The 
equilibrium solutions are obtained for both the games, after incorporating the uncertainty in the system in the form of 
costs as discussed in section 2.2 and the resultant payoff of player I is obtained by considering the expected probability 
over the types using the distribution given by 𝛽8. Following which, the resultant payoff in both scenarios is conducted.  

3.1. Single Manufacturer, single supplier 

Uncertainties in demand leads to faulty demand forecasts which leads to inefficient handling of demand overall [12]. 
Inaccuracies and disruptions in the supply chain are a major concern across industries such as automotives, machineries 
and even agriculture and healthcare [43, 44, 45, 46, 47]. Hence, we extend our study to understand the application of 
the same in an example of transactions between a single manufacturer and a single supplier with respect to demand 
forecast. 

Consider a model with one supplier and one manufacturer. A manufacturer sells a single product that has uncertain 
demand. The manufacturer is assumed to contract with a single supplier for a specialized component of the product. 
The supplier has to build capacity for this specialized component. This example draws from the design proposed by 
[48]. The supplier is expected to install capacity before either of the parties observe demand. The manufacturer is 
observed to have better demand forecast than the supplier. Thus, the supplier must rely on the communication received 
by the manufacturer regarding the forecasted demand. However, supplier is unaware of the type of the manufacturer 
giving rise to alternate games. The following section explains the sequence of events in the single manufacturer – single 
supplier game model.  

First, the manufacturer observes the demand distribution, which is recorded as forecasted demand (Q). Then 
manufacturer offers contract to supplier with an initial order quantity (𝑞𝑖 ) basis Q. Once the supplier accepts the 
contract, he sets a capacity K in accordance to the manufacturer’s order 𝑞𝑖 . Then the final number of units (𝑞𝑓) are 

ordered once the final production takes place. In an ideal world a manufacturer would truthfully share her demand 
forecast so that the supplier can build an appropriate space. However, the larger the capacity, manufacturer will benefit 
from it in case of high actual demands but the supplier has to bear the cost of capacity [2, 48]. Hence, the manufacturer 
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finds motivation in inflating her forecast to the supplier. However, suppliers are aware of the possible distortion in the 
communication and thus view the forecast with some skepticism (which may be reduced if the forecasts are backed by 
contract terms assuring credibility of the manufacturer).  

The type of manufacturer is characterised by the communicated demand forecast. While a supplier is aware of the 
possible forecasts, he is still not aware of the real type of the manufacturer. Thus, the supplier has 2 strategies available 
that is to build a high-capacity installation (H) or a low capacity installation (L). For a high capacity, the cost of 
installation will be extra if the final number of units ordered is considerably lesser than predicted. This situation 
worsens if the forecast is an inflated one. Hence, we assume that the capacity size for H should not be more than the 
inflated forecast to help the supplier meet his basic opportunity cost. Likewise, an extremely low capacity will always 
result in some units being undelivered and affect the profit as well as good will. Hence, we assume that the capacity size 
for L should not be less than the final order of the actual forecast.  

Table 3 mentions the assumed values and notations used for this application to arrive at the equilibrium solution of the 
game. 

Description Notation / Values 

Forecasted Demand Q 

Initial Order 𝑞𝑖  

Final Order 𝑞𝑓  

Price per unit of raw component that is supplied to the manufacturer  0.75 

Cost of installation capacity per unit  0.1 

Cost of production per unit to supplier for preparing the components that are to be 
delivered once the final order is received 

0.1 

Revenue to manufacturer per unit  1 

Supplier’s installation Capacity in terms of number of units to be stored K units 

Total number of components produced that can be delivered to the manufacturer.  P units 

Here, P will be either less than or equal to 𝑞𝑓. Since there is a single supplier providing the units to the manufacturer, if 

P number of components are delivered to the manufacturer, the total number of finished products delivered by the 
manufacturer will be P units itself. The payoff functions for the supplier and the manufacturer are then defined by 
equations (14) and (15) respectively:  

Payoff to the supplier =  0.75 ∗ 𝑃 − 0.1 ∗ 𝐾 − 0.1 ∗ 𝑃 ………….. (14) 

Payoff to the manufacturer =  1 ∗ 𝑃 − 0.75 ∗ 𝑃 ………….. (15) 

