

eISSN: 2581-9615 CODEN (USA): WJARAI Cross Ref DOI: 10.30574/wjarr Journal homepage: https://wjarr.com/

WJARR	USSN 3591-4915 CODEN (UBA): WUARAI			
W	JARR			
World Journal of				
Advanced				
Research and				
Reviews				
	World Journal Series INDIA			
Check for undates				

(RESEARCH ARTICLE)

Design, development and validation of an RP-HPLC method for concurrent estimation of tranexamic acid and ethamsylate in bulk and pharmaceutical formulations

Sunitha N *, Hyphen Arnab Dhara and Thangabalan B

SIMS College of Pharmacy, Mangaldas nagar Guntur.

World Journal of Advanced Research and Reviews, 2025, 25(01), 355-375

Publication history: Received on 25 November 2024; revised on 04 January 2025; accepted on 06 January 2025

Article DOI: https://doi.org/10.30574/wjarr.2025.25.1.0027

Abstract

A reversed-phase high-performance liquid chromatography method is developed and validated for the determination of tranexamic acid Ethamsylate in bulk drug and marketed dosage forms. The chromatographic determination was performed on Shimadzu Lab solutions with a variable wavelength detector. The separation was conducted using thermoscientific Hypersil BDS (150 mm x 5 mm) with a mobile phase consisting of phosphate buffer: acetonitrile (80:20, %v/v) ratio. The mobile phase was delivered at a flow rate of 1.0 mL/min. The eluents were monitored at wavelength 280 nm and found sharp and symmetrical peaks with retention times of 3.27 and 4.27 min. The method was validated for linearity, accuracy, precision, and system suitability. The method was found to be linear over the concentration range 10-30µg/mL, 10-30µg/ml, with regression 0.999. The percentage recoveries for Tranexamic acid and Ethamsylate were found to be in the range of 100.41% and100.31 %, respectively. The developed HPLC technique is precise, specific, accurate, and stable. Hence, this study proves that the method is reproducible, selective, and suitable to be applied for the analysis of tranexamic acid Ethamsylate in commercial pharmaceutical dosage form for quality control applications.

Keywords: Tranexamic acid; Ethamsylate RP-HPLC; Dosage form; Quality control

1. Introduction

1.1. Analytical techniques: ^[1;2]

Analytical methodology is a technique or procedure for determining either a physical or chemical change in a chemical substance; chemical element; or combination; or both. Analytical techniques used for analysis range from basic weighing in gravimetric analysis through titrimetric approaches to quite sophisticated techniques requiring highly specialized apparatus.

^{*} Corresponding author: Sunitha N

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

1.2. Drug profile

1.2.1. Tranexamic acid

Figure 1 Chemical Structure of Tranexamic acid

IUPACNAME	4- (Amino ethyl) cyclo hexane carboxylic acid
Molecular Formula	C8H15NO2
Molecular Weight	157.21g/mol
Solubility	Freely Soluble in ethanol; water
Category	Antifibrinolytic
Storage conditions	Store at room temperature

1.2.2. ETHAMSYLATE

IUPACNAME	2;5-dihydroxybenzenesulfonic acid
Molecular Formula	C9H9N05S
Molecular Weight	243.24gms/mol
Solubility	Freely Soluble in ethanol; water; poorly soluble methanol; insoluble in glacial acetic acid.
Category	Haemostatic
Description	White or slightly yellowish crystalline powder

2. Method development

Table 1 Solubility studies

Solvent	Water	Ethanol	Methanol
Tranexamicacid	Freely Soluble	Soluble	Poorly Soluble
Ethamsylate	soluble	Soluble	Soluble

2.1. Determination of wavelength by UV-Visible spectrophotometric method: Preparation of Standard stock solution ($1000\mu g/ml$)

Weighaccurately10mgofTranexamic

acidand10mgofEthamsylateaccuratelyandtransferintoatwodifferent10mLcleandryvolumetricflaskwith7mL of diluent to dissolve and volume madeup to the mark with diluent (1000 μ g/mL).

2.2. Preparation of sample solution

Weigh accurately 820 mg of tablet powder and transfer into 25ml volumetric flask. Then; 15 mLof diluent was added and mixed with a cyclone mixer. The volume was then made up to the specified level using the diluent and filtered through a 0.45Millipore Nylon filter. From the above solution pipette; out the 1mL and transferred into 10mL volumetric flask made up the volume with 10 ml diluent. Pipette 0.5mL of solution into a volumetric flask that holds10mL; and then add diluent to fill the flask to the required level.