Table 4 and 5 are the payoff matrices for the alternate games arising from the two types of the manufacturer. If the 
manufacturer conveys the actual forecast to the supplier then we can say 𝑄 =  𝑞𝑖 and we denote this type with “ A ” 
referring to actual forecasted demand; but if the manufacturer inflates the forecast to the supplier then we assume that 
𝑄 <  𝑞𝑖  and this type is denoted with “ I ” referring to the inflated communication of the forecasted demand. Assuming 
𝑄 =  10, type “ A ” will imply 𝑞𝑖 = 10 and for type “ I ” we assume a larger value, i.e. 𝑞𝑖 = 15. 

Table 4 Payoff structure for Game 1 – Type “ A ” (𝑸 =  𝟏𝟎, 𝒒𝒊 = 𝟏𝟎) 

 
Manufacturer 

𝑞𝑓 = 𝑞𝑖 

(10) 

𝑞𝑓 < 𝑞𝑖 

(5) 

Supplier H (15) (5, 2.5) (1.75, 1.25) 

L (5) (2.75, 1.25) (2.75, 1.25) 
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Table 5 Payoff structure for Game 2 – Type “ I ” (𝑸 =  𝟏𝟎, 𝒒𝒊 = 𝟏𝟓) 

 
Manufacturer 

𝑞𝑓 = 𝑞𝑖 

(15) 

𝑞𝑓 < 𝑞𝑖 

(10) 

Supplier H (15) (8.25, 3.75) (5, 2.5) 

L (5) (2.75, 1.25) (2.75, 1.25) 

Whereas 𝑞𝑖 = 10 and 𝑞𝑖 = 15 represent the initial order quantity for both the type of games, the transaction takes place 
on the final order quantity (𝑞𝑓). 𝑞𝑓 maybe same as the initial order quantity or lesser as per actual market demand. 

Higher market demand is not captured separately since inflated forecast takes care of the same. Thus, the 
manufacturer’s strategies will be defined in terms of the final order quantity as either 𝑞𝑓 =  𝑞𝑖 or 𝑞𝑓 <  𝑞𝑖. The value of 

𝑞𝑓 will vary for both the games as 𝑞𝑖 varies. The assumed values for 𝑞𝑓 have been mentioned in brackets for both the 

games as given in the payoff matrices depicted by table 4 and 5.  

The strategies available to the supplier is to either build a high or low installation capacity and that is based on the initial 
communication from the manufacturer. Adhering to the capacity size assumptions mentioned earlier in this section, 
extreme values for H and L have been considered to depict that H cannot be more than 15 and L cannot be lesser than 
5. We use the above game parameters in the payoff equations (14) and (15). This generates the payoff values given in 
the payoff matrix tables 4 and 5. 

The supplier is going to collect information regarding the manufacturer before installing the capacity. The theoretical 
underpinning of the same is as discussed in chapter 4 and is a result of the belief system the supplier has. Belief 
saturation using transition probability matrix as explained under section 4 is implemented in this example. Recall that 
the supplier is the one with incomplete information and he starts with a set of belief or probability structure regarding 
manufacturer’s types and engages in the game once this belief saturates. We use the probability matrix 𝑃1 and hence 
the saturated probability matrix 𝑃8 for further analysis of the game.   

We have obtained, 𝑃8 =  [
0.7083 0.2917
0.7083 0.2917

] (table 2) and can be interpreted as there is 70.83% chance the manufacturer 

is type A while only a 29.17% chance manufacturer is type I. Thus, 𝛽8 =  [0.7083 0.2917]. The cost of accumulation of 
evidence is calculated to be 8.52. Table 6 records the output for both the types. For the cost of entropy, we assume the 
fixed cost associated with entropy is marked at 1 unit and that associated with the variable cost is marked at 0.75 units 
per entropy. 