2.3. Selection of wave length(max)

The wavelengths of Tranexamic acid and Ethamsylate were determined separately by scanning the spectrum from 200 to 400 nm using the UV-Visible spectrophotometric technique. Scanning was done with 20 μ g/mL of Tranexamic acid and 10 μ g/mL of Ethamsylate solutions. By overlaying the individual spectra; the detection wavelength was found to be 280 nm. The HPLC system's PDAdetectorwassetat280nmforthe analysis

Figure 3 Combined spectrum of Tranexamic acid and Ethamsylate

Figure 4 Blank chromatogram

Figure 5 Tranexamic acid chromatogram

Figure 6 Ethamsylate chromatogram

2.4. Method development

Figure 7 Standard chromatogram

Figure 8 Sample chromatogram

3. Results and discussion

Table 2 Solubility studies

Solvent	Water	Ethanol	Methanol
Tranexamic acid	Freely Soluble	Freely Soluble	Soluble
Ethamsylate	Insoluble	Soluble	Low Soluble

3.1.1. Determination of wavelength by UV-Spectrum:

Figure 9 Combined Spectrum of Tranexamic acid and Ethamsylate

Figure 10 Blank chromatogram

Figure 11 Chromatogram of standard

Figure 12 Chromatogram of sample

Figure 13 Chromatogram of Tranexamic acid

Figure 14 Chromatogram of Ethamsylate

Table 3 Parameters of Optimized Chromatogram

Parameters	Tranexan	nic acid	Ethamsylate	
	Standard sample		Standard	Sample
Retention time	3.278	3.285	4.379	4.384
Tailing Factor	1.797	0.882	1.697	1.127
Theoretical plates	5552	4918	4152	4265
Resolution	-	-	5.176	5.054

Figure 15 Blank chromatogram

Figure 16 System Suitability Chromatogram1

Figure 17 System Suitability Chromatogram2

Figure 18 System Suitability Chromatogram 5

Figure 19 System Suitability Chromatogram 6

InjectionNo	Tranexa	mic acid	Ethamsylate	
	Rt(min)	Peak area	Rt(min)	Peak area
1	3.262	121456	4.246	533289
2	3.272	121125	4.357	533456
3	3.262	121380	4.246	534589
4	3.272	122505	4.357	535625
5	3.262	121568	4.246	533587
6	3.272	121459	4.357	533812
Mean		121582	Mean	534060
Standard Deviation		475.9795864	Standard Deviation	891.465685
%RSD		0.39	%RSD	0.17

Table 4 System suitability parameter for Tranexamic acid and Ethamsylate

3.2. Specificity

Specificity is the ability to assess unequivocally the analyte in the presence of components thatmay be expected to be present. Using blank; standard and sample solutions to a HPLC systemshowed that the method is specific.

Figure 20 Standard chromatogram

Figure 21 Sample chromatogram

3.3. Linearity

The linearity of an analysis shall be the possibility to obtain test results that are directly related to a sample's analyte concentration.

Figure 22 Linearitylevel-01

Figure 23 Linearitylevel-04

Figure 24 Tranexamic acid Linearity

Figure 25 Ethamsylate Linearity

Table 5 Linearity data for Tranexamic acid and Ethamsyl	ate
---	-----

Tranexamic acid		Ethamsylate		
Concentration(µg/ml)	Peak area	Concentration(µg/ml)	Peak area	
10	61078	10	266689	
15	91242	15	401256	
20	120136	20	533261	
25	151254	25	666587	
30	181205	30	804856	
r ²	1	r ²	1	

3.4. Accuracy

The accuracy of an analysis shows that the value which has been accepted either as aconventional true value; or established reference value and found is very close to agreement.

Figure 26 Accuracy chromatogramofsample-50%-1

Figure 27 Accuracy chromatogram of sample-50%-2

Figure 28 Accuracy chromatogram of sample-50-3

Figure 29 Accuracy chromatogram of sample-100%-1

Figure 30 Accuracy chromatogram of sample-150%-1

Figure 31 Accuracy chromatogram of sample-150%-3

able 6 Accuracy data for Tranexamic acid
--

% Level	Standardpeak area	Sample peak area	%recovery	Average % recovery	Mean % recovery
50	534060	269721	99.61		
	534060	269895	100.38		
	534060	269756	100.41	100.77	
100	534060	533989	100.16		
	534060	534856	100.05		
	534060	535010	99.92	99.92	
150	534060	787854	100.78		100.41
	534060	786897	100.77		
	534060	786125	100.72	100.55	

3.5. Precision

The method was determined by system precision and method precision using standard solution of Tranexamic acid and Ethamsylate given in 6 replicates to the chromatographic system.

3.5.1. System precision

Figure 32 System precision Chromatogram-01

Figure 33 System precision Chromatogram-02

Figure 34 System precision Chromatogram-03

Figure 35 System precision Chromatogram-04

Figure 36 System precision Chromatogram-05

Figure 37 System precision Chromatogram-06

Figure 38 Method precision chromatogram-4

Figure 39 Method precision chromatogram-5

Figure 40 Method precision chromatogram-6

Figure 41 LOD Chromatogram

Figure 42 LOQ Chromatogram

Table 7 Limit of detection and	limit of quantification of	Tranexamic acid ar	ıdEthamsylate
	1		5

Parameter	Tranexamicacid(µg/ml)	Ethamsylate(µg/ml)
LOD	1.0 μg/mL	3.0 μg/mL
LOQ	1.0 μg/mL	3.0 μg/mL

3.6. Robustness

The ICH defines the "ability of an analytical process to remain undisturbed by small but deliberate deviations in method parameters" as a measure of its robustness capacity to remain unaffected by minor changes in parameters such as temperature; the pH of the mobile phase; the percentage of organic solvent strength; the concentration of the buffer; etc.

Table 8 Robustness data for Tranexamic acid and Ethamsylate

PARAMETER	Tranexamic acid		Ethamsylate			
	R _t (min)	Peak area	%RSD	R _t (min)	Peak area	%RSD
Change in Flowrate0.8Ml /min	3.299	1303714	0.01	4.457	523585	0.01
	3.299	1303615		4.457	523612	
Change in Flowrate0.6ml/min	3.272	1303818	0.02	4.357	523814	0.01

	3.272	1303714		4.357	523915	
Changein	3.253	1320951	0.02	3.509	534112	0.02
Mobilephaseratio70:30v/v	3.253	1321534		3.509	534256	
Change in Mobilephaseratio60:40v/v	3.290	1321043	0.01	4.429	534225	0.01
	3.290	1321654		4.429	534189	

3.7. Change in Mobile phase flow rate

Figure 43 Chromatogram of change in flow rate 0.6ml/min (1)

Figure 44 Chromatogram of Change in flow rate 0.6ml/min (2)

3.8. Change in mobile phase

Table 9 %Assay of TRAPIC-E®tablet formulation

DRUG	LABEL CLAIM (mg)	%ASSAY	
Tranexamic acid	250	100.41%	
Ethamsylate	250	100.31%	

Figure 45 Change in increased Mobile phase ratios Buffer : organic phase (70:30v/v)2

Figure 46 Change in decreased mobile phase ratios Buffer : organic phase in the ratiosof (60:40v/v)-1

Table 10 Solubility studies

Solvent	Water	Ethanol	Methanol
Tranexamic acid	Freely Soluble	Freely soluble	Soluble
Ethamsylate	Insoluble	Freely soluble	Low Soluble

 Table 11 Summary of the validation parameters

S.	Parameters	Acceptance criteria	Name of the	Results			
No	D		compound	Theoretical plate count	Resolution	Tailing factor	
1.	System	Plate count should be more than	Tranexamic acid	>2000	-	<2.0	
	suitability 2000 and resolution must be more than 2		Ethamsylate	>2000	>2.0	<2.0	
2.	Linearity	R2≤0.999	Tranexamic acid	R2=0.9999			
			Ethamsylate	R2=0.9995			
		%Recovery should be between	Tranexamic acid	100.44			
3.	Accuracy 98%to102%		Ethamsylate	100.62			
4.	System	%RSD Not	Tranexamic acid	0.50			
	precision	More Than 2%	Ethamsylate	0.20			

5.	Method	%RSD not	Tranexamic acid	0.30
	precision	More than 2%	Ethamsylate	0.17
6.	LOD		Tranexamic acid	1.0µg/mL
		-	Ethamsylate	3.0µg/mL
7.	LOQ		Tranexamic acid	1.0µg/mL
		-	Ethamsylate	3.0µg/mL
8.	Robustness Method should not be affected		Tranexamic acid	
		during change in the method parameters	Ethamsylate	Method was not affected during changes done in the flow rate and wavelength
9.	Assay		Tranexamic acid	100.41%
		-	Ethamsylate	100.31%

4. Conclusion

I conclude that a simple; precise reverse phase high performance liquid chromatography (RP-HPLC)approach was developed for the estimation of Tranexamic acid and Ethamsylate in pharmaceutical dosage form. The separation was carried out by using a Hypersil BDS column (250x4.6; particle size5m) at room temperature. As the mobile phase; phosphate buffer and acetonitrile was used: At 1.0ml/min flow rate.At a detection wavelength of 280nm; an phosphate buffer :acetonitrile (80:20v/v) was injected onto the column. Thelinearityconcentrationrangewas10-30µg/mL for Tranexamic acid and 10-30µg/mL for Ethamsylate with a correlation coefficient (r²) of 0.9999 and 0.9995respectively. The method found to be precise with % RSD values of NMT 2.0. According to ICH guidelines; the improved method was validated. Hence the developed method was improved; precise; and can be used in routine analysis.

Compliance with ethical standards

Acknowledgments

I am very grateful to SIMS College of Pharmacy for supporting me and providing everything without which it is not possible.

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

- [1] https://wwwanalysis/9789332515659/xhtml/chapter001.xhtml#:~:text=The%20pharmaceutical%20a nalysis%20is%20a;the%20structure%20of%20the%20compounds.
- [2] Introduction to pharmaceutical analysis https://www.lacitycollege.edu/ Departments/ Chemistry/ documents/Chemistry-102- Experiments-Documents/intro2qual_1456au81-doc
- [3] SnyderLR; KirklandJJ; Joseph LG. Practical HPLC method development;2nd Edition;Wileyinterscience; NewYork;1997;1-56.
- [4] M. R. Siddiqui; Z. A. AlOthman; and N. Rahman; Analytical techniques in Pharmaceutical Analysis: ARev iew; Arabian Journal of Chemistry; 2017; vol10;Pp. S1409–S1421.
- [5] Analysishttps://www.pharmatutor.org/articles/chromatography-introduction
- [6] https://byjus.com/chemistry/differential-extraction-chromatography/