Table 6 Comparative output of TYPE A versus TYPE I 

𝒊 or 𝒋 𝒙𝒊 𝒚𝒋 

TYPE A 

1 0.5641012 0.5365912 

2 0.4358988 0.4634088 

Entropy (H) 0.9881113 0.9961332 

Expected payoff 6.227891 4.551307 

Cost associated with entropy 9.261862475 1.7470999 

TYPE I 

1 0.8085493 0.5866848 

2 0.1914507 0.4133152 

Entropy (H) 0.7044964 0.9782085 

Expected payoff 8.601932 5.892079 

Cost associated with entropy 9.04914513 1.733656375 
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4. Results and Discussion 

The supplier is mainly concerned with knowing whether the forecasted demand is actual or the manufacturer has 
inflated it. Information plays an important role at this step. Once the supplier is convinced with the information he has 
acquired, he installs the capacity which is either equal to the initial order quantity or lesser which he decides as per 
contractual agreements (like forced compliance or voluntary compliance) and supplier capacity. However, the final 
order demand is influenced by the actual market requirement and falls into place after the supplier has installed the 
capacity. Hence, in this example we assume that collection of information is possible and plays a significant role only at 
the first step before setting up the facility.  

As per the assumed data, we can see that the supplier has to incur loss in both scenarios owing to the high accumulated 
cost over information. If the manufacturer shares the actual forecast, the supplier receives a loss of 3.03 units but if the 
manufacturer inflates, the supplier receives a loss of 0.45 monetary units only. Collecting information increases the cost 
for him, but when the players engage they do so in a way such that the opponent remains confused. That is a typical 
scenario of tit for tat where players would treat others the way they believe they are getting treated as mentioned in 
the literature. Hence, the supplier has been able to reduce the loss in the case when he believes the manufacturer is 
inflating the demand.  

If we focus on the belief system, we can say that based on the belief system, supplier believes that manufacturer will 
give him the actual forecast (approximately 71% probability). Given this belief we observe that the mixed strategy under 
Game 1 that supplier adopts shows how the supplier plans to increase the uncertainty for his opponent (56% probability 
of installing a High capacity production or a 44 % chance of a Low capacity production). The total cost associated with 
the Actual game is higher even though the expected payoff is lesser for the supplier with respect to this game. This only 
emphasizes the tit for tat behaviour where the supplier increases the uncertainty for his opponent (0.99), in the game 
with Actual Forecast type, to a level higher than the other game (0.97). Thus, there is a visible effort in trying to keep 
your opponent guessing and that is also driven by the fact that the supplier himself had incomplete information about 
the opponent. Thus the players are playing within their boundaries of rationality, and are ready to forgo benefits in the 
hope that the payoff of their opponent gets compromised.   

When players engage in presence of distortion, ignoring its impact on the game worsens the performance of a player as 
it reduces the predictability. Hence, if the players were to acknowledge the uncertainty in the system caused by the 
probability of alternate games, it would help reduce collateral damages. The application discussed above was used to 
understand how the developed model can be used in an industrial application involving various agents of a supply chain. 
However, this application can be extended to other players and other domains to study the impact of alternate games. 
Our focus was on depicting the implementation of information in the structure of games and how it may impact the 
equilibrium and rational choices that a player would take otherwise in the absence of such measures. Using the entropy 
of information model to optimize the value of a game combined with the Markovian process of updating one’s belief in 
the presence of incomplete information helped to capture the notion of human welfare that players are responsible for 
their individual actions within their domain of control. 

5. Conclusion 

A key finding of this study is that players strategically sacrifice a part of their payoff to minimize the uncertainty and 
misinformation about their opponent. This is contrary to the traditional assumptions of rationality but it supports the 
developments in the field of rationality in the later years as discussed in section 1.2. This study discussed a two person 
zero sum game in the presence of incomplete information and the application used helps to understand the possibility 
of alternate games arising from different types of the opponent. Business across various industries and the broader 
market often operate in environments where they are faced with making strategic moves with limited knowledge of 
their competitors. Hence, the proposed model helps to visualize the behaviour and actions of players in such a scenario 
and provides a direction of how much risk in the form of cost of information should a player be ready to take. This 
knowledge can aid businesses in refining strategies and gain competitive edge in uncertain market conditions. While in 
our proposed model, we have assumed that only one player has incomplete information, complexities will only increase 
if number of alternate games increase or both players have incomplete information about each other. While both the 
scenarios are outside the scope of this study, these along with sequential games form potential avenues for future 
research. 
